R&S®FSW Signal and Spectrum Analyzer User Manual

HDE&SCHWARZ

Test & Measurement

This manual applies to the following R&S[®]FSW models with firmware version 2.40 and higher:

- R&S®FSW8 (1312.8000K08)
- R&S®FSW13 (1312.8000K13)
- R&S®FSW26 (1312.8000K26)
- R&S®FSW43 (1312.8000K43)
- R&S®FSW50 (1312.8000K50)
- R&S®FSW67 (1312.8000K67)
- R&S®FSW85 (1312.8000K85)

In addition to the base unit, the following options are described:

- R&S®FSW-B4, OCXO (1313.0703.02)
- R&S®FSW-B10, external generator control (1313.1622.02)
- R&S®FSW-B13, high-pass filter (1313.0761.02)
- R&S®FSW-B17, digital baseband interface (1313.0784.02)
- R&S®FSW-B21, external mixer (1313.1100.XX)
- R&S®FSW-B24, preamplifier (1313.0832.XX)
- R&S®FSW-B25, electronic attenuator (1313.0990.02)
- R&S®FSW-B28, bandwidth extension (1313.1645.02)
- R&S®FSW-B40 bandwidth extension (1313.0861.02) / R&S®-U40 (1313.52505.02)
- R&S®FSW-B80 bandwidth extension (1313.0878.02) / R&S®-U80 (1313.5211.02)
- R&S®FSW-B160 bandwidth extension (1313.1668.02) / R&S®-U160 (1313.3754.02)
- R&S®FSW-B320 bandwidth extension (1313.7172.02) / R&S®-U320 (1313.7189.02)
- R&S®FSW-B500 (1313.4296.02)
- R&S®FSW-B71, analog baseband interface (1313.1651.XX, 1313.6547.02)

The software contained in this product makes use of several valuable open source software packages. For information, see the "Open Source Acknowledgment" on the user documentation CD-ROM (included in delivery).

Rohde & Schwarz would like to thank the open source community for their valuable contribution to embedded computing.

© 2016 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany

Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
Email: info@rohde-schwarz.com
Internet: www.rohde-schwarz.com

Subject to change – Data without tolerance limits is not binding.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S®FSW is abbreviated as R&S FSW. R&S MultiView is abbreviated as MultiView. Products of the R&S®SMW family, e.g. R&S®SMW200A, are abbreviated as R&S SMW.

Always read through and comply with the following safety instructions!

All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety standards of our products up to date and to offer our customers the highest possible degree of safety. Our products and the auxiliary equipment they require are designed, built and tested in accordance with the safety standards that apply in each case. Compliance with these standards is continuously monitored by our quality assurance system. The product described here has been designed, built and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, you must observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, the Rohde & Schwarz group of companies will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for any purpose other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its product documentation and within its performance limits (see data sheet, documentation, the following safety instructions). Using the product requires technical skills and, in some cases, a basic knowledge of English. It is therefore essential that only skilled and specialized staff or thoroughly trained personnel with the required skills be allowed to use the product. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation. Keep the basic safety instructions and the product documentation in a safe place and pass them on to the subsequent users.

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before and when using the product. It is also absolutely essential to observe the additional safety instructions on personal safety, for example, that appear in relevant parts of the product documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by the Rohde & Schwarz group of companies, including instruments, systems and all accessories. For product-specific information, see the data sheet and the product documentation.

Safety labels on products

The following safety labels are used on products to warn against risks and dangers.

Symbol	Meaning	Symbol	Meaning
	Notice, general danger location	10	ON/OFF Power
	Observe product documentation		
18 kg	Caution when handling heavy equipment		Standby indication
A	Danger of electric shock	===	Direct current (DC)
	Caution! Hot surface	\sim	Alternating current (AC)
	Protective conductor terminal To identify any terminal which is intended for connection to an external conductor for protection against electric shock in case of a fault, or the terminal of a protective earth	~	Direct/alternating current (DC/AC)
<u></u>	Earth (Ground)		Class II Equipment to identify equipment meeting the safety requirements specified for Class II equipment (device protected by double or reinforced insulation)
/ / /	Frame or chassis Ground terminal		EU labeling for batteries and accumulators. For additional information, see section "Waste disposal/Environmental protection", item 1.

Symbol	Meaning	Symbol	Meaning
	Be careful when handling electrostatic sensitive devices		EU labeling for separate collection of electrical and electronic devices
			For additional information, see section "Waste disposal/Environmental protection", item 2.
\wedge	Warning! Laser radiation		
*	For additional information, see section "Operation", item 7.		

Signal words and their meaning

The following signal words are used in the product documentation in order to warn the reader about risks and dangers.

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Indicates information considered important, but not hazardrelated, e.g. messages relating to property damage. In the product documentation, the word ATTENTION is used synonymously.

These signal words are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist in other economic areas or military applications. It is therefore essential to make sure that the signal words described here are always used only in connection with the related product documentation and the related product. The use of signal words in connection with unrelated products or documentation can result in misinterpretation and in personal injury or material damage.

Operating states and operating positions

The product may be operated only under the operating conditions and in the positions specified by the manufacturer, without the product's ventilation being obstructed. If the manufacturer's specifications are not observed, this can result in electric shock, fire and/or serious personal injury or death. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.

- 1. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: predefined operating position is always with the housing floor facing down, IP protection 2X, use only indoors, max. operating altitude 2000 m above sea level, max. transport altitude 4500 m above sea level. A tolerance of ±10 % shall apply to the nominal voltage and ±5 % to the nominal frequency, overvoltage category 2, pollution degree 2.
- 2. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves). An installation that is not carried out as described in the product documentation could result in personal injury or even death.
- Do not place the product on heat-generating devices such as radiators or fan heaters. The ambient temperature must not exceed the maximum temperature specified in the product documentation or in the data sheet. Product overheating can cause electric shock, fire and/or serious personal injury or even death.

Electrical safety

If the information on electrical safety is not observed either at all or to the extent necessary, electric shock, fire and/or serious personal injury or death may occur.

- 1. Prior to switching on the product, always ensure that the nominal voltage setting on the product matches the nominal voltage of the mains-supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.
- 2. In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with a protective conductor contact and protective conductor.

- 3. Intentionally breaking the protective conductor either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.
- 4. If there is no power switch for disconnecting the product from the mains, or if the power switch is not suitable for this purpose, use the plug of the connecting cable to disconnect the product from the mains. In such cases, always ensure that the power plug is easily reachable and accessible at all times. For example, if the power plug is the disconnecting device, the length of the connecting cable must not exceed 3 m. Functional or electronic switches are not suitable for providing disconnection from the AC supply network. If products without power switches are integrated into racks or systems, the disconnecting device must be provided at the system level.
- 5. Never use the product if the power cable is damaged. Check the power cables on a regular basis to ensure that they are in proper operating condition. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by, for example, tripping over the cable or suffering an electric shock.
- 6. The product may be operated only from TN/TT supply networks fuse-protected with max. 16 A (higher fuse only after consulting with the Rohde & Schwarz group of companies).
- 7. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket provided for this purpose. Otherwise, sparks that result in fire and/or injuries may occur.
- 8. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.
- 9. For measurements in circuits with voltages Vrms > 30 V, suitable measures (e.g. appropriate measuring equipment, fuse protection, current limiting, electrical separation, insulation) should be taken to avoid any hazards.
- 10. Ensure that the connections with information technology equipment, e.g. PCs or other industrial computers, comply with the IEC 60950-1 / EN 60950-1 or IEC 61010-1 / EN 61010-1 standards that apply in each case.
- 11.Unless expressly permitted, never remove the cover or any part of the housing while the product is in operation. Doing so will expose circuits and components and can lead to injuries, fire or damage to the product.

- 12.If a product is to be permanently installed, the connection between the protective conductor terminal on site and the product's protective conductor must be made first before any other connection is made. The product may be installed and connected only by a licensed electrician.
- 13.For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fuse-protected in such a way that anyone who has access to the product, as well as the product itself, is adequately protected from injury or damage.
- 14. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the person operating the product will be exposed to the danger of an electric shock.
- 15. Any object that is not designed to be placed in the openings of the housing must not be used for this purpose. Doing so can cause short circuits inside the product and/or electric shocks, fire or injuries.
- 16.Unless specified otherwise, products are not liquid-proof (see also section "Operating states and operating positions", item 1). Therefore, the equipment must be protected against penetration by liquids. If the necessary precautions are not taken, the user may suffer electric shock or the product itself may be damaged, which can also lead to personal injury.
- 17. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product has been moved from a cold to a warm environment. Penetration by water increases the risk of electric shock.
- 18. Prior to cleaning the product, disconnect it completely from the power supply (e.g. AC supply network or battery). Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such as alcohol, acetone or diluents for cellulose lacquers.

Operation

- Operating the products requires special training and intense concentration.
 Make sure that persons who use the products are physically, mentally and
 emotionally fit enough to do so; otherwise, injuries or material damage may
 occur. It is the responsibility of the employer/operator to select suitable
 personnel for operating the products.
- 2. Before you move or transport the product, read and observe the section titled "Transport".

- 3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens) such as nickel cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties) when using a Rohde & Schwarz product, consult a physician immediately to determine the cause and to prevent health problems or stress.
- 4. Before you start processing the product mechanically and/or thermally, or before you take it apart, be sure to read and pay special attention to the section titled "Waste disposal/Environmental protection", item 1.
- 5. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn babies require increased protection, pregnant women must be protected by appropriate measures. Persons with pacemakers may also be exposed to risks from electromagnetic radiation. The employer/operator must evaluate workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the potential danger.
- 6. Should a fire occur, the product may release hazardous substances (gases, fluids, etc.) that can cause health problems. Therefore, suitable measures must be taken, e.g. protective masks and protective clothing must be worn.
- 7. Laser products are given warning labels that are standardized according to their laser class. Lasers can cause biological harm due to the properties of their radiation and due to their extremely concentrated electromagnetic power. If a laser product (e.g. a CD/DVD drive) is integrated into a Rohde & Schwarz product, absolutely no other settings or functions may be used as described in the product documentation. The objective is to prevent personal injury (e.g. due to laser beams).
- 8. EMC classes (in line with EN 55011/CISPR 11, and analogously with EN 55022/CISPR 22, EN 55032/CISPR 32)

– Class A equipment:

Equipment suitable for use in all environments except residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings

Note: Class A equipment is intended for use in an industrial environment.

This equipment may cause radio disturbances in residential environments, due to possible conducted as well as radiated disturbances. In this case, the operator may be required to take appropriate measures to eliminate these disturbances.

Class B equipment:

Equipment suitable for use in residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings

Repair and service

- 1. The product may be opened only by authorized, specially trained personnel. Before any work is performed on the product or before the product is opened, it must be disconnected from the AC supply network. Otherwise, personnel will be exposed to the risk of an electric shock.
- 2. Adjustments, replacement of parts, maintenance and repair may be performed only by electrical experts authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, protective conductor test, insulation resistance measurement, leakage current measurement, functional test). This helps ensure the continued safety of the product.

Batteries and rechargeable batteries/cells

If the information regarding batteries and rechargeable batteries/cells is not observed either at all or to the extent necessary, product users may be exposed to the risk of explosions, fire and/or serious personal injury, and, in some cases, death. Batteries and rechargeable batteries with alkaline electrolytes (e.g. lithium cells) must be handled in accordance with the EN 62133 standard.

- 1. Cells must not be taken apart or crushed.
- 2. Cells or batteries must not be exposed to heat or fire. Storage in direct sunlight must be avoided. Keep cells and batteries clean and dry. Clean soiled connectors using a dry, clean cloth.
- 3. Cells or batteries must not be short-circuited. Cells or batteries must not be stored in a box or in a drawer where they can short-circuit each other, or where they can be short-circuited by other conductive materials. Cells and batteries must not be removed from their original packaging until they are ready to be used.
- 4. Cells and batteries must not be exposed to any mechanical shocks that are stronger than permitted.
- 5. If a cell develops a leak, the fluid must not be allowed to come into contact with the skin or eyes. If contact occurs, wash the affected area with plenty of water and seek medical aid.

- 6. Improperly replacing or charging cells or batteries that contain alkaline electrolytes (e.g. lithium cells) can cause explosions. Replace cells or batteries only with the matching Rohde & Schwarz type (see parts list) in order to ensure the safety of the product.
- 7. Cells and batteries must be recycled and kept separate from residual waste. Rechargeable batteries and normal batteries that contain lead, mercury or cadmium are hazardous waste. Observe the national regulations regarding waste disposal and recycling.

Transport

- The product may be very heavy. Therefore, the product must be handled with care. In some cases, the user may require a suitable means of lifting or moving the product (e.g. with a lift-truck) to avoid back or other physical injuries.
- 2. Handles on the products are designed exclusively to enable personnel to transport the product. It is therefore not permissible to use handles to fasten the product to or on transport equipment such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport or lifting. Observe the safety regulations of the manufacturer of the means of transport or lifting. Noncompliance can result in personal injury or material damage.
- 3. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely and properly. The manufacturer assumes no responsibility for accidents or collisions. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident.

Waste disposal/Environmental protection

- Specially marked equipment has a battery or accumulator that must not be disposed of with unsorted municipal waste, but must be collected separately. It may only be disposed of at a suitable collection point or via a Rohde & Schwarz customer service center.
- 2. Waste electrical and electronic equipment must not be disposed of with unsorted municipal waste, but must be collected separately. Rohde & Schwarz GmbH & Co. KG has developed a disposal concept and takes full responsibility for take-back obligations and disposal obligations for manufacturers within the EU. Contact your Rohde & Schwarz customer service center for environmentally responsible disposal of the product.

- 3. If products or their components are mechanically and/or thermally processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.
- 4. If handling the product releases hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation. The improper disposal of hazardous substances or fuels can cause health problems and lead to environmental damage.

For additional information about environmental protection, visit the Rohde & Schwarz website.

Instrucciones de seguridad elementales

¡Es imprescindible leer y cumplir las siguientes instrucciones e informaciones de seguridad!

El principio del grupo de empresas Rohde & Schwarz consiste en tener nuestros productos siempre al día con los estándares de seguridad y de ofrecer a nuestros clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestro sistema de garantía de calidad controla constantemente que sean cumplidas estas normas. El presente producto ha sido fabricado y examinado según el certificado de conformidad de la UE y ha salido de nuestra planta en estado impecable según los estándares técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, el usuario deberá atenerse a todas las indicaciones, informaciones de seguridad y notas de alerta. El grupo de empresas Rohde & Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto está destinado exclusivamente al uso en la industria y el laboratorio o, si ha sido expresamente autorizado, para aplicaciones de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda sufrir daño. El uso del producto fuera de sus fines definidos o sin tener en cuenta las instrucciones del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del mal uso del producto.

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado conforme a las indicaciones de la correspondiente documentación del producto y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso del producto hace necesarios conocimientos técnicos y ciertos conocimientos del idioma inglés. Por eso se debe tener en cuenta que el producto solo pueda ser operado por personal especializado o personas instruidas en profundidad con las capacidades correspondientes. Si fuera necesaria indumentaria de seguridad para el uso de productos de Rohde & Schwarz, encontraría la información debida en la documentación del producto en el capítulo correspondiente. Guarde bien las informaciones de seguridad elementales, así como la documentación del producto, y entréguelas a usuarios posteriores.

Tener en cuenta las informaciones de seguridad sirve para evitar en lo posible lesiones o daños por peligros de toda clase. Por eso es imprescindible leer detalladamente y comprender por completo las siguientes informaciones de seguridad antes de usar el producto, y respetarlas durante el uso del producto. Deberán tenerse en cuenta todas las demás informaciones de seguridad, como p. ej. las referentes a la protección de personas, que encontrarán en el capítulo correspondiente de la documentación del producto y que también son de obligado cumplimiento. En las presentes informaciones de seguridad se recogen todos los objetos que distribuye el grupo de empresas Rohde & Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así como toda clase de accesorios. Los datos específicos del producto figuran en la hoja de datos y en la documentación del producto.

Señalización de seguridad de los productos

Las siguientes señales de seguridad se utilizan en los productos para advertir sobre riesgos y peligros.

Símbolo	Significado	Símbolo	Significado
	Aviso: punto de peligro general Observar la documentación del	10	Tensión de alimentación de PUESTA EN MARCHA / PARADA
18 kg	Atención en el manejo de dispositivos de peso elevado	()	Indicación de estado de espera (standby)
A	Peligro de choque eléctrico		Corriente continua (DC)
	Advertencia: superficie caliente	\sim	Corriente alterna (AC)
	Conexión a conductor de protección	\sim	Corriente continua / Corriente alterna (DC/AC)
<u>_</u>	Conexión a tierra		El aparato está protegido en su totalidad por un aislamiento doble (reforzado)
	Conexión a masa		Distintivo de la UE para baterías y acumuladores
		_	Más información en la sección "Eliminación/protección del medio ambiente", punto 1.
	Aviso: Cuidado en el manejo de dispositivos sensibles a la electrostática (ESD)		Distintivo de la UE para la eliminación por separado de dispositivos eléctricos y electrónicos
			Más información en la sección "Eliminación/protección del medio ambiente", punto 2.
	Advertencia: rayo láser		
*	Más información en la sección "Funcionamiento", punto 7.		

Palabras de señal y su significado

En la documentación del producto se utilizan las siguientes palabras de señal con el fin de advertir contra riesgos y peligros.

Indica una situación de peligro que, si no se evita, causa lesiones graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar lesiones graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar lesiones leves o moderadas.

Indica información que se considera importante, pero no en relación con situaciones de peligro; p. ej., avisos sobre posibles daños materiales.

En la documentación del producto se emplea de forma sinónima el término CUIDADO.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el área económica europea. Pueden existir definiciones diferentes a esta definición en otras áreas económicas o en aplicaciones militares. Por eso se deberá tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación del producto y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a interpretaciones equivocadas y tener por consecuencia daños en personas u objetos.

Estados operativos y posiciones de funcionamiento

El producto solamente debe ser utilizado según lo indicado por el fabricante respecto a los estados operativos y posiciones de funcionamiento sin que se obstruya la ventilación. Si no se siguen las indicaciones del fabricante, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte. En todos los trabajos deberán ser tenidas en cuenta las normas nacionales y locales de seguridad del trabajo y de prevención de accidentes.

- 1. Si no se convino de otra manera, es para los productos Rohde & Schwarz válido lo que sigue: como posición de funcionamiento se define por principio la posición con el suelo de la caja para abajo, modo de protección IP 2X, uso solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar, transporte hasta 4500 m sobre el nivel del mar. Se aplicará una tolerancia de ±10 % sobre el voltaje nominal y de ±5 % sobre la frecuencia nominal. Categoría de sobrecarga eléctrica 2, índice de suciedad 2.
- 2. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptos para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (p. ej. paredes y estantes). Si se realiza la instalación de modo distinto al indicado en la documentación del producto, se pueden causar lesiones o, en determinadas circunstancias, incluso la muerte.
- 3. No ponga el producto sobre aparatos que generen calor (p. ej. radiadores o calefactores). La temperatura ambiente no debe superar la temperatura máxima especificada en la documentación del producto o en la hoja de datos. En caso de sobrecalentamiento del producto, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

Seguridad eléctrica

Si no se siguen (o se siguen de modo insuficiente) las indicaciones del fabricante en cuanto a seguridad eléctrica, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

1. Antes de la puesta en marcha del producto se deberá comprobar siempre que la tensión preseleccionada en el producto coincida con la de la red de alimentación eléctrica. Si es necesario modificar el ajuste de tensión, también se deberán cambiar en caso dado los fusibles correspondientes del producto.

- 2. Los productos de la clase de protección I con alimentación móvil y enchufe individual solamente podrán enchufarse a tomas de corriente con contacto de seguridad y con conductor de protección conectado.
- 3. Queda prohibida la interrupción intencionada del conductor de protección, tanto en la toma de corriente como en el mismo producto. La interrupción puede tener como consecuencia el riesgo de que el producto sea fuente de choques eléctricos. Si se utilizan cables alargadores o regletas de enchufe, deberá garantizarse la realización de un examen regular de los mismos en cuanto a su estado técnico de seguridad.
- 4. Si el producto no está equipado con un interruptor para desconectarlo de la red, o bien si el interruptor existente no resulta apropiado para la desconexión de la red, el enchufe del cable de conexión se deberá considerar como un dispositivo de desconexión.
 - El dispositivo de desconexión se debe poder alcanzar fácilmente y debe estar siempre bien accesible. Si, p. ej., el enchufe de conexión a la red es el dispositivo de desconexión, la longitud del cable de conexión no debe superar 3 m).
 - Los interruptores selectores o electrónicos no son aptos para el corte de la red eléctrica. Si se integran productos sin interruptor en bastidores o instalaciones, se deberá colocar el interruptor en el nivel de la instalación.
- 5. No utilice nunca el producto si está dañado el cable de conexión a red. Compruebe regularmente el correcto estado de los cables de conexión a red. Asegúrese, mediante las medidas de protección y de instalación adecuadas, de que el cable de conexión a red no pueda ser dañado o de que nadie pueda ser dañado por él, p. ej. al tropezar o por un choque eléctrico.
- 6. Solamente está permitido el funcionamiento en redes de alimentación TN/TT aseguradas con fusibles de 16 A como máximo (utilización de fusibles de mayor amperaje solo previa consulta con el grupo de empresas Rohde & Schwarz).
- 7. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. La no observación de estas medidas puede provocar chispas, fuego y/o lesiones.
- 8. No sobrecargue las tomas de corriente, los cables alargadores o las regletas de enchufe ya que esto podría causar fuego o choques eléctricos.
- 9. En las mediciones en circuitos de corriente con una tensión Ueff > 30 V se deberán tomar las medidas apropiadas para impedir cualquier peligro (p. ej. medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).

- 10. Para la conexión con dispositivos informáticos como un PC o un ordenador industrial, debe comprobarse que éstos cumplan los estándares IEC60950-1/EN60950-1 o IEC61010-1/EN 61010-1 válidos en cada caso.
- 11.A menos que esté permitido expresamente, no retire nunca la tapa ni componentes de la carcasa mientras el producto esté en servicio. Esto pone a descubierto los cables y componentes eléctricos y puede causar lesiones, fuego o daños en el producto.
- 12. Si un producto se instala en un lugar fijo, se deberá primero conectar el conductor de protección fijo con el conductor de protección del producto antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efectuadas por un electricista especializado.
- 13.En el caso de dispositivos fijos que no estén provistos de fusibles, interruptor automático ni otros mecanismos de seguridad similares, el circuito de alimentación debe estar protegido de modo que todas las personas que puedan acceder al producto, así como el producto mismo, estén a salvo de posibles daños.
- 14. Todo producto debe estar protegido contra sobretensión (debida p. ej. a una caída del rayo) mediante los correspondientes sistemas de protección. Si no, el personal que lo utilice quedará expuesto al peligro de choque eléctrico.
- 15. No debe introducirse en los orificios de la caja del aparato ningún objeto que no esté destinado a ello. Esto puede producir cortocircuitos en el producto y/o puede causar choques eléctricos, fuego o lesiones.
- 16. Salvo indicación contraria, los productos no están impermeabilizados (ver también el capítulo "Estados operativos y posiciones de funcionamiento", punto 1). Por eso es necesario tomar las medidas necesarias para evitar la entrada de líquidos. En caso contrario, existe peligro de choque eléctrico para el usuario o de daños en el producto, que también pueden redundar en peligro para las personas.
- 17. No utilice el producto en condiciones en las que pueda producirse o ya se hayan producido condensaciones sobre el producto o en el interior de éste, como p. ej. al desplazarlo de un lugar frío a otro caliente. La entrada de agua aumenta el riesgo de choque eléctrico.
- 18. Antes de la limpieza, desconecte por completo el producto de la alimentación de tensión (p. ej. red de alimentación o batería). Realice la limpieza de los aparatos con un paño suave, que no se deshilache. No utilice bajo ningún concepto productos de limpieza químicos como alcohol, acetona o diluyentes para lacas nitrocelulósicas.

Funcionamiento

- 1. El uso del producto requiere instrucciones especiales y una alta concentración durante el manejo. Debe asegurarse que las personas que manejen el producto estén a la altura de los requerimientos necesarios en cuanto a aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario u operador es responsable de seleccionar el personal usuario apto para el manejo del producto.
- 2. Antes de desplazar o transportar el producto, lea y tenga en cuenta el capítulo "Transporte".
- 3. Como con todo producto de fabricación industrial no puede quedar excluida en general la posibilidad de que se produzcan alergias provocadas por algunos materiales empleados —los llamados alérgenos (p. ej. el níquel)—. Si durante el manejo de productos Rohde & Schwarz se producen reacciones alérgicas, como p. ej. irritaciones cutáneas, estornudos continuos, enrojecimiento de la conjuntiva o dificultades respiratorias, debe avisarse inmediatamente a un médico para investigar las causas y evitar cualquier molestia o daño a la salud.
- Antes de la manipulación mecánica y/o térmica o el desmontaje del producto, debe tenerse en cuenta imprescindiblemente el capítulo "Eliminación/protección del medio ambiente", punto 1.
- 5. Ciertos productos, como p. ej. las instalaciones de radiocomunicación RF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. Deben tomarse todas las medidas necesarias para la protección de las mujeres embarazadas. También las personas con marcapasos pueden correr peligro a causa de la radiación electromagnética. El empresario/operador tiene la obligación de evaluar y señalizar las áreas de trabajo en las que exista un riesgo elevado de exposición a radiaciones.
- 6. Tenga en cuenta que en caso de incendio pueden desprenderse del producto sustancias tóxicas (gases, líquidos etc.) que pueden generar daños a la salud. Por eso, en caso de incendio deben usarse medidas adecuadas, como p. ej. máscaras antigás e indumentaria de protección.

- 7. Los productos con láser están provistos de indicaciones de advertencia normalizadas en función de la clase de láser del que se trate. Los rayos láser pueden provocar daños de tipo biológico a causa de las propiedades de su radiación y debido a su concentración extrema de potencia electromagnética. En caso de que un producto Rohde & Schwarz contenga un producto láser (p. ej. un lector de CD/DVD), no debe usarse ninguna otra configuración o función aparte de las descritas en la documentación del producto, a fin de evitar lesiones (p. ej. debidas a irradiación láser).
- 8. Clases de compatibilidad electromagnética (conforme a EN 55011 / CISPR 11; y en analogía con EN 55022 / CISPR 22, EN 55032 / CISPR 32)

Aparato de clase A:

Aparato adecuado para su uso en todos los entornos excepto en los residenciales y en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.

Nota: Los aparatos de clase A están destinados al uso en entornos industriales. Estos aparatos pueden causar perturbaciones radioeléctricas en entornos residenciales debido a posibles perturbaciones guiadas o radiadas. En este caso, se le podrá solicitar al operador que tome las medidas adecuadas para eliminar estas perturbaciones.

Aparato de clase B:

Aparato adecuado para su uso en entornos residenciales, así como en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.

Reparación y mantenimiento

- El producto solamente debe ser abierto por personal especializado con autorización para ello. Antes de manipular el producto o abrirlo, es obligatorio desconectarlo de la tensión de alimentación, para evitar toda posibilidad de choque eléctrico.
- 2. El ajuste, el cambio de partes, el mantenimiento y la reparación deberán ser efectuadas solamente por electricistas autorizados por Rohde & Schwarz. Si se reponen partes con importancia para los aspectos de seguridad (p. ej. el enchufe, los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Después de cada cambio de partes relevantes para la seguridad deberá realizarse un control de seguridad (control a primera vista, control del conductor de protección, medición de resistencia de aislamiento, medición de la corriente de fuga, control de funcionamiento). Con esto queda garantizada la seguridad del producto.

Baterías y acumuladores o celdas

Si no se siguen (o se siguen de modo insuficiente) las indicaciones en cuanto a las baterías y acumuladores o celdas, pueden producirse explosiones, incendios y/o lesiones graves con posible consecuencia de muerte. El manejo de baterías y acumuladores con electrolitos alcalinos (p. ej. celdas de litio) debe seguir el estándar EN 62133.

- 1. No deben desmontarse, abrirse ni triturarse las celdas.
- Las celdas o baterías no deben someterse a calor ni fuego. Debe evitarse el almacenamiento a la luz directa del sol. Las celdas y baterías deben mantenerse limpias y secas. Limpiar las conexiones sucias con un paño seco y limpio.
- 3. Las celdas o baterías no deben cortocircuitarse. Es peligroso almacenar las celdas o baterías en estuches o cajones en cuyo interior puedan cortocircuitarse por contacto recíproco o por contacto con otros materiales conductores. No deben extraerse las celdas o baterías de sus embalajes originales hasta el momento en que vayan a utilizarse.
- 4. Las celdas o baterías no deben someterse a impactos mecánicos fuertes indebidos.
- 5. En caso de falta de estanqueidad de una celda, el líquido vertido no debe entrar en contacto con la piel ni los ojos. Si se produce contacto, lavar con agua abundante la zona afectada y avisar a un médico.
- 6. En caso de cambio o recarga inadecuados, las celdas o baterías que contienen electrolitos alcalinos (p. ej. las celdas de litio) pueden explotar. Para garantizar la seguridad del producto, las celdas o baterías solo deben ser sustituidas por el tipo Rohde & Schwarz correspondiente (ver lista de recambios).
- 7. Las baterías y celdas deben reciclarse y no deben tirarse a la basura doméstica. Las baterías o acumuladores que contienen plomo, mercurio o cadmio deben tratarse como residuos especiales. Respete en esta relación las normas nacionales de eliminación y reciclaje.

Transporte

 El producto puede tener un peso elevado. Por eso es necesario desplazarlo o transportarlo con precaución y, si es necesario, usando un sistema de elevación adecuado (p. ej. una carretilla elevadora), a fin de evitar lesiones en la espalda u otros daños personales.

- 2. Las asas instaladas en los productos sirven solamente de ayuda para el transporte del producto por personas. Por eso no está permitido utilizar las asas para la sujeción en o sobre medios de transporte como p. ej. grúas, carretillas elevadoras de horquilla, carros etc. Es responsabilidad suya fijar los productos de manera segura a los medios de transporte o elevación. Para evitar daños personales o daños en el producto, siga las instrucciones de seguridad del fabricante del medio de transporte o elevación utilizado.
- 3. Si se utiliza el producto dentro de un vehículo, recae de manera exclusiva en el conductor la responsabilidad de conducir el vehículo de manera segura y adecuada. El fabricante no asumirá ninguna responsabilidad por accidentes o colisiones. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Asegure el producto dentro del vehículo debidamente para evitar, en caso de un accidente, lesiones u otra clase de daños.

Eliminación/protección del medio ambiente

- Los dispositivos marcados contienen una batería o un acumulador que no se debe desechar con los residuos domésticos sin clasificar, sino que debe ser recogido por separado. La eliminación se debe efectuar exclusivamente a través de un punto de recogida apropiado o del servicio de atención al cliente de Rohde & Schwarz.
- 2. Los dispositivos eléctricos usados no se deben desechar con los residuos domésticos sin clasificar, sino que deben ser recogidos por separado. Rohde & Schwarz GmbH & Co.KG ha elaborado un concepto de eliminación de residuos y asume plenamente los deberes de recogida y eliminación para los fabricantes dentro de la UE. Para desechar el producto de manera respetuosa con el medio ambiente, diríjase a su servicio de atención al cliente de Rohde & Schwarz.
- 3. Si se trabaja de manera mecánica y/o térmica cualquier producto o componente más allá del funcionamiento previsto, pueden liberarse sustancias peligrosas (polvos con contenido de metales pesados como p. ej. plomo, berilio o níquel). Por eso el producto solo debe ser desmontado por personal especializado con formación adecuada. Un desmontaje inadecuado puede ocasionar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes a la eliminación de residuos.

4. En caso de que durante el trato del producto se formen sustancias peligrosas o combustibles que deban tratarse como residuos especiales (p. ej. refrigerantes o aceites de motor con intervalos de cambio definidos), deben tenerse en cuenta las indicaciones de seguridad del fabricante de dichas sustancias y las normas regionales de eliminación de residuos. Tenga en cuenta también en caso necesario las indicaciones de seguridad especiales contenidas en la documentación del producto. La eliminación incorrecta de sustancias peligrosas o combustibles puede causar daños a la salud o daños al medio ambiente.

Se puede encontrar más información sobre la protección del medio ambiente en la página web de Rohde & Schwarz.

Customer Support

Technical support – where and when you need it

For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support Centers. A team of highly qualified engineers provides telephone support and will work with you to find a solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz equipment.

Up-to-date information and upgrades

To keep your instrument up-to-date and to be informed about new application notes related to your instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish.

We will take care that you will get the right information.

Europe, Africa, Middle East Phone +49 89 4129 12345

customersupport@rohde-schwarz.com

North America Phone 1-888-TEST-RSA (1-888-837-8772)

customer.support@rsa.rohde-schwarz.com

Latin America Phone +1-410-910-7988

customersupport.la@rohde-schwarz.com

Asia/Pacific Phone +65 65 13 04 88

customersupport.asia@rohde-schwarz.com

China Phone +86-800-810-8228 /

+86-400-650-5896

customersupport.china@rohde-schwarz.com

Contents

1	Preface	15
1.1	About this Manual	15
1.2	Documentation Overview	16
1.3	Conventions Used in the Documentation	17
1.3.1	Typographical Conventions	17
1.3.2	Conventions for Procedure Descriptions	18
1.3.3	Notes on Screenshots	18
2	Welcome to the R&S FSW	19
3	Getting Started	20
3.1	Preparing for Use	20
3.1.1	Putting into Operation	20
3.1.2	Windows Operating System	26
3.1.3	Connecting USB Devices	30
3.1.4	Connecting an External Monitor	32
3.1.5	Setting Up a Network (LAN) Connection	33
3.1.6	Configuring the Initial Instrument Settings	37
3.1.7	Protecting Data Using the Secure User Mode	37
3.2	Instrument Tour	40
3.2.1	Front Panel View	40
3.2.2	Rear Panel View	54
3.3	Trying Out the Instrument	59
3.3.1	Measuring a Basic Signal	60
3.3.2	Displaying a Spectrogram	62
3.3.3	Activating Additional Measurement Channels	64
3.3.4	Performing Sequential Measurements	67
3.3.5	Setting and Moving a Marker	68
3.3.6	Displaying a Marker Peak List	69
3.3.7	Zooming into the Display	70
3.3.8	Saving Settings	73
3.3.9	Printing and Saving Results	75
3.4	Operating the Instrument	75

3.4.1	Understanding the Display Information	76
3.4.2	Accessing the Functionality	85
3.4.3	Changing the Focus	85
3.4.4	Entering Data	86
3.4.5	Displaying Results	88
3.4.6	Getting Help	95
3.4.7	Remote Control	97
4	Applications and Operating Modes	100
4.1	R&S MultiView	
4.2	Available Applications	102
4.3	Selecting the Operating Mode and Applications	108
4.4	Running a Sequence of Measurements	109
4.4.1	The Sequencer Concept	110
4.4.2	Sequencer Settings	112
4.4.3	How to Set Up the Sequencer	113
5	Measurements	114
5.1	Available Measurement Functions	114
5.2	Basic Measurements	119
5.2.1	How to Perform a Basic Sweep Measurement	119
5.2.2	Measurement Examples - Measuring a Sinusoidal Signal	120
5.2.3	Measurement Example – Measuring Levels at Low S/N Ratios	123
5.2.4	Measurement Examples - Measuring Signal Spectra with Multiple Signals	126
5.2.5	Measurement Examples in Zero Span	133
5.3	Channel Power and Adjacent-Channel Power (ACLR) Measurement	139
5.3.1	About Channel Power Measurements	140
5.3.2	Channel Power Results	140
5.3.3	Channel Power Basics	142
5.3.4	Channel Power Configuration	153
5.3.5	MSR ACLR Configuration	163
5.3.6	How to Perform Channel Power Measurements	
5.3.7	Measurement Examples	183
5.3.8	Optimizing and Troubleshooting the Measurement	
5.3.9	Reference: Predefined CP/ACLR Standards	190

R&S®FSW

5.4	Carrier-to-Noise Measurements	191
5.4.1	About the Measurement	191
5.4.2	Carrier-to-Noise Results	192
5.4.3	Carrier-to-Noise Configuration	193
5.4.4	How to Determine the Carrier-to-Noise Ratio	194
5.5	Occupied Bandwidth Measurement (OBW)	195
5.5.1	About the Measurement	195
5.5.2	OBW Results	197
5.5.3	OBW Configuration	198
5.5.4	How to Determine the Occupied Bandwidth	200
5.5.5	Measurement Example	200
5.6	Spectrum Emission Mask (SEM) Measurement	201
5.6.1	About the Measurement	201
5.6.2	Typical Applications	202
5.6.3	SEM Results	202
5.6.4	SEM Basics	205
5.6.5	SEM Configuration	216
5.6.6	How to Perform a Spectrum Emission Mask Measurement	232
5.6.7	Measurement Example: Multi-SEM Measurement	237
5.6.8	Reference: SEM File Descriptions	238
5.7	Spurious Emissions Measurement	245
5.7.1	About the Measurement	245
5.7.2	Spurious Emissions Measurement Results	246
5.7.3	Spurious Emissions Basics	247
5.7.4	Spurious Emissions Measurement Configuration	249
5.7.5	How to Perform a Spurious Emissions Measurement	255
5.7.6	Reference: ASCII Export File Format (Spurious)	256
5.8	Statistical Measurements (APD, CCDF)	258
5.8.1	About the Measurements	258
5.8.2	Typical Applications	259
5.8.3	APD and CCDF Results	259
5.8.4	APD and CCDF Basics - Gated Triggering	262
5.8.5	APD and CCDF Configuration	263

5.8.6	How to Perform an APD or CCDF Measurement	269
5.8.7	Examples	270
5.8.8	Optimizing and Troubleshooting the Measurement	272
5.9	Time Domain Power Measurement	272
5.9.1	About the Measurement	273
5.9.2	Time Domain Power Results	273
5.9.3	Time Domain Power Basics - Range Definition Using Limit Lines	274
5.9.4	Time Domain Power Configuration	274
5.9.5	How to Measure Powers in the Time Domain	275
5.9.6	Measurement Example	276
5.10	Harmonic Distortion Measurement	277
5.10.1	About the Measurement	277
5.10.2	Harmonic Distortion Basics	278
5.10.3	Harmonic Distortion Results	280
5.10.4	Harmonic Distortion Configuration	281
5.10.5	How to Determine the Harmonic Distortion	282
5.11	Third Order Intercept (TOI) Measurement	283
5.11.1	About the TOI Measurement	283
5.11.2	TOI Basics	283
5.11.3	TOI Results	287
5.11.4	TOI Configuration	288
5.11.5	How to Determine the Third Order Intercept	289
5.11.6	Measurement Example – Measuring the R&S FSW's Intrinsic Intermodulation	290
5.12	AM Modulation Depth Measurement	292
5.12.1	About the Measurement	292
5.12.2	AM Modulation Depth Results	292
5.12.3	AM Modulation Depth Configuration	293
5.12.4	Optimizing and Troubleshooting the Measurement	294
5.12.5	How to Determine the AM Modulation Depth	295
5.13	Electromagnetic Interference (EMI) Measurement	295
5.13.1	About the EMI Measurement	295
5.13.2	EMI Measurement Results	296
5.13.3	EMI Measurement Basics	297

5.13.4	EMI Measurement Configuration	306
5.13.5	EMI Result Analysis	313
5.13.6	How to Perform EMI Measurements	313
5.13.7	Measurement Example: Measuring Radio Frequency Interference	315
5.13.8	Optimizing and Troubleshooting EMI Measurements	317
6	Common Measurement Settings	319
6.1	Configuration Overview	319
6.2	Data Input and Output	321
6.2.1	Receiving Data Input and Providing Data Output	321
6.2.2	Input Source Settings	326
6.2.3	Power Sensors	330
6.2.4	Optional External Generator Control	339
6.2.5	Optional External Mixers	367
6.2.6	Output Settings	391
6.3	Frequency and Span Configuration	395
6.3.1	Impact of the Frequency and Span Settings	395
6.3.2	Frequency and Span Settings	397
6.3.3	How To Define the Frequency Range	402
6.3.4	How to Move the Center Frequency through the Frequency Range	403
6.3.5	How to Keep the Center Frequency Stable	403
6.4	Amplitude and Vertical Axis Configuration	403
6.4.1	Impact of the Vertical Axis Settings	404
6.4.2	Amplitude Settings	406
6.4.3	Scaling the Y-Axis	411
6.4.4	How to Optimize the Amplitude Display	412
6.5	Bandwidth, Filter and Sweep Configuration	413
6.5.1	Impact of the Bandwidth, Filter and Sweep Settings	413
6.5.2	Bandwidth, Filter and Sweep Settings	419
6.5.3	Reference: List of Available RRC and Channel Filters	427
6.6	Trigger and Gate Configuration	429
6.6.1	Basics of Triggering and Gated Measurements	429
6.6.2	Trigger and Gate Settings	436
6.6.3	How to Configure a Triggered and Gated Measurement	445

6.6.4	How to Output a Trigger Signal	448
6.7	Adjusting Settings Automatically	448
7	Common Analysis and Display Functions	451
7.1	Result Display Configuration	451
7.1.1	Basic Evaluation Methods	451
7.1.2	Laying out the Result Display with the SmartGrid	453
7.2	Zoomed Displays	458
7.2.1	Single Zoom Versus Multiple Zoom	458
7.2.2	Zoom Functions	460
7.2.3	How to Zoom Into a Diagram	461
7.3	Trace Configuration	463
7.3.1	Basics on Setting up Traces	464
7.3.2	Trace Configuration	478
7.3.3	How to Configure Traces	490
7.4	Marker Usage	496
7.4.1	Basics on Markers and Marker Functions	496
7.4.2	Marker Configuration	508
7.4.3	Marker Function Configuration	521
7.4.4	How to Work With Markers	533
7.4.5	Measurement Example: Measuring Harmonics Using Marker Functions	535
7.5	Display and Limit Lines	536
7.5.1	Basics on Display Lines	537
7.5.2	Basics on Limit Lines	537
7.5.3	Settings and Functions for Display and Limit Lines	541
7.5.4	How to Work with Display and Limit Lines	548
8	Data Management	552
8.1	Restoring the Default Instrument Configuration (Preset)	552
8.2	Protecting Data Using the Secure User Mode	553
8.3	Storing and Recalling Instrument Settings and Measurement Data	555
8.3.1	Quick Save/Quick Recall	556
8.3.2	Configurable Storage and Recall	558
8.3.3	How to Save and Load Instrument Settings	564
8.4	Importing and Exporting Measurement Results for Evaluation	566

8.4.1	Import/Export Functions	567
8.4.2	How to Export Trace Data and Numerical Results	568
8.4.3	How to Export a Peak List	569
8.4.4	Reference: ASCII File Export Format	570
8.5	Creating Screenshots of Current Measurement Results and Settings	573
8.5.1	Print and Screenshot Settings	574
8.5.2	How to Store or Print Screenshots of the Display	584
8.5.3	Example for Storing Multiple Measurement Results to a PDF File	587
9	General Instrument Setup	590
9.1	Basics on Alignment	590
9.2	Basics on Transducer Factors	591
9.3	General Instrument Settings	593
9.3.1	Reference Frequency Settings	594
9.3.2	Transducer Settings	597
9.3.3	Alignment Settings	601
9.3.4	System Configuration Settings	603
9.3.5	Service Functions	609
9.4	Display Settings	616
9.4.1	General Display Settings	616
9.4.2	Displayed Items	618
9.4.3	Display Theme and Colors	622
9.5	External Monitor Settings	626
9.6	How to Configure the Basic Instrument Settings	627
9.6.1	How to Perform a Self-test	627
9.6.2	How to Align the Instrument	628
9.6.3	How to Align the Touchscreen	628
9.6.4	How to Install an R&S FSW Option	629
9.6.5	How to Update the Instrument Firmware	629
9.6.6	How to Configure the Transducer	629
9.6.7	How to Configure the Colors for Display and Printing	632
9.6.8	How to Work with the Soft Front Panels	633
10	Network and Remote Operation	635
10.1	Remote Control Basics	635

10.1.1	Remote Control Interfaces and Protocols	635
10.1.2	SCPI (Standard Commands for Programmable Instruments)	642
10.1.3	VISA Libraries	642
10.1.4	Messages	643
10.1.5	SCPI Command Structure	644
10.1.6	Command Sequence and Synchronization	652
10.1.7	Status Reporting System	655
10.1.8	General Programming Recommendations	672
10.2	GPIB Languages	673
10.3	The IECWIN Tool	675
10.4	Network and Remote Control Settings	676
10.4.1	General Network Settings	677
10.4.2	GPIB Settings	678
10.4.3	Compatibility Settings	681
10.4.4	LXI Settings	684
10.4.5	Remote Errors.	686
10.5	How to Set Up a Network and Remote Control	688
10.5.1	How to Configure a Network	688
10.5.2	How to Operate the Instrument Without a Network	695
10.5.3	How to Log on to the Network	695
10.5.4	How to Share Directories (only with Microsoft Networks)	697
10.5.5	How to Control the R&S FSW via the Web Browser Interface	698
10.5.6	How to Deactivate the Web Browser Interface	699
10.5.7	How to Set Up Remote Desktop	700
10.5.8	How to Start a Remote Control Session from a PC	707
10.5.9	How to Return to Manual Operation	708
11	Remote Commands	709
11.1	Conventions Used in SCPI Command Descriptions	709
11.2	Common Suffixes	710
11.3	Common Commands	710
11.4	Selecting the Operating Mode and Application	715
11.4.1	Selecting the Mode and Applications	715
11.4.2	Performing a Sequence of Measurements	721

11.4.3	Programming Example: Performing a Sequence of Measurements	724
11.5	Configuring and Performing Measurements	726
11.5.1	Performing Measurements	726
11.5.2	Configuring Power Measurements	729
11.5.3	Measuring the Channel Power and ACLR	734
11.5.4	Measuring the Carrier-to-Noise Ratio.	771
11.5.5	Measuring the Occupied Bandwidth	771
11.5.6	Measuring the Spectrum Emission Mask	773
11.5.7	Measuring Spurious Emissions	809
11.5.8	Analyzing Statistics (APD, CCDF)	823
11.5.9	Measuring the Time Domain Power	833
11.5.10	Measuring the Harmonic Distortion	843
11.5.11	Measuring the Third Order Intercept Point	847
11.5.12	Measuring the AM Modulation Depth	849
11.5.13	Remote Commands for EMI Measurements	851
11.5.14	List Evaluations	861
11.5.15	Measuring the Pulse Power	866
11.6	Configuring the Result Display	871
11.6.1	General Window Commands	871
11.6.2	Working with Windows in the Display	872
11.6.3	Examples: Configuring the Result Display	878
11.7	Setting Basic Measurement Parameters	880
11.7.1	Defining the Frequency and Span	880
11.7.2	Configuring Bandwidth and Sweep Settings	887
11.7.3	Configuring the Vertical Axis (Amplitude, Scaling)	895
11.7.4	Configuring Triggered and Gated Measurements	903
11.7.5	Adjusting Settings Automatically	913
11.7.6	Configuring the Data Input and Output	917
11.8	Analyzing Measurements (Basics)	962
11.8.1	Zooming into the Display	962
11.8.2	Configuring the Trace Display and Retrieving Trace Data	964
11.8.3	Working with Markers	986
11.8.4	Configuring Display and Limit Lines	1045

11.9	Managing Settings and Results	1062
11.9.1	General Data Storage and Loading Commands	1063
11.9.2	Selecting the Items to Store	1070
11.9.3	Storing and Loading Instrument Settings	1073
11.9.4	Storing or Printing Screenshots	1078
11.9.5	Storing Measurement Results	1090
11.9.6	Examples: Managing Data	1094
11.10	Configuring the R&S FSW	1097
11.10.1	Configuring the Reference Frequency	1097
11.10.2	Calibration and Checks	1100
11.10.3	Working with Transducers	1104
11.10.4	Customizing the Screen Layout	1108
11.10.5	Configuring the Network and Remote Control	1115
11.10.6	Checking the System Configuration	1118
11.10.7	Using Service Functions	1124
11.11	Using the Status Register	1126
11.11.1	General Status Register Commands	1127
11.11.2	Reading Out the CONDition Part	1127
11.11.3	Reading Out the EVENt Part	1128
11.11.4	Controlling the ENABle Part	1128
11.11.5	Controlling the Negative Transition Part	1129
11.11.6	Controlling the Positive Transition Part	1130
11.12	Commands for Remote Instrument Operation	1130
11.13	Emulating Other Instruments' Commands	1131
11.13.1	Setting up Instrument Emulation	1131
11.13.2	Reference: GPIB Commands of Emulated HP Models	1135
11.13.3	Reference: Command Set of Emulated PSA Models	1163
11.13.4	Reference: Command Set of Emulated PXA Models	1167
11.14	Deprecated Commands	1168
11.15	Programming Examples	1171
11.15.1	Programming Example: Performing a Basic Frequency Sweep	1171
11.15.2	Service Request	1173
12	Maintenance	1182

R&S®FSW Contents

13	Optimizing and Troubleshooting	1183
13.1	Error Information	1183
13.2	Error Messages in Remote Control Mode	1185
13.3	Troubleshooting Remote Operation	1186
13.4	Minimizing the Measurement Duration	1187
13.5	Improving Averaging Results	1188
13.6	Miscellaneous Troubleshooting Hints	1188
13.7	Obtaining Technical Support	1190
	List of remote commands (base unit)	1192
	Index	1212

R&S®FSW Contents

About this Manual

1 Preface

1.1 About this Manual

This User Manual describes general instrument functions and settings common to all applications and operating modes in the R&S FSW. Furthermore, it provides all the information specific to **RF measurements in the Spectrum application**. All other operating modes and applications are described in the specific application manuals.

The main focus in this manual is on the measurement results and the tasks required to obtain them. The following topics are included:

Welcome to the R&S FSW

Introduction to and getting familiar with the instrument

Operating Modes and Applications

The concept of using multiple operating modes

Measurements

Descriptions of the individual measurements in the Spectrum application, including result types and configuration settings.

Common Measurement Settings

Description of the measurement settings common to all measurement types with their corresponding remote control commands

Common Measurement Analysis and Display Functions

Description of the settings and functions provided to analyze results independently of the measurement type with their corresponding remote control commands

• Data Management

Description of general functions to handle data files (configuration and result data, not I/Q data)

General Instrument Setup

Description of general instrument settings and functions that are independent of the current operating mode

Network and Remote Operation

Information on setting up the instrument in a network and operating it remotely.

Remote Commands

Remote commands required to configure and perform measurements in a remote environment, sorted by tasks

Remote commands required to set up the environment and to perform common tasks on the instrument, sorted by tasks

Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes

Maintenance

Information on tasks required to maintain operability of the instrument

Troubleshooting

Hints and tips on how to handle errors

List of Commands

Documentation Overview

Alphabetical list of all remote commands described in the manual

Index

1.2 Documentation Overview

The user documentation for the R&S FSW consists of the following parts:

- "Getting Started" printed manual
- Online Help system on the instrument
- User manuals and online manual for base unit and options provided on the product page
- Service manual provided on the internet for registered users
- Instrument security procedures provided on the product page
- Release notes provided on the product page
- Data sheet and brochures provided on the product page
- Application notes provided on the Rohde & Schwarz website

You find the user documentation on the R&S FSW product page mainly at: http://www.rohde-schwarz.com/product/FSW > "Downloads" > "Manuals"

Additional download paths are stated directly in the following abstracts of the documentation types.

Getting Started

Introduces the R&S FSW and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc.

Online Help

Offers quick, context-sensitive access to the information needed for operation and programming. It contains the description for the base unit and the software options. The Online Help is embedded in the instrument's firmware; it is available using the $\ref{thm:property}$ icon on the toolbar of the R&S FSW.

User Manuals and Online Manual

Separate manuals are provided for the base unit and the software options:

Base unit manual

Contains the description of the graphical user interface, an introduction to remote control, the description of all SCPI remote control commands, programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the **Getting Started** manual.

Software option manuals

Describe the specific functions of the option. Basic information on operating the R&S FSW is not included.

Conventions Used in the Documentation

The **online manual** provides the contents of the user manuals for the base unit and all software options for immediate display on the internet.

Service Manual

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

The service manual is available for **registered** users on the global Rohde & Schwarz information system (GLORIS, https://gloris.rohde-schwarz.com).

Instrument Security Procedures

Deals with security issues when working with the R&S FSW in secure areas.

Data Sheet and Brochures

The data sheet contains the technical specifications of the R&S FSW. Brochures provide an overview of the instrument and deal with the specific characteristics, see:

http://www.rohde-schwarz.com/product/FSW > "Downloads" > "Brochures and Data Sheets"

Release Notes

Describes the firmware installation, new and modified features and fixed issues according to the current firmware version. You find the latest version at:

http://www.rohde-schwarz.com/product/FSW > "Firmware"

Application Notes, Application Cards, White Papers, etc.

These documents deal with special applications or background information on particular topics, see:

http://www.rohde-schwarz.com/ > "Downloads" > "Applications".

1.3 Conventions Used in the Documentation

1.3.1 Typographical Conventions

The following text markers are used throughout this documentation:

Convention	Description
"Graphical user interface elements"	All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks.
KEYS	Key names are written in capital letters.

Conventions Used in the Documentation

Convention	Description
File names, commands, program code	File names, commands, coding samples and screen output are distinguished by their font.
Input	Input to be entered by the user is displayed in italics.
Links	Links that you can click are displayed in blue font.
"References"	References to other parts of the documentation are enclosed by quotation marks.

1.3.2 Conventions for Procedure Descriptions

When describing how to operate the instrument, several alternative methods may be available to perform the same task. In this case, the procedure using the touchscreen is described. Any elements that can be activated by touching can also be clicked using an additionally connected mouse. The alternative procedure using the keys on the instrument or the on-screen keyboard is only described if it deviates from the standard operating procedures.

The term "select" may refer to any of the described methods, i.e. using a finger on the touchscreen, a mouse pointer in the display, or a key on the instrument or on a keyboard.

1.3.3 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as much as possible of the provided functions and possible interdependencies between parameters.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

2 Welcome to the R&S FSW

The R&S FSW is a new high-performance Rohde & Schwarz signal and spectrum analyzer developed to meet demanding customer requirements. Offering low phase noise, wide analysis bandwidth and straightforward and intuitive operation, the analyzer makes measurements fast and easy.

This user manual contains a description of the functionality that the instrument provides, including remote control operation. The latest version is available for download at the product homepage (http://www2.rohde-schwarz.com/product/FSW.html).

Preparing for Use

3 Getting Started

Note: the following chapters are identical to those in the printed R&S FSW Getting Started manual.

•	Preparing for Use	.20
	Instrument Tour	
•	Trying Out the Instrument	. 59
	Operating the Instrument	

3.1 Preparing for Use

•	Putting into Operation	20
	Windows Operating System	
	Connecting USB Devices	
	Connecting an External Monitor	
	Setting Up a Network (LAN) Connection	
	Configuring the Initial Instrument Settings	
	Protecting Data Using the Secure User Mode	

3.1.1 Putting into Operation

This section describes the basic steps to be taken when setting up the R&S FSW for the first time.

WARNING

Risk of injury and instrument damage

The instrument must be used in an appropriate manner to prevent electric shock, fire, personal injury, or damage.

- Do not open the instrument casing.
- Read and observe the "Basic Safety Instructions" delivered as a printed brochure with the instrument.

In addition, read and observe the safety instructions in the following sections. Notice that the data sheet may specify additional operating conditions.

NOTICE

Risk of instrument damage

Note that the general safety instructions also contain information on operating conditions that prevent damage to the instrument. The instrument's data sheet can contain additional operating conditions.

Preparing for Use

NOTICE

Risk of electrostatic discharge (ESD)

Electrostatic discharge (ESD) can damage the electronic components of the instrument and the device under test (DUT). ESD is most likely to occur when you connect or disconnect a DUT or test fixture to the instrument's test ports. To prevent ESD, use a wrist strap and cord and connect yourself to the ground, or use a conductive floor mat and heel strap combination.

For details, refer to the basic safety instructions included at the front of the manual.

NOTICE

Risk of instrument damage during operation

An unsuitable operating site or test setup can damage the instrument and connected devices. Ensure the following operating conditions before you switch on the instrument:

- All fan openings are unobstructed and the airflow perforations are unimpeded. The minimum distance from the wall is 10 cm.
- The instrument is dry and shows no sign of condensation.
- The instrument is positioned as described in the following sections.
- The ambient temperature does not exceed the range specified in the data sheet.
- Signal levels at the input connectors are all within the specified ranges.
- Signal outputs are correctly connected and are not overloaded.

EMI impact on measurement results

Electromagnetic interference (EMI) may affect the measurement results.

To suppress generated electromagnetic interference (EMI):

- Use suitable shielded cables of high quality. For example, use double-shielded RF and LAN cables.
- Always terminate open cable ends.
- Note the EMC classification in the data sheet.

•	Unpacking and Checking the Instrument	21
	Accessory List	
	Placing or Mounting the Instrument	
	Connecting the AC Power	
	Switching the Instrument On and Off	
	Performing a Self-Alignment and a Selftest	
	Checking the Supplied Options.	

3.1.1.1 Unpacking and Checking the Instrument

Check the equipment for completeness using the delivery note and the accessory lists for the various items. Check the instrument for any damage. If there is damage, imme-

Preparing for Use

diately contact the carrier who delivered the instrument. Make sure not to discard the box and packing material.

Packing material

Retain the original packing material. If the instrument needs to be transported or shipped at a later date, you can use the material to protect the control elements and connectors.

NOTICE

Risk of damage during transportation and shipment

Insufficient protection against mechanical and electrostatic effects during transportation and shipment can damage the instrument.

- Always make sure that sufficient mechanical and electrostatic protection is provided
- When shipping an instrument, the original packaging should be used. If you do not
 have the original packaging, use sufficient padding to prevent the instrument from
 moving around inside the box. Pack the instrument in antistatic wrap to protect it
 from electrostatic charging.
- Secure the instrument to prevent any movement and other mechanical effects during transportation.

The **carrying handles** at the front and side of the casing are designed to lift or carry the instrument. Do not apply an excessive external force to the handles.

Observe the information on transporting heavy instruments in the basic safety instructions included at the front of the printed manual.

3.1.1.2 Accessory List

The instrument comes with the following accessories:

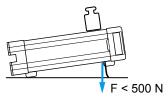
- Power cable
- Printed Getting Started manual
- "R&S FSW User Documentation" DVD

3.1.1.3 Placing or Mounting the Instrument

The R&S FSW is designed for use under laboratory conditions, either on a bench top or in a rack.

Bench Top Operation

If the R&S FSW is operated on a bench top, the surface should be flat. The instrument can be used in horizontal position, standing on its feet, or with the support feet on the bottom extended.

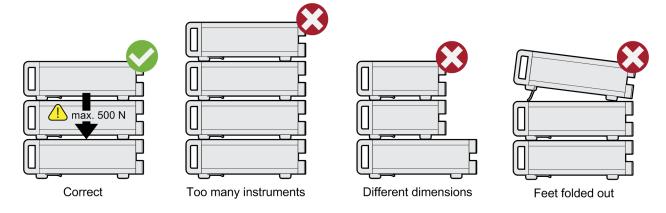

Preparing for Use

A CAUTION

Risk of injury if feet are folded out

The feet may fold in if they are not folded out completely or if the instrument is shifted. This may cause damage or injury.

- Fold the feet completely in or completely out to ensure stability of the instrument. Never shift the instrument when the feet are folded out.
- When the feet are folded out, do not work under the instrument or place anything underneath.
- The feet can break if they are overloaded. The overall load on the folded-out feet must not exceed 500 N.


A CAUTION

Risk of injury and instrument damage if stacking instruments

A stack of instruments may tilt over and cause injury. Furthermore, the instruments at the bottom of the stack may be damaged due to the load imposed by the instruments on top.

Observe the following instructions when stacking instruments:

- Never stack more than three instruments. If you need to stack more than three instruments, install them in a rack.
- The overall load imposed on the lowest instrument must not exceed 500 N.
- All instruments must have the same dimensions (width and length).
- If the instruments have foldable feet, fold them in completely.

Preparing for Use

Rackmounting

The R&S FSW can be installed in a rack using a rack adapter kit (order no. see data sheet). The installation instructions are part of the adapter kit.

NOTICE

Risk of instrument damage in a rack

An insufficient airflow can cause the instrument to overheat, which may disturb the operation and even cause damage.

Make sure that all fan openings are unobstructed, that the airflow perforations are unimpeded, and that the minimum distance from the wall is 10 cm.

3.1.1.4 Connecting the AC Power

In the standard version, the R&S FSW is equipped with an AC power supply connector. The R&S FSW can be used with different AC power voltages and adapts itself automatically to it. Refer to the datasheet for the requirements of voltage and frequency. The AC power connector is located on the rear panel of the instrument.

For details on the connector, refer to Chapter 3.2.2.2, "AC Power Supply Connection and Main Power Switch", on page 55.

Connect the R&S FSW to the AC power supply using the supplied power cable. Since the instrument is assembled in line with the specifications for safety class EN61010, it must only be connected to an outlet that has a ground contact.

3.1.1.5 Switching the Instrument On and Off

Switching on the instrument

Press the AC power switch on the rear panel to position "I".

The instrument is supplied with AC power. After booting, the instrument is ready for operation. A green LED above the POWER key indicates this.

An orange LED indicates the instrument is in standby mode

Warm-up time for OCXO

When the instrument is switched on, the OCXO requires an extended warm-up time (see data sheet). No warm-up time is required when starting from standby mode.

Switching off the instrument

Press the POWER key on the front panel.
 The R&S FSW switches to standby mode.

Preparing for Use

2. Set the AC power switch on the rear panel to position "O", or disconnect the instrument from the AC power supply.

The R&S FSW changes into off mode.

NOTICE

Risk of losing data

If you switch off the running instrument using the rear panel switch or by disconnecting the power cord, the instrument loses its current settings. Furthermore, program data may be lost.

Press the Power key first to shut down the application properly.

3.1.1.6 Performing a Self-Alignment and a Selftest

During instrument start, the installed hardware is checked against the current firmware version to ensure the hardware is supported. If not, an error message is displayed ("WRONG_FW") and you are asked to update the firmware. Until the firmware version is updated, self-alignment fails.

(For details refer to the R&S FSW User Manual).

When strong temperature changes occur, you may have to perform a self-alignment to align the data to a reference source.

Operating temperature

Before performing this functional test, make sure that the instrument has reached its operating temperature (for details, refer to the data sheet).

A message in the status bar ("Instrument warming up...") indicates that the operating temperature has not yet been reached.

Performing a self-alignment

- 1. Press the SETUP key.
- 2. Press the "Alignment" softkey.
- 3. Select the "Start Self-Alignment" button in the "Alignment" dialog box.

Once the system correction values have been calculated successfully, a message is displayed.

To display the alignment results again later

- Press the SETUP key.
- Press the "Alignment" softkey.

Preparing for Use

Performing a selftest

You do not have to repeat the selftest every time the instrument is switched on. It is only necessary when instrument malfunction is suspected.

- 1. Press the SETUP key.
- 2. Press the "Service" softkey.
- 3. Switch to the "Selftest" tab in the "Service" dialog box.
- 4. Select the "Start Selftest" button.

Once the instrument modules have been checked successfully, a message is displayed.

3.1.1.7 Checking the Supplied Options

The instrument may be equipped with both hardware and firmware options. To check whether the installed options correspond to the options indicated on the delivery note, proceed as follows.

- 1. Press the SETUP key.
- 2. Press the "System Config" softkey.
- Switch to the "Versions + Options" tab in the "System Configuration" dialog box.A list with hardware and firmware information is displayed.
- 4. Check the availability of the hardware options as indicated in the delivery note.

3.1.2 Windows Operating System

The instrument contains the Windows operating system which has been configured according to the instrument's features and needs. Changes in the system setup are only required when peripherals like keyboard or a printer are installed or if the network configuration does not comply with the default settings. After the R&S FSW is started, the operating system boots and the instrument firmware is started automatically.

To ensure that the instrument software functions properly, certain rules must be adhered to concerning the operating system.

Preparing for Use

NOTICE

Risk of causing instrument unusability

The instrument is equipped with the Windows operating system. Additional software can therefore be installed on the instrument. The use and installation of additional software may impair instrument function. Thus, run only programs that Rohde & Schwarz has tested for compatibility with the instrument software.

The drivers and programs used on the instrument under Windows have been adapted to the instrument. Existing instrument software must always be modified using only update software released by Rohde & Schwarz.

The following program packages have been tested:

- R&S Power Viewer Plus virtual power meter for displaying results of the Power Sensor R&S NRP-Zxx (install only this component!)
- Symantec Endpoint Security Virus-protection software
- FileShredder for reliable deletion of files on the hard disk

3.1.2.1 Virus Protection

Take appropriate steps to protect your instruments from infection. Use strong firewall settings and scan any removable storage device used with a Rohde & Schwarz instrument regularly. It is also recommended that you install anti-virus software on the instrument. Rohde & Schwarz does NOT recommend running anti-virus software in the background ("on- access" mode) on Windows-based instruments, due to potentially degrading instrument performance. However, it does recommend running it during non-critical hours.

For details and recommendations, see the Rohde & Schwarz White Paper 1DC01: Malware Protection.

3.1.2.2 Service Packs and Updates

Microsoft regularly creates security updates and other patches to protect Windowsbased operating systems. These are released through the Microsoft Update website and associated update server. Instruments using Windows, especially those that connect to a network, should be updated regularly.

For details and recommendations, see the Rohde & Schwarz White Paper 1DC01: Malware Protection.

3.1.2.3 Login

Windows requires that users identify themselves by entering a user name and password in a login window. By default, the R&S FSW provides two user accounts:

 "Instrument": an administrator account with unrestricted access to the computer/ domain

Preparing for Use

"NormalUser": a standard user account with limited access

Some administrative tasks require administrator rights (e.g. the configuration of a LAN network). Refer to the description of the basic instrument setup (SETUP menu) to find out which functions are affected.

Secure User Mode

If the secure user mode option (R&S FSW-K33) is installed, an additional account is provided: the **"SecureUser"**.

The "SecureUser" is a standard user account with limited functionality. In particular, administrative tasks such as LAN configuration or general instrument settings are not available. Furthermore, for a "SecureUser", data that the R&S FSW normally stores on the solid-state drive is redirected to volatile memory instead. Users can access data that is stored in volatile memory during the current instrument session. However, when the instrument's power is removed, all data in volatile memory is erased.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Automatic login

For the administrator account, an automatic login function is active by default. If activated, login is carried out automatically for the administrator (with full access) in the background when the R&S FSW is started, without having to enter a password. This function is active until you explicitly deactivate it or change the password.

For information on how to deactivate or re-activate the automatic login, refer to "The Automatic Login Function" on page 28.

Passwords

For all default user accounts, the initial password is 894129. Note that this password is very weak, and it is recommended that you change the password for both users after initial login. You can change the password in Windows 7 for any user at any time via "Start > Control Panel > User Accounts".

When the secure user mode is activated the first time after installation, the user is prompted to change the passwords for all user accounts to improve system security.

Changing the password and use of auto-login function

Note that when you change the default passwords, the default auto-login function no longer works! You must re-activate it manually as described in "Re-activating the automatic login function" on page 29.

The Automatic Login Function

When shipped, the instrument is already configured to automatically log on to Windows using the default administrator account ("Instrument") and password.

Preparing for Use

Deactivating the automatic login function

To deactivate the automatic login function, perform the following steps:

1. 🎥

Select the "Windows" icon in the toolbar to access the operating system of the R&S FSW (see also Chapter 3.1.2.4, "Accessing the Start Menu", on page 30).

- 2. In the "Start" menu, select "Run". The "Run" dialog box is displayed.
- 3. Enter the command C:\R S\INSTR\USER\NO AUTOLOGIN.REG.
- 4. Press the ENTER key to confirm. The automatic login function is deactivated. The next time you switch on the instrument, you are prompted to enter your user name and password before the firmware is started.

Adapting the automatic login function to a new password

If you change the "Instrument" user's (administrator's) password, which is used during automatic login, this function no longer works. You must adapt the settings for the command that activates the auto login function first.

- 1. Open the C:\R_S\INSTR\USER\NO_AUTOLOGIN.REG file in any text editor (e.g. Notepad).
- 2. In the line "DefaultPassword"="894129", replace the default password (894129) by the new password which is to be used for automatic login.
- 3. Save the changes to the file.

Re-activating the automatic login function

- In the "Start" menu, select "Run".
 The "Run" dialog box is displayed.
- 2. Enter the command C:\R_S\INSTR\USER\AUTOLOGIN.REG.
- Press the ENTER key to confirm.
 The automatic login function is re-activated. It will be applied the next time the instrument is rebooted.

Switching users when using the automatic login function

Which user account is used is defined during login. However, you can also switch the user account to be used when the automatic login function is active.

In the "Start" menu, select the arrow next to the "Shut down" button and then "Log off".

The "Login" dialog box is displayed, in which you can enter the different user account name and password.

Preparing for Use

3.1.2.4 Accessing the Start Menu

The Windows "Start" menu provides access to the Windows functionality and installed programs. To open the "Start" menu, select the "Windows" icon on the R&S FSW toolbar, or press the "Windows" key or the CTRL + ESC key combination on the (external) keyboard.

All necessary system settings can be defined in the "Start > Control Panel" menu (for required settings refer to the Windows documentation and to the hardware description).

3.1.2.5 Accessing the Windows Task Bar

The Windows task bar also provides quick access to commonly used programs, for example Paint or Wordpad. IECWIN, the auxiliary remote control tool provided free of charge and installed by Rohde & Schwarz, is also available from the task bar.

For details on the IECWIN tool, see the "Network and Remote Control" chapter of the R&S FSW User Manual.

To open the task bar, select the "Windows" icon on the R&S FSW toolbar, or press the "Windows" key or the CTRL + ESC key combination on your (external) keyboard.

3.1.3 Connecting USB Devices

The USB interfaces of the R&S FSW allow you to connect USB devices directly to the instrument. This number can be increased as necessary by using USB hubs. Due to the large number of available USB devices, there is almost no limit to the expansions that are possible with the R&S FSW.

The following list shows various USB devices that can be useful:

- Memory stick for easy transfer of data to/from a computer (e.g. firmware updates)
- CD-ROM drives for easy installation of firmware applications
- Keyboard or mouse to simplify the entry of data, comments, file names, etc.
- Printer for printing measurement results
- Power sensors, e.g. of the NRP Zxy family

Installing USB devices is easy under Windows, because all USB devices are plug&play. After a device is connected to the USB interface, the operating system automatically searches for a suitable device driver.

If Windows does not find a suitable driver, it prompts you to specify a directory that contains the driver software. If the driver software is on a CD, connect a USB CD-ROM drive to the instrument before proceeding.

When a USB device is then disconnected from the R&S FSW, Windows immediately detects the change in hardware configuration and deactivates the corresponding driver.

Preparing for Use

All USB devices can be connected to or disconnected from the instrument during operation.

Connecting a memory stick or CD-ROM drive

If installation of a memory stick or CD-ROM drive is successful, Windows informs you that the device is ready to use. The device is made available as a new drive and is displayed in Windows Explorer. The name of the drive depends on the manufacturer.

Connecting a keyboard

The keyboard is detected automatically when it is connected. The default input language is English – US.

However, you can also connect foreign language keyboards; currently the following languages are supported for the R&S FSW:

- German
- Swiss
- French
- Russian

Select "Start > Control Panel > Clock, Language, and Region > Change keyboards or other input methods" to configure the keyboard properties. To access the Windows operating system, press the Windows key on the external keyboard.

Connecting a mouse

The mouse is detected automatically when it is connected.

Select "Start > Control Panel > Devices and Printers > Mouse" to configure the mouse properties. To access the Windows operating system, press the Windows key on the external keyboard.

Connecting a printer

When printing a file, the instrument checks whether a printer is connected and turned on and whether the appropriate printer driver is installed. If required, printer driver installation is initiated. A printer driver only needs to be installed once.

To install a printer, select "Start > Control Panel > Devices and Printers > Add a printer". To access the Windows operating system, press the Windows key on the external keyboard.

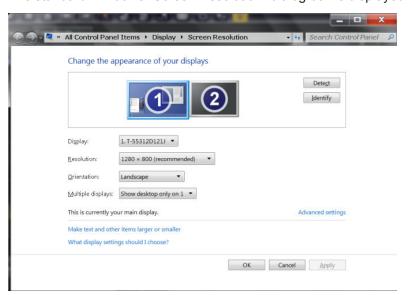
You can load updated and improved driver versions or new drivers from an installation disk, USB memory stick or another external storage medium. If the instrument is integrated in a network, you can also install driver data stored in a network directory.

Select "Start > Control Panel > Devices and Printers > Device Manager > Update Device drivers" to install the driver.

Preparing for Use

3.1.4 Connecting an External Monitor

You can connect an external monitor (or projector) to the DVI or DISPLAY PORT connector on the rear panel of the R&S FSW (see also Chapter 3.2.2.3, "DISPLAY PORT and DVI", on page 55).


Screen resolution and format

The touchscreen of the R&S FSW is calibrated for a 16:10 format. If you connect a monitor or projector using a different format (e.g. 4:3), the calibration will not be correct and the screen will not react to your touch actions properly.

The touchscreen has a screen resolution of 1280x800 pixels. Most external monitors have a higher screen resolution. If the screen resolution of the monitor is set higher than the instrument's resolution, the application window uses an area of 1280x800 pixels on the monitor display. For full screen display, adjust the monitor's screen resolution.

The R&S FSW supports a minimum resolution of 1280x768 pixels.

- 1. Connect the external monitor to the R&S FSW.
- 2. Press the SETUP key.
- 3. Press the "Display" softkey.
- Select the "Configure Monitor" tab in the "Display" dialog box.
 The standard Windows "Screen Resolution" dialog box is displayed.

- 5. If necessary, change the screen resolution to be used. Consider the information in the note above.
- 6. Select the instrument to be used for display:
 - "Display 1": internal monitor only
 - "Display 2": external monitor only

Preparing for Use

- "Duplicate": both internal and external monitor
- 7. Tap "Apply" to try out the settings before they are accepted permanently, then you can easily return to the previous settings, if necessary.

8. Select "OK" if the settings are suitable.

3.1.5 Setting Up a Network (LAN) Connection

The R&S FSW is equipped with a network interface and can be connected to an Ethernet LAN (local area network). Provided the network administrator has assigned you the appropriate rights and adapted the Windows firewall configuration, you can use the interface, for example:

- To transfer data between a controlling device and the test device, e.g. to run a remote control program.
 See chapter "Remote Control"
- To access or control the measurement from a remote computer using the "Remote Desktop" application (or a similar tool)
- To connect external network devices (e.g. printers)
- To transfer data from a remote computer and back, e.g. using network folders

This section describes how to configure the LAN interface. It includes the following topics:

- Chapter 3.1.5.1, "Connecting the Instrument to the Network", on page 33
- Chapter 3.1.5.2, "Assigning the IP Address", on page 34

Note that only user accounts with administrator rights can configure LAN networks.

LXI

The R&S FSW complies with LXI Class C. LXI gives you direct access to the LAN settings described below.

For further information on the LXI interface, refer to Chapter 10.4.4, "LXI Settings", on page 684.

3.1.5.1 Connecting the Instrument to the Network

There are two methods to establish a LAN connection to the instrument:

- A non-dedicated network (Ethernet) connection from the instrument to an existing network made with an ordinary RJ-45 network cable. The instrument is assigned an IP address and can coexist with a computer and with other hosts on the same network.
- A dedicated network connection (Point-to-point connection) between the instrument and a single computer made with a (crossover) RJ-45 network cable. The computer must be equipped with a network adapter and is directly connected to the instrument. The use of hubs, switches, or gateways is not required, however, data

Preparing for Use

transfer is still performed using the TCP/IP protocol. An IP address has to be assigned to the instrument and the computer, see Chapter 3.1.5.2, "Assigning the IP Address", on page 34.

Note: As the R&S FSW uses a 1 GBit LAN, a crossover cable is not necessary (due to Auto-MDI(X) functionality).

NOTICE

Risk of network failure

Before connecting the instrument to the network or configuring the network, consult your network administrator. Errors may affect the entire network.

➤ To establish a non-dedicated network connection, connect a commercial RJ-45 cable to one of the LAN ports.

To establish a dedicated connection, connect a (crossover) RJ-45 cable between the instrument and a single PC.

If the instrument is connected to the LAN, Windows automatically detects the network connection and activates the required drivers.

The network card can be operated with a 1 GBit Ethernet IEEE 802.3u interface.

3.1.5.2 Assigning the IP Address

Depending on the network capacities, the TCP/IP address information for the instrument can be obtained in different ways.

- If the network supports dynamic TCP/IP configuration using the Dynamic Host Configuration Protocol (DHCP), all address information can be assigned automatically.
- If the network does not support DHCP, or if the instrument is set to use alternate TCP/IP configuration, the addresses must be set manually.

By default, the instrument is configured to use dynamic TCP/IP configuration and obtain all address information automatically. This means that it is safe to establish a physical connection to the LAN without any previous instrument configuration.

NOTICE

Risk of network errors

Connection errors can affect the entire network. If your network does not support DHCP, or if you choose to disable dynamic TCP/IP configuration, you must assign valid address information before connecting the instrument to the LAN. Contact your network administrator to obtain a valid IP address.

Assigning the IP address on the instrument

1. Press the SETUP key.

Preparing for Use

- 2. Press the "Network + Remote" softkey.
- 3. Select the "Network" tab.
- In the "Network + Remote" dialog, toggle the "DHCP On/Off" setting to the required mode.

If DHCP is "Off", you must enter the IP address manually, as described in the following steps.

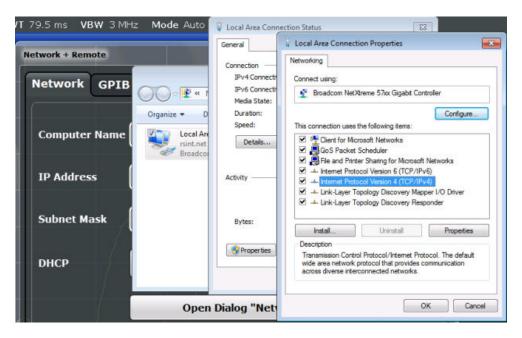
Note: When DHCP is changed from "On" to "Off", the previously set IP address and subnet mask are retrieved.

If DHCP is "On", the IP address of the DHCP server is obtained automatically. The configuration is saved, and you are prompted to restart the instrument. You can skip the remaining steps.

Note: When a DHCP server is used, a new IP address may be assigned each time the instrument is restarted. This address must first be determined on the instrument itself. Thus, when using a DHCP server, it is recommended that you use the permanent computer name, which determines the address via the DNS server (see "Using a DNS server to determine the IP address" on page 35 and Chapter 3.1.5.3, "Using Computer Names", on page 36).

- 5. Enter the "IP Address", for example *192.0.2.0*. The IP address consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.
- Enter the "Subnet Mask", for example 255.255.25.0. The subnet mask consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.
- 7. Select "Configure Network".

If you have entered an invalid IP address or subnet mask, the message "out of range" is displayed in the status line. If the settings are correct, the configuration is saved, and you are prompted to restart the instrument.


8. Confirm the displayed message ("Yes" button) to restart the instrument.

Using a DNS server to determine the IP address

If a DNS server is configured on the R&S FSW, the server can determine the current IP address for the connection using the permanent computer name.

- 1. Obtain the name of your DNS domain and the IP addresses of the DNS and WINS servers on your network.
- 2. Press the SETUP key and then the "Network + Remote" softkey.
- 3. In the "Network" tab, select the "Open Dialog 'Network Configuration" button.
- 4. Double-tap the "Local Area Connection" icon.
- 5. In the "Local Area Connection Status" dialog box, select the "Properties" button. The items used by the LAN connection are displayed.
- 6. Tap the entry named "Internet Protocol Version 4 (TCP/IPv4)" to highlight it.

Preparing for Use

- 7. Select the "Properties" button.
- 8. On the "General" tab, select "Use the following DNS server addresses" and enter your own DNS addresses.

For more information, refer to the Windows operating system Help.

3.1.5.3 Using Computer Names

In a LAN that uses a DNS server (Domain Name System server), each PC or instrument connected in the LAN can be accessed via an unambiguous computer name instead of the IP address. The DNS server translates the host name to the IP address. This is especially useful when a DHCP server is used, as a new IP address may be assigned each time the instrument is restarted.

Each instrument is delivered with an assigned computer name, but this name can be changed.

The default instrument name is a non-case-sensitive string with the following syntax:

<Type><variant>-<serial number>

The serial number can be found on the rear panel of the instrument. It is the third part of the device ID printed on the bar code sticker:

For example, FSW13-123456

Preparing for Use

To change the computer name

- 1. Press the SETUP key and then the "Network + Remote" softkey. The current "Computer Name" is displayed in the "Network" tab.
- 2. Enter the new computer name and close the dialog box.

3.1.5.4 Changing the Windows Firewall Settings

A firewall protects an instrument by preventing unauthorized users from gaining access to it through a network. Rohde & Schwarz highly recommends the use of the firewall on your instrument. Rohde & Schwarz instruments are shipped with the Windows firewall enabled and preconfigured in such a way that all ports and connections for remote control are enabled.

For more details on firewall configuration, see the Rohde & Schwarz White Paper 1DC01: Malware Protection.

Note that changing firewall settings requires administrator rights.

3.1.6 Configuring the Initial Instrument Settings

This section describes how to setup the R&S FSW initially. For further basic instrument settings, see the R&S FSW User Manual.

3.1.6.1 Setting the Date and Time

Users with administrator rights can set the date and time for the internal real time clock as follows:

Opening the Date and Time Properties dialog box

- 1. Press the SETUP key.
- 2. Press the "Display" softkey.
- 3. Select the "General" tab in the "Display" dialog box.
- 4. Press the "Set Date and Time" button to open the standard Windows "Date and Time Properties" dialog box.
- If necessary, toggle the "Date and Time Format" between German (DE) and US.After you have changed the setting and closed the dialog box, the instrument adopts the new date and time.

3.1.7 Protecting Data Using the Secure User Mode

During normal operation, the R&S FSW uses a solid-state drive to store its operating system, instrument firmware, instrument self-alignment data, and any user data cre-

Preparing for Use

ated during operation. If necessary, the solid-state drive can be removed from the R&S FSW and locked in a secure place to protect any classified data it may contain.

Redirecting storage to volatile memory

Alternatively, to avoid storing any sensitive data on the R&S FSW permanently, the secure user mode was introduced (option R&S FSW-K33). In secure user mode the instrument's solid-state drive is write-protected so that no information can be written to memory permanently. Data that the R&S FSW normally stores on the solid-state drive is redirected to volatile memory instead, which remains available only until the instrument is switched off. This data includes:

- Windows 7 operating system files
- Firmware shutdown files containing information on last instrument state
- Self-alignment data
- · General instrument settings such as the IP address
- Measurement settings
- User data created during operation (see also Table 8-1)
- Any data created by other applications installed on the R&S FSW, for example text editors (Notepad), the Clipboard, drawing tools, etc.

Users can access data that is stored in volatile memory just as in normal operation. However, when the instrument's power is switched off, all data in this memory is cleared. Thus, in secure user mode, the instrument always starts in a defined, fixed state when switched on.

To store data such as measurement results permanently, it must be stored to an external storage device, such as a memory stick.

Limited storage space

The volatile memory used to store data in secure user mode is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

Storing required data permanently

Any data that is to be available for subsequent sessions with the R&S FSW must be stored on the instrument permanently, *before activating the secure user mode*. This includes predefined instrument settings, transducer factors and self-alignment data.

Self-alignment data

Note that self-alignment data becomes invalid with time and due to temperature changes. Therefore, to achieve optimal accuracy, it may be preferable to perform a new self-alignment at the start of each new session on the R&S FSW.

Preparing for Use

Restricted operation

Since permanent storage is not possible, the following functions are not available in secure user mode:

- Firmware update
- Activating a new option key

Furthermore, since the "SecureUser" used in secure user mode does not have administrator rights, **administrative tasks** such as LAN configuration and some general instrument settings are not available. Refer to the description of the basic instrument setup (SETUP menu) to find out which functions are affected.

Activating and deactivating secure user mode

Only a user with administrator rights can activate the secure user mode. Once activated, a restart is required. The special user "SecureUser" is then logged on to the R&S FSW automatically (using the automatic login function, see "The Automatic Login Function" on page 28). While the secure user mode is active, a message is displayed in the status bar at the bottom of the screen.

Secure Passwords

By default, the initial password for both the administrator account ("Instrument") and the "SecureUser" account is "894129". When the secure user mode is activated the first time after installation, you are prompted to change the passwords for all user accounts to improve system security. Although it is possible to continue without changing the passwords, it is strongly recommended that you do so.

You can change the password in Windows 7 for any user at any time via "Start > Control Panel > User Accounts".

To deactivate the secure user mode, the "SecureUser" must log off and the "Instrument" user (administrator) must log on.

Switching users when using the automatic login function

In the "Start" menu, select the arrow next to the "Shut down" button and then "Log off". The "Login" dialog box is displayed, in which you can enter the different user account name and password.

The secure user mode setting and automatic login is automatically deactivated when the "Instrument" user logs on. The "SecureUser" is no longer available.

For administrators ("Instrument" user), the secure user mode setting is available in the general system configuration settings (see Chapter 9.3.4.5, "General Configuration Settings", on page 607).

Remote control

Initially after installation of the R&S FSW-K33 option, secure user mode must be enabled manually once before remote control is possible.

Instrument Tour

(See SYSTem: SECurity[:STATe].)

This is necessary to prompt for a change of passwords.

3.2 Instrument Tour

3.2.1 Front Panel View

This chapter describes the front panel, including all function keys and connectors.

(Note: Figure 3-1 shows a 26 GHz model of the R&S FSW. Some of connectors on the 85 GHz model differ slightly; this is indicated for the individual connectors.

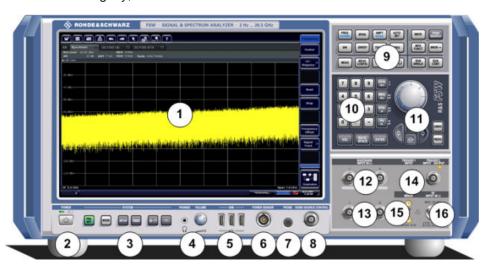


Figure 3-1: Front panel view of FSW26

- 1 = Touchscreen
- 2 = POWER key
- 3 = SYSTEM keys
- 4 = Headphones connector and volume control
- 5 = USB connectors
- 6 = POWER SENSOR connector
- 7 = PROBE connector
- 8 = NOISE SOURCE CONTROL
- 9 = Function keys
- 10 = Keypad
- 11 = Navigation controls
- 12 = (Analog) Baseband Input 50Ω connectors for I/Q signal or Rohde&Schwarz active probes (optional)
- 13 = (Analog) Baseband Input 50Ω connectors for inverse part of differential I/Q signal (optional, not for R&S FSW85)
- 14 = TRIGGER INPUT/OUTPUT connectors
- 15 = EXT MIXER connector (optional)
- 16 = RF Input 50 Ω connector

Instrument Tour

NOTICE

Instrument damage caused by cleaning agents

Cleaning agents contain substances that may damage the instrument. For example, cleaning agents that contain a solvent may damage the front panel labeling, plastic parts, or the display.

Never use cleaning agents such as solvents (thinners, acetone, etc), acids, bases, or other substances.

The outside of the instrument can be cleaned sufficiently using a soft, lint-free dust cloth.

3.2.1.1 Touchscreen

All measurement results are displayed on the screen on the front panel. Additionally, the screen display provides status and setting information and allows you to switch between various measurement tasks. The screen is touch-sensitive, offering an alternative means of user interaction for quick and easy handling of the instrument.

NOTICE

Risk of touchscreen damage during operation

Inappropriate tools or excessive force can damage the touchscreen.

Observe the following instructions when operating or cleaning the touchscreen:

- Never touch the screen with ball point pens or other pointed objects with sharp edges.
- It is recommended that you operate the touchscreen by finger only.
 As an alternative, you can use a stylus pen with a smooth soft tip.
- Never apply excessive force to the screen. Touch it gently.
- Never scratch the screen surface, for example with a finger nail.
 Never rub it strongly, for example with a dust cloth.

Instrument Tour

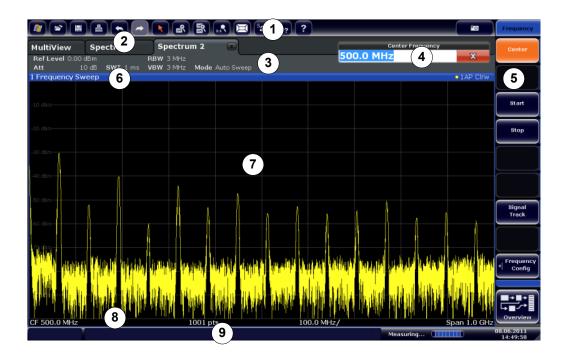


Figure 3-2: Touchscreen elements

- 1 = Toolbar with standard application functions, e.g. print, save/open file etc.
- 2 = Tabs for individual measurement channels
- 3 = Channel bar for firmware and measurement settings
- 4 = Input field for measurement setting
- 5 = Softkeys for function access
- 6 = Window title bar with diagram-specific (trace) information
- 7 = Measurement results area
- 8 = Diagram footer with diagram-specific information, depending on application
- 9 = Instrument status bar with error messages, progress bar and date/time display

A touchscreen is a screen that is touch-sensitive, that is: it reacts in a specified way when you tap a particular element on the screen with a finger or a pointing device, for example. Any user interface elements that react to a click by a mouse pointer also react to a tap on the screen, and vice versa. Using the touchscreen, you can perform the following tasks (among others) by the tap of your finger (see also Chapter 3.3, "Trying Out the Instrument", on page 59):

- Changing a setting
- Changing the display
- Moving a marker
- Zooming into a diagram
- Selecting a new evaluation method
- Scrolling through a result list or table
- Saving or printing results and settings

To imitate a right-click by mouse using the touchscreen, for example to open a context-sensitive menu for a specific item, press the screen for about 1 second.

Instrument Tour

Toolbar

Standard functions can be performed via the icons in the toolbar at the top of the screen.

You can hide the toolbar display, e.g. when using remote control, to enlarge the display area for the measurement results ("Setup > Display > Displayed Items"). See the R&S FSW User Manual for details.

The following functions are available:

Table 3-1: Standard Application Functions in the Toolbar

Icon	Description	
₽	Windows: displays the Windows "Start" menu and task bar	
2	Open: opens a file from the instrument ("Save/Recall" menu)	
	Store: stores data on the instrument ("Save/Recall" menu)	
4	Print: defines print settings ("Print" menu)	
\$	Undo: reverts last operation	
\Rightarrow	Redo: repeats previously reverted operation	
ß	Selection mode: the cursor can be used to select (and move) markers in a zoomed display	
	Zoom mode: displays a dotted rectangle in the diagram that can be expanded to define the zoom area	
	Multiple zoom mode: multiple zoom areas can be defined for the same diagram	
1:1	Zoom off: displays the diagram in its original size	
⊕	Data shift: Shifts the data to be evaluated in the result display and re-evaluates the new data. Currently, this function is only available in the Transient Analysis application.	
=	Data zoom: Decreases the amount of data to be evaluated in the result display and re-evaluates the new data, thus enlarging the display of the remaining data. Currently, this function is only available in the Transient Analysis application.	
	SmartGrid: activates "SmartGrid" mode to configure the screen layout	

Instrument Tour

Icon	Description
STO	Sequencer: opens the "Sequencer" menu to perform consecutive measurements
N3	Help (+ Select): allows you to select an object for which context-specific help is displayed
AL	Analysis line (MSRA mode only): opens a dialog box to display and position an analysis line in MSRA measurements (see R&S FSW MSRA User Manual)
2	Help: displays context-sensitive help topic for currently selected element
©	Print immediately: prints the current display (screenshot) as configured
In "SmartGrid" mode only:	
X	Exit "SmartGrid" mode

Softkeys

Softkeys are virtual keys provided by the software. Thus, more functions can be provided than those that can be accessed directly via the function keys on the instrument. Softkeys are dynamic, i.e. depending on the selected function key, a different list of softkeys is displayed on the right side of the screen.

A list of softkeys for a certain function key is also called a menu. Softkeys can either perform a specific function or open a dialog box.

The "More" softkey indicates that the menu contains more softkeys than can be displayed at once on the screen. When pressed, it displays the next set of softkeys.

Recognizing the softkey status by color

Color	Meaning
Orange	Associated dialog box is open
Blue	Associated function is active; for toggle keys: currently active state
Gray	Instrument function is temporarily not available due to a specific setting or missing option

You can hide the softkey display, e.g. when using remote control, to enlarge the display area for the measurement results ("Setup > Display > Displayed Items"). See the User Manual for details.

Context Menus

Several items in the diagram area have context menus (for example markers, traces or the channel bar). If you right-click on one of these items (or tap it for about 1 second), a menu is displayed which contains the same functions as the corresponding softkey. This is useful, for example, when the softkey display is hidden.

Instrument Tour

On-screen Keyboard

The on-screen keyboard is an additional means of interacting with the instrument without having to connect an external keyboard.

The on-screen keyboard display can be switched on and off as desired using the "On-Screen Keyboard" function key beneath the screen.

When you press this key, the display switches between the following options:

- Keyboard displayed at the top of the screen
- Keyboard displayed at the bottom of the screen
- No keyboard displayed

You can use the TAB key on the on-screen keyboard to move the focus from one field to another in dialog boxes.

Instrument Tour

3.2.1.2 POWER Key

The POWER key is located on the lower left corner of the front panel. It starts up and shuts down the instrument.

See also Chapter 3.1.1.5, "Switching the Instrument On and Off", on page 24.

3.2.1.3 SYSTEM Keys

SYSTEM keys set the instrument to a predefined state, change basic settings, and provide print and display functions.

A detailed description of the corresponding functions is provided in the User Manual.

Table 3-2: SYSTEM keys

-	
SYSTEM key	Assigned functions
PRESET	Resets the instrument to the default state.
MODE	Provides the selection between applications
SETUP	Provides basic instrument configuration functions, e.g.: Reference frequency (external/internal), noise source Date, time, display configuration LAN interface Self-alignment Firmware update and enabling of options Information about instrument configuration incl. firmware version and system error messages Service support functions (self-test etc.)
*******	Switches between the on-screen keyboard display: At the top of the screen At the bottom of the screen Off
B+D	Switches between maximized and split display of focus area.
	Moves focus area from one active window to the next.

3.2.1.4 PHONES and VOLUME

Headphones equipped with a miniature jack plug can be connected to the PHONES female connector. The output voltage can be set by using the VOLUME control to the right of the female connector. If a plug is connected, the internal loudspeaker is automatically switched off.

To use the PHONES connector, in the "Output" dialog box (INPUT/OUTPUT key), select "Video Output": "Video". The output voltage (volume) is 1 V.

Instrument Tour

A CAUTION

Risk of hearing damage

To protect your hearing, make sure that the volume setting is not too high before putting on the headphones.

3.2.1.5 USB

The front panel provides three female USB connectors (USB-A) to connect devices like a keyboard or a mouse. In addition, a memory stick can be connected to store and reload instrument settings and measurement data.

The rear panel provides further USB connectors, including a male (USB-B) connector. See Chapter 3.2.2.5, "USB", on page 55.

All USB connectors support standard 2.0.

3.2.1.6 POWER SENSOR

The LEMOSA female connector is used to connect power sensors of the R&S NRP-Zxy family. For a detailed list of supported sensors, see the data sheet.

For details on configuring and using power sensors, see Chapter 6.2.3, "Power Sensors", on page 330.

3.2.1.7 PROBE

The R&S FSW provides a connector for supply voltages of +15 V to -12 V and ground for active probes and preamplifiers. A maximum current of 140 mA is available. This connector is suitable as power supply for high-impedance probes.

3.2.1.8 NOISE SOURCE CONTROL

The noise source control female connector is used to provide the supply voltage for an external noise source. For example, use it to measure the noise figure and gain of amplifiers and frequency converting devices.

Conventional noise sources require a voltage of +28 V to be switched on and 0 V to be switched off. The output supports a maximum load of 100 mA.

3.2.1.9 Function Keys

Function keys provide access to the most common measurement settings and functions.

A detailed description of the corresponding functions is provided in the User Manual.

Instrument Tour

Table 3-3: Function keys

Function key	Assigned functions	
Basic measurement settings		
FREQ	Sets the center frequency and the start and stop frequencies for the frequency range under consideration. This key is also used to set the frequency offset and the signal track function.	
SPAN	Sets the frequency span to be analyzed.	
AMPT	Sets the reference level, the displayed dynamic range, the RF attenuation and the unit for the level display. Sets the level offset and the input impedance. Activates the preamplifier (option RF Preamplifier, R&S FSW-B24).	
AUTO SET	Enables automatic settings for level, frequency or sweep type mode.	
BW	Sets the resolution bandwidth and the video bandwidth.	
SWEEP	Sets the sweep time and the number of measurement points. Selects continuous measurement or single measurement.	
TRACE	Configures the measured data acquisition and the analysis of the measurement data.	
TRIG	Sets the trigger mode, the trigger threshold, the trigger delay, and the gate configuration in the case of gated sweep.	
Marker functions		
MKR	Sets and positions the absolute and relative measurement markers (markers and delta markers).	
PEAK SEARCH	Performs a peak search for active marker. If no marker is active, normal marker 1 is activated and the peak search is performed for it.	
MKR FUNC	Provides additional analysis functions of the measurement markers: Frequency counter (Sig Count) Fixed reference point for relative measurement markers (Ref Fixed) Noise marker (Noise Meas) Phase noise (Phase Noise) n dB down function AM/FM audio demodulation Peak list	
MKR->	Used for search functions of the measurement markers (maximum/minimum of the trace). Assigns the marker frequency to the center frequency, and the marker level to the reference level.	
	Restricts the search area (Search Limits) and characterizes the maxi-	

Instrument Tour

Function key	Assigned functions
MEAS	Provides the measurement functions.
	Measurement of multicarrier adjacent channel power (Ch Power ACLR)
	Carrier to noise spacing (C/N C/N ₀)
	Occupied bandwidth (OBW)
	Spectrum emission mask measurement (Spectrum Emission Mask)
	Spurious emissions (Spurious Emissions)
	Measurement of time domain power (Time Domain Power)
	Signal statistics: amplitude probability distribution (APD) and cumulative complementary distribution function (CCDF)
	Third-order intercept point (TOI)
	AM modulation depth (AM Mod Depth)
MEAS CONFIG	Used to define measurement configuration.
LINES	Configures display lines and limit lines.
INPUT/OUTPUT	Displays softkeys for input/output functions.
Measurement start functions	
RUN SINGLE	Starts a single new measurement (Single Sweep Mode).
RUN CONT	Starts a continuous measurement (Continuous Sweep Mode).
Function execution (in navigation	on controls area)
UNDO	Reverts last operation
REDO	Repeats previously reverted operation.

3.2.1.10 Keypad

The keypad is used to enter alphanumeric parameters, including the corresponding units (see also Chapter 3.4.4.2, "Entering Alphanumeric Parameters", on page 86). It contains the following keys:

Table 3-4: Keys on the keypad

Type of key	Description
Alphanumeric keys	Enter numbers and (special) characters in edit dialog boxes.
Decimal point	Inserts a decimal point "." at the cursor position.
Sign key	Changes the sign of a numeric parameter. In the case of an alphanumeric parameter, inserts a "-" at the cursor position.
Unit keys (GHz/-dBm MHz/dBm, kHz/dB and Hz/dB)	Adds the selected unit to the entered numeric value and complete the entry.
	In the case of level entries (e.g. in dB) or dimensionless values, all units have the value "1" as multiplying factor. Thus, they have the same function as an ENTER key.

Instrument Tour

Type of key	Description	
ESC key	Closes all kinds of dialog boxes, if the edit mode is not active. Quits the edit mode, if the edit mode is active. In dialog boxes that contain a "Cancel" button it activates that button.	
	For "Edit" dialog boxes the following mechanism is used: If data entry has been started, it retains the original value and closes the dialog box. If data entry has not been started or has been completed, it closes the dialog box.	
BACKSPACE key	If an alphanumeric entry has already been started, this key deletes the character to the left of the cursor.	
ENTER key	 Concludes the entry of dimensionless entries. The new value is accepted. With other entries, this key can be used instead of the "Hz/dB" unit key. In a dialog box, selects the default or focused element. 	

3.2.1.11 Navigation Controls

The navigation controls include a rotary knob, navigation keys, and UNDO / REDO keys. They allow you to navigate within the display or within dialog boxes.

Navigating in tables

The easiest way to navigate within tables (both in result tables and configuration tables) is to scroll through the entries with your finger on the touchscreen.

Rotary Knob

The rotary knob has several functions:

- For numeric entries: increments (clockwise direction) or decrements (counterclockwise direction) the instrument parameter at a defined step width
- In lists: toggles between entries
- For markers, limit lines, and other graphical elements on the screen: moves their position
- For active scroll bars: moves the scroll bar vertically
- For dialog boxes: Acts like the ENTER key when pressed

Navigation Keys

The navigation keys can be used alternatively to the rotary knob to navigate through dialog boxes, diagrams or tables.

Instrument Tour

Arrow Up/Arrow Down Keys

The <arrow up> or <arrow down> keys do the following:

- For numeric entries: increments (Arrow Up) or decrements (Arrow Down) the instrument parameter at a defined step width
- In a list: scrolls forward and backward through the list entries
- In a table: moves the selection bar vertically
- In windows or dialog boxes with a vertical scroll bar: moves the scroll bar

Arrow Left/Arrow Right Keys

The <arrow left> or <arrow right> keys do the following:

- In an alphanumeric edit dialog box, move the cursor.
- In a list, scroll forward and backward through the list entries.
- In a table, move the selection bar horizontally.
- In windows or dialog boxes with horizontal scroll bar, move the scroll bar.

3.2.1.12 UNDO/REDO Keys

- The UNDO key reverts the previous action, i.e. the status before the previous action is retrieved.
 - The undo function is useful, for example, if you are performing a zero span measurement with several markers and a limit line defined and accidentally select a different measurement. In this case, many settings would be lost. However, if you press UNDO immediately afterwards, the previous status is retrieved, i.e. the zero span measurement and all settings.
- The REDO key repeats the previously reverted action, i.e. the most recent action is repeated.

The UNDO function is not available after a PRESET or "RECALL" operation. When these functions are used, the history of previous actions is deleted.

3.2.1.13 (Analog) Baseband Input 50 Ω Connectors (Optional)

The Analog Baseband Interface option provides four BASEBAND INPUT BNC connectors on the front panel of the R&S FSW for analog I and Q signals (R&S FSW85: two connectors).

Instrument Tour

The upper BNC connectors BASEBAND INPUT I and BASEBAND INPUT Q are used to input:

- Single-ended signals
- The positive signal input for differential signals
- Input from active Rohde & Schwarz probes (R&S RT-ZSxx and differential probes RT-ZDxx)

The lower BNC connectors \bar{I} and \bar{Q} are used to input the negative signal for differential signals.

R&S FSW85

The R&S FSW85 provides only two connectors; differential input is not supported.

Complex signal input (I+jQ)

For complex signal input (I+jQ), always use two identical cables for the I and Q connectors (same length, same type, same manufacturer). Otherwise, time delay or gain imbalance may occur between the different cables, which cannot be calibrated.

All connectors have a fixed impedance of 50 Ω and may receive a maximum input level of 4 V_{pp} each.

NOTICE

Risk of instrument damage

Do not overload the BASEBAND INPUT connectors. An input voltage of 4 V must never be exceeded. Noncompliance will destroy the Analog Baseband Interface components.

The device that provides analog baseband input (or the probe) must be connected to the R&S FSW accordingly.

Since the Digital I/Q input and the Analog Baseband input use the same digital signal path, both cannot be used simultaneously. When one is activated, established connections for the other are disconnected. When the second input is deactivated, connec-

Instrument Tour

tions to the first are re-established. This may cause a short delay in data transfer after switching the input source.

Input via the Analog Baseband Interface can be enabled in the I/Q Analyzer, the Analog Demodulation application, or in one of the optional applications that process I/Q data (where available).

3.2.1.14 TRIGGER INPUT / OUTPUT

Use the female TRIGGER INPUT connector to input an external trigger or gate data. Thus, you can control the measurement using an external signal. The voltage levels can range from 0.5 V to 3.5 V. The default value is 1.4 V. The typical input impedance is 10 k Ω .

Use the female BNC TRIGGER INPUT / OUTPUT connector to receive a second external signal or to provide a signal to another device. The signal is TTL compatible $(0\ V\ /\ 5\ V)$. You control the connector usage in the "Trigger" settings (TRIG key).

The trigger output also controls signals by the frequency mask trigger available in Real-Time mode.

The rear panel provides a third TRIGGER INPUT / OUTPUT connector, see Chapter 3.2.2.9, "TRIGGER 3 INPUT/ OUTPUT", on page 57.

3.2.1.15 EXT MIXER Connector (Optional)

Connect external mixers to the EXT MIXER LO OUT/IF IN and IF IN female connectors to increase the available frequency range. These connectors are optional and only available with R&S FSW-B21.

If no external mixers are connected to the R&S FSW, cover the two front connectors LO OUT / IF IN and IF IN with the supplied SMA caps.

3.2.1.16 RF INPUT 50 Ω

Connect a device under test (DUT) to the R&S FSW to provide RF input which is then analyzed. Connect the DUT to the RF INPUT on the R&S FSW via a cable equipped with an appropriate connector.

Instrument Tour

NOTICE

Risk of instrument damage

Do not overload the input. For maximum allowed values, see the data sheet. For AC-coupling, a DC input voltage of 50 V must never be exceeded. For DC-coupling, DC voltage must not be applied at the input. In both cases, noncompliance will destroy the input mixers.

Furthermore, for **R&S FSW85** models, do not fasten the RF Input connector with a torque larger than 0.23 Nm. Rohde & Schwarz offers an appropriate torque wrench (R&S®ZN-ZTW Torque 0.23 Nm; delivered with the instrument).

3.2.2 Rear Panel View

This figure shows the rear panel view of the R&S FSW. The individual elements are described in more detail in the subsequent sections.

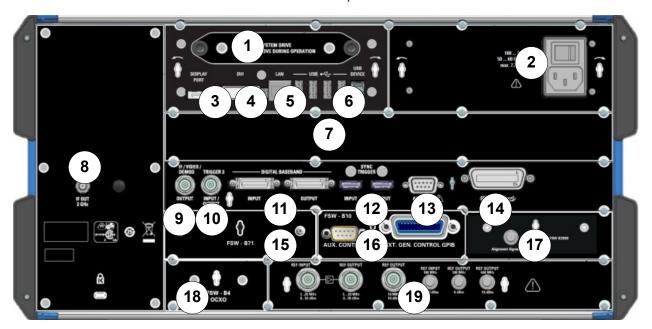


Figure 3-3: Rear panel view

- 1 = Removable system hard drive
- 2 = AC Power Supply Connection and Main Power Switch
- 3 = DISPLAY PORT for external display
- 4 = DVI connector for external display
- 5 = LAN connector
- 6 = USB (DEVICE) connectors
- 7 = Bandwidth Extension 160 MHz/ 320 MHz/ 500 MHz/ 512 MHz with IF WIDE OUTPUT connector (option -B160/-B320/-B500/-B512)
- 8 = IF OUT 2 GHz connector
- 9 = IF/VIDEO/DEMOD connector
- 10 = TRIGGER 3 INPUT/OUTPUT connector
- 11 = DIGITAL BASEBAND INPUT/OUTPUT connectors (option B17)
- 12 = SYNC TRIGGER OUTPUT/INPUT

Instrument Tour

13 = AUX PORT

14 = GPIB interface

15 = Analog baseband interface (option B71)

16 = External generator control (option B10)

17 = Alignment Signal Source (option B2000)

18 = OCXO external reference (option B4)

19 = REF INPUT/OUTPUT connectors

3.2.2.1 Removable System Hard Drive

The removable system hard drive contains all measurement data from the R&S FSW, allowing you to store the data securely in an external location.

3.2.2.2 AC Power Supply Connection and Main Power Switch

An AC power supply connector and main power switch are located in a unit on the rear panel of the instrument.

Main power switch function:

Position 1: The instrument is in operation.

Position O: The entire instrument is disconnected from the AC power supply.

For details, refer to Chapter 3.1.1.4, "Connecting the AC Power", on page 24.

3.2.2.3 DISPLAY PORT and DVI

You can connect an external monitor or other display device to the R&S FSW to provide an enlarged display. Two different types of connectors are provided for this purpose:

- DISPLAY PORT
- DVI (Digital visual interface)

For details, see Chapter 3.1.4, "Connecting an External Monitor", on page 32.

3.2.2.4 LAN

The LAN interface can be used to connect the R&S FSW to a local network for remote control, printouts or data transfer. The assignment of the RJ-45 connector supports twisted-pair category 5 UTP/STP cables in a star configuration (UTP stands for unshielded twisted pair, and STP for shielded twisted pair).

For details, see Chapter 10, "Network and Remote Operation", on page 635.

3.2.2.5 USB

The rear panel provides four additional female USB (USB-A) connectors to connect devices like a keyboard, a mouse or a memory stick (see also Chapter 3.2.1.5, "USB", on page 47).

Instrument Tour

Furthermore, a male USB DEVICE connector (USB-B) is provided, for example to connect the R&S FSW to a PC for remote control.

All USB connectors support standard 2.0.

3.2.2.6 Bandwidth Extension Options with IF WIDE OUTPUT Connector

You can extend the signal analysis bandwidth of the R&S FSW by a hardware option (R&S FSW-B160/-B320/-B500/-B512 or R&S FSW-U160/-U320/-U512/-U512A). The bandwidth extension allows for an output sample rate of up to 10 GHz and a linear bandwidth up to:

- 160 MHz (with option B160/U160)
- 320 MHz (with option B320/U320)
- 500 MHz (with option B500)
- 512 MHz (with option B512/U512/U512A)

While the extension can be activated or deactivated manually in the R&S FSW base unit (I/Q Analyzer application), it is activated automatically in some applications that also support I/Q data analysis. See the application-specific documentation for details.

Together with the bandwidth extension an additional IF output connector is provided (IF WIDE OUTPUT). As opposed to the default IF/VIDEO/DEMOD OUTPUT connector, the IF output frequency of the optional connector cannot be defined manually, but is determined automatically depending on the center frequency. For details on the used frequencies, see the data sheet. The IF WIDE OUTPUT connector is used automatically when the bandwidth extension is activated (i.e. for bandwidths >Windows 80 MHz).

3.2.2.7 IF OUT 2 GHz Connector

The female SMA connector is only available for instrument models R&S FSW26/43/50/67/85. It can be used to provide intermediate frequency (IF) output of approximately 2 GHz at a frequency of 2 GHz.

Output is activated in the software (INPUT/OUTPUT key).

For details, see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

3.2.2.8 IF/VIDEO/DEMOD OUTPUT

The female BNC connector can be used for various outputs:

- Intermediate frequency (IF) output of approximately 20 MHz
- Video output (1V)

Which output is provided is defined in the software (INPUT/OUTPUT key).

For details, see "IF/Video Output" on page 392.

Instrument Tour

3.2.2.9 TRIGGER 3 INPUT/ OUTPUT

The additional female BNC TRIGGER INPUT / OUTPUT connector can be used to receive a third external signal or to provide a signal to another device. The signal is TTL compatible (0 V / 5 V). You can control the connector usage in the "Trigger" settings (TRIG key).

3.2.2.10 Digital Baseband Interface (R&S FSW-B17) and R&S EX-IQ-BOX

The R&S FSW Digital Baseband Interface option (R&S FSW-B17) provides an online digital I/Q data interface on the rear panel of the instrument for input and output. The digital input and output can be enabled in the base unit or in one of the applications (where available).

Optionally, an R&S EX-IQ-BOX can be connected to the Digital Baseband Interface to convert signal properties and the transmission protocol of the R&S FSW into user-defined or standardized signal formats and vice versa.

Since the Digital I/Q input and the Analog Baseband input use the same digital signal path, both cannot be used simultaneously. When one is activated, established connections for the other are disconnected. When the second input is deactivated, connections to the first are re-established. This can cause a short delay in data transfer after switching the input source.

For more information on the Digital Baseband Interface (R&S FSW-B17) and typical applications, see the R&S FSW I/Q Analyzer User Manual.

3.2.2.11 SYNC TRIGGER OUTPUT/INPUT

Use the SYNC TRIGGER OUTPUT/INPUT connectors to synchronize several devices (e.g. two R&S FSWs) to a common trigger signal or reference frequency. The R&S FSW can output a 100 MHz signal as a trigger or reference signal to another device. The R&S FSW can also receive an external trigger or reference signal at the input connector.

3.2.2.12 AUX PORT

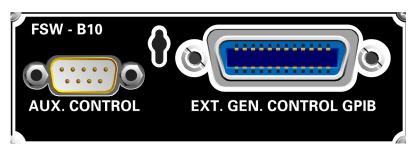
The 9-pole SUB-D male connector provides control signals for controlling external devices. The voltage levels are of the TTL type (max. 5 V).

Pin	Signal	Description
1	+5 V / max. 250 mA	Supply voltage for external circuits
2 to 7	1/0	Control lines for user ports (see User manual)
8	GND	Ground
9	READY FOR TRIGGER	Signal indicating that the instrument is ready to receive a trigger signal (Low active = 0 V)

Instrument Tour

NOTICE

Short-circuit hazard


Always observe the designated pin assignment. A short-circuit may damage the instrument.

3.2.2.13 GPIB Interface

The GPIB interface is in compliance with IEEE488 and SCPI. A computer for remote control can be connected via this interface. To set up the connection, a shielded cable is recommended. For more details, refer to "Setting Up Remote Control" in the User Manual.

3.2.2.14 External Generator Control Option (R&S FSW-B10)

The external generator control option provides an additional GPIB connector and AUX port.

The GPIB connector can be used to connect the external generator to the R&S FSW.

The AUX port is required for TTL synchronization, if supported by the generator. It is identical to the standard AUX port (see Chapter 3.2.2.12, "AUX PORT", on page 57).

For details on connecting an external generator, see the "External Generator Control" section of the R&S FSW User Manual.

3.2.2.15 Alignment Signal Source (Option R&S FSW-B2000)

The alignment signal source is required to align the connected oscilloscope and the oscilloscope ADC for the optional 2 GHz bandwidth extension (R&S FSW-B2000).

For details, see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

3.2.2.16 OCXO Option (R&S FSW-B4)

This option generates a 10 MHz reference signal with a very precise frequency. If installed, and if no external signal is used, this signal is used as an internal reference. It can also be used to synchronize other connected devices via the REF OUTPUT 10 MHz connector.

Trying Out the Instrument

Warm-up time for OCXO

When the instrument is switched on, the OCXO requires an extended warm-up time (see data sheet). No warm-up time is required when starting from standby mode.

3.2.2.17 REF INPUT / REF OUTPUT

The REF INPUT connectors are used to provide an external reference signal to the R&S FSW.

The REF OUTPUT connectors can be used to provide an external reference signal (or the optional OCXO reference signal) from the R&S FSW to other devices that are connected to this instrument.

Various connectors are provided for different reference signals:

Connector	Reference signal	Usage
REF INPUT	120 MHz 010 dBm	To provide an external reference signal on the R&S FSW.
REF OUTPUT	120 MHz 010 dBm	To provide the same external reference signal received by the REF INPUT 120 MHZ connector to another device, when available.
REF OUTPUT	10 MHz 10 dBm	To provide the internal reference signal from the R&S FSW to another device continuously. Also used to provide OCXO reference signal to another device.
REF INPUT	100 MHz 010 dBm	To provide an external reference signal on the R&S FSW.
REF OUTPUT	100 MHz 6 dBm	To provide a 100 MHz reference signal from the R&S FSW to another device.
REF OUTPUT	640 MHz 16 dBm	To provide a 640 MHz reference signal from the R&S FSW to another device.

SYNC TRIGGER

The SYNC TRIGGER connector can also be used to synchronize the reference frequency on several devices (see Chapter 3.2.2.11, "SYNC TRIGGER OUTPUT/INPUT", on page 57).

3.3 Trying Out the Instrument

This chapter introduces the most important functions and settings of the R&S FSW step by step. The complete description of the functionality and its usage is given in the R&S FSW User Manual. Basic instrument operation is described in Chapter 3.4, "Operating the Instrument", on page 75.

Trying Out the Instrument

Prerequisites

• The instrument is set up, connected to the mains system, and started up as described in Chapter 3.1, "Preparing for Use", on page 20.

For these first measurements, you use the internal calibration signal, so you do not need any additional signal source or instruments. Try out the following:

•	Measuring a Basic Signal	60
	Displaying a Spectrogram	
	Activating Additional Measurement Channels	
	Performing Sequential Measurements	
	Setting and Moving a Marker	
	Displaying a Marker Peak List	
	Zooming into the Display	
	Saving Settings	
	Printing and Saving Results	

3.3.1 Measuring a Basic Signal

We will start out by measuring a simple sinus wave, using the internal calibration signal as the input.

To display the internal 64 MHz calibration signal

- 1. Press the PRESET key to start out in a defined instrument configuration.
- 2. Press the SETUP key on the front panel.
- 3. Tap the "Service" softkey.
- 4. Tap the "Calibration Signal" tab.
- 5. Tap the "Calibration Frequency RF" option. Leave the frequency at the default 64 MHz, with a narrowband spectrum.

The calibration signal is now sent to the RF input of the R&S FSW. By default, a continuous frequency sweep is performed, so that the spectrum of the calibration signal is now displayed in the standard level versus frequency diagram.

Trying Out the Instrument

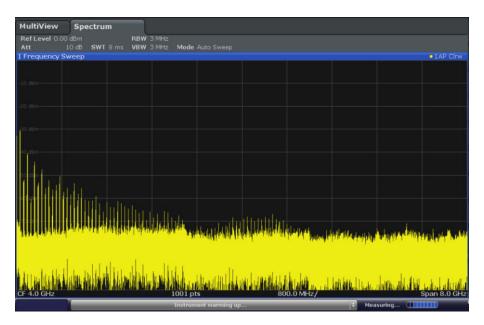


Figure 3-4: Calibration signal as RF input

Instrument warmup time

Note that the instrument requires an initial warmup time after switching it on. A message in the status bar ("Instrument warming up...") indicates that the operating temperature has not yet been reached. Wait until this message is no longer displayed before you start a measurement.

To optimize the display

To optimize the display for the calibration signal, we will adjust the main measurement settings.

- 1. Set the center frequency to the calibration frequency:
 - a) Tap the "Overview" softkey to display the configuration "Overview".
 - b) Tap the "Frequency" button.
 - c) In the "Center" field, enter 64 on the number pad on the front panel.
 - d) Press the "MHz" key next to the number pad.
- 2. Reduce the span to 20 MHz:
 - a) In the "Span" field of the "Frequency" dialog box, enter 20 MHz.
 - b) Close the "Frequency" dialog box.
- 3. Set the reference level to -25 dBm:
 - a) In the configuration "Overview", tap the "Amplitude" button.
 - b) In the "Value" field of the "Amplitude" dialog box, enter -25 dBm.

The display of the calibration signal is now improved. The maximum at the center frequency (=calibration frequency) of 64 MHz becomes visible.

Trying Out the Instrument

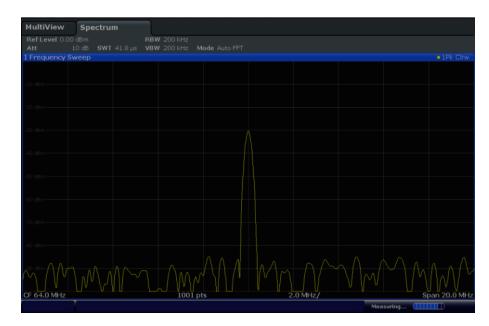


Figure 3-5: Calibration signal with optimized display settings

3.3.2 Displaying a Spectrogram

In addition to the standard "level versus frequency" spectrum display, the R&S FSW also provides a spectrogram display of the measured data. A spectrogram shows how the spectral density of a signal varies over time. The x-axis shows the frequency, the y-axis shows the time. A third dimension, the power level, is indicated by different colors. Thus you can see how the strength of the signal varies over time for different frequencies.

- 1. Tap the "Overview" softkey to display the general configuration dialog box.
- 2. Tap the "Display Config" button.

The SmartGrid mode is activated, and the evaluation bar with the available evaluation methods is displayed.

Drag the "Spectrogram" icon from the evaluation bar to the diagram area. The blue area indicates that the new diagram would replace the previous spectrum display. Since we do not want to replace the spectrum, drag the icon to the lower half of the display to add an additional window instead.

Trying Out the Instrument

Figure 3-6: Adding a Spectrogram to the display

Drop the icon.

4. Close the SmartGrid mode by tapping the "Close" icon at the top right corner of the toolbar.

You see the spectrogram compared to the standard spectrum display. Since the calibration signal does not change over time, the color of the frequency levels does not change over time, i.e. vertically. The legend at the top of the spectrogram window describes the power levels the colors represent.

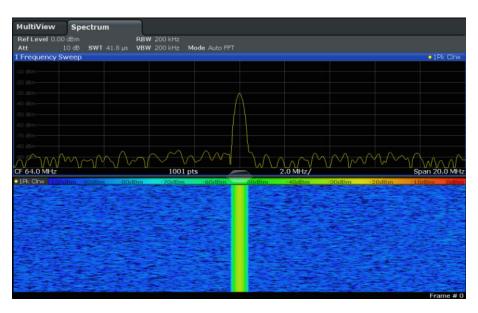


Figure 3-7: Spectrogram of the calibration signal

Trying Out the Instrument

3.3.3 Activating Additional Measurement Channels

The R&S FSW features multiple measurement channels, i.e. you can define several measurement configurations in parallel and then switch between the channels automatically to perform the measurements sequentially. We will demonstrate this feature by activating additional measurement channels for a different frequency range, a zero span measurement, and an I/Q analysis.

To activate additional measurement channels

- 1. Press the MODE key on the front panel.
- 2. On the "New Channel" tab of the "Signal + Spectrum Mode" dialog box, tap the "Spectrum" button.

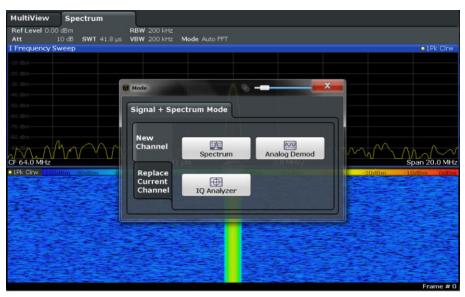


Figure 3-8: Adding a new measurement channel

Change the frequency range for this spectrum display:
 In the "Frequency" dialog box, set the center frequency to 500 MHz and the span to 1 GHz.

Trying Out the Instrument

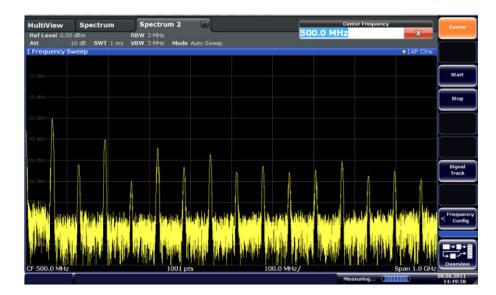


Figure 3-9: Frequency spectrum of the calibration signal with a larger span

4. Repeat the previous steps to activate a third Spectrum window. Change the frequency range for this spectrum display: In the "Frequency" dialog box, set the **center frequency** to 64 MHz and tap "Zero Span".

As the calibration signal does not vary over time, the level versus time diagram displays a straight line.

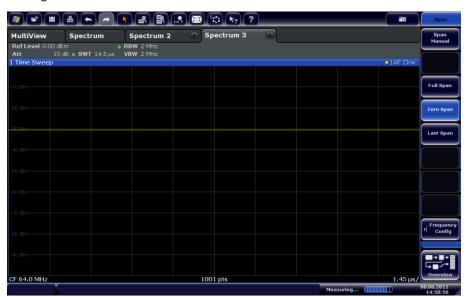


Figure 3-10: Time domain display of the calibration signal

- 5. Create a new channel for I/Q analysis:
 - a) Press the MODE key.
 - b) Tap the "IQ Analyzer" button to activate a channel for the I/Q Analyzer application.

Trying Out the Instrument

c) Tap the "Display Config" softkey to activate the SmartGrid mode.

d) Drag the "Real/Imag (I/Q)" icon from the evaluation bar to the SmartGrid.

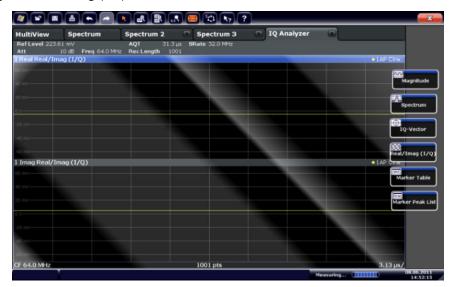


Figure 3-11: Inserting a Real/Imag diagram for I/Q analysis

e) Close the SmartGrid mode.

The "IQ Analyzer" channel displays the real and imaginary signal parts in separate windows.

To display the MultiView tab

An overview of all active channels is provided in the "MultiView" tab. This tab is always displayed and cannot be closed.

► Tap the "MultiView" tab.

Trying Out the Instrument

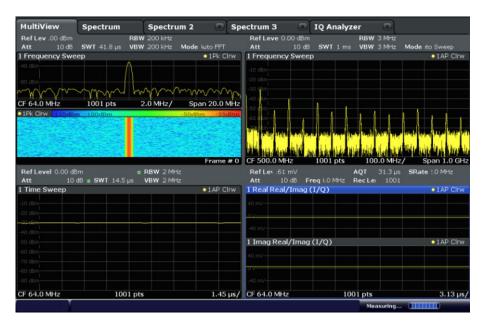


Figure 3-12: The "MultiView" tab

3.3.4 Performing Sequential Measurements

Although only one measurement can be performed at any one time, the measurements configured in the active channels can be performed sequentially, that means: one after the other, automatically, either once or continuously.

1. _{Szer}

Tap the "Sequencer" icon in the toolbar.

one after the other until the Sequencer is stopped.

Toggle the "Sequencer" softkey in the "Sequencer" menu to "On".
 A continuous sequence is started, i.e. each channel measurement is performed

Trying Out the Instrument

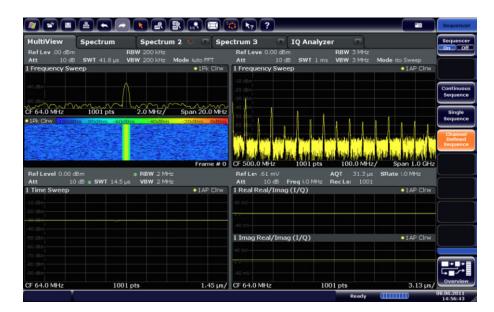
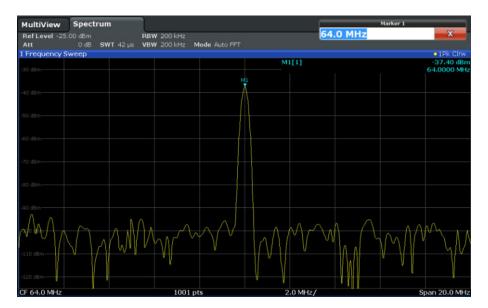


Figure 3-13: "MultiView" tab with active Sequencer

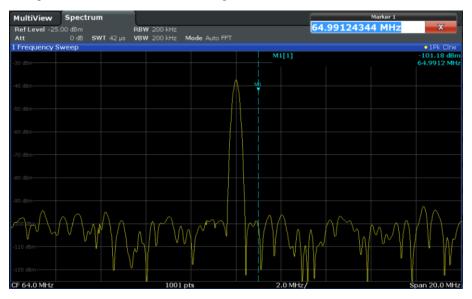
In Figure 3-13, the "Spectrum 2" measurement is currently active (indicated by the "channel active" icon in the tab label).

3. Stop the Sequencer by tapping the "Sequencer" softkey again.

3.3.5 Setting and Moving a Marker


Markers are useful to determine the position of particular effects in the trace. The most common use is to determine a peak, which is the default setting when you activate a marker. We will set a marker on the peak in our first Spectrum measurement.

- 1. In the "MultiView" tab, double-tap the "Spectrum" window (frequency sweep with spectrogram display) to return to the "Spectrum" channel.
- 2. Tap the spectrum display to set the focus on that window.
- 3.


Press the "Split/Maximize" key on the front panel to maximize the spectrum window, as we currently do not need the spectrogram display.

- 4. Press the "RUN SINGLE" key on the front panel to perform a single sweep so we have a fixed trace to set a marker on.
- Press the MKR key on the front panel to display the "Marker" menu.
 Marker 1 is activated and automatically set to the maximum of trace 1. The marker position and value is indicated in the diagram area as M1[1].

Trying Out the Instrument

6. Now you can move the marker by tapping and dragging it to a different position. The current position is indicated by a dotted blue line. Notice how the position and value change in the marker area of the diagram.

3.3.6 Displaying a Marker Peak List

The marker peak list determines the frequencies and levels of peaks in the spectrum automatically. We will display a marker peak list for the Spectrum 2 channel.

- 1. Tap the "Spectrum 2" tab.
- 2. Press the "RUN SINGLE" key on the front panel to perform a single sweep for which we will determine the peaks.

Trying Out the Instrument

3.

Tap the "SmartGrid" icon in the toolbar to activate SmartGrid mode.

- 4. Drag the "Marker Peak List" icon from the evaluation bar to the lower half of the display to add a new window for the peak list.
- 5. Close the SmartGrid mode.
- 6. To obtain a more conclusive peak list that does not contain noise peaks, for example, define a threshold that is higher than the noise floor:
 - a) Press the MKR key on the front panel.
 - b) Tap the "Marker Config" softkey in the "Marker" menu.
 - c) Tap the "Search" tab in the "Marker" dialog box.
 - d) In the "Threshold" field, enter -68 dBm.
 - e) Tap the "State" box for "Threshold" to activate its use.Only peaks that are larger than -68 dBm will be included in the peak list.

The marker peak list displays the determined peaks that are above the defined threshold.

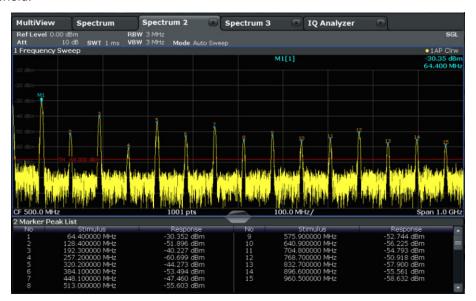


Figure 3-14: Marker Peak List

3.3.7 Zooming into the Display

To analyze the areas around the peak levels in more detail, we will zoom into the top 3 peaks.

1.

Tap the "Multiple Zoom" icon in the toolbar.

Trying Out the Instrument

The icon is highlighted orange to indicate that multiple zoom mode is active.

Tap the diagram near the first peak and drag your finger to the opposite corner of the zoom area. A white rectangle is displayed from the point where you tapped to the current position.

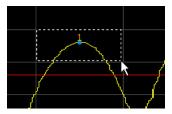


Figure 3-15: Defining the zoom area

When you remove your finger, the zoom area is enlarged in a second (sub-)window.

Figure 3-16: Zoomed display around a peak

Zoom mode is automatically disabled, and the default selection mode is restored, indicated by the highlighted "Selection mode" icon.

- 3. In Figure 3-16, the enlarged peak is represented by a very thick trace. This is due to the insufficient number of sweep points. The missing sweep points for the zoomed display are interpolated, which provides poor results. To optimize the results, we will increase the number of sweep points from the default 1001 to 32001.
 - a) Press the SWEEP key on the front panel.
 - b) Tap the "Sweep Config" softkey in the "Sweep" menu.

Trying Out the Instrument

- c) In the "Sweep Points" field, enter 32001.
- d) Press the RUN SINGLE key on the front panel to perform a new sweep with the increased number of sweep points.

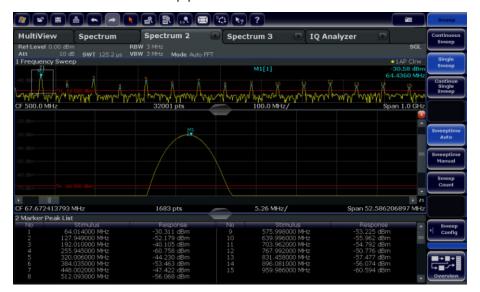


Figure 3-17: Zoomed peak with increased number of sweep points

Note that the trace becomes much more precise.

4.

Tap the "Multiple Zoom" icon in the toolbar again and define a zoom area around markers M4, M5 and M6.

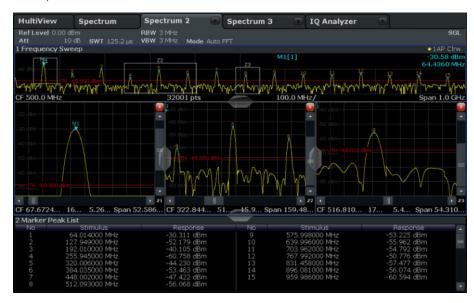


Figure 3-18: Multiple zoom windows

5. Tap the Marker M8.

Trying Out the Instrument

6. To increase the size of the third zoom window, drag the "splitter" between the windows to the left or right or up or down.

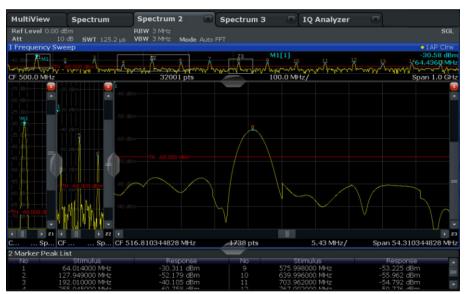


Figure 3-19: Enlarged zoom window

3.3.8 Saving Settings

To restore the results of our measurements later, we will store the instrument settings to a file.

To save the instrument settings to a file

1.

Tap the "Save" icon in the toolbar.

2.

Press the keyboard key on the front panel to display the online keyboard, as you will have to enter text in the next step.

3. In the "Save" dialog box, tap the "File Name" field and enter *MyMultiViewSetup* using the keyboard.

Trying Out the Instrument

Keep the default "File Type" setting "Instrument with all Channels" to store the configuration of all channels.

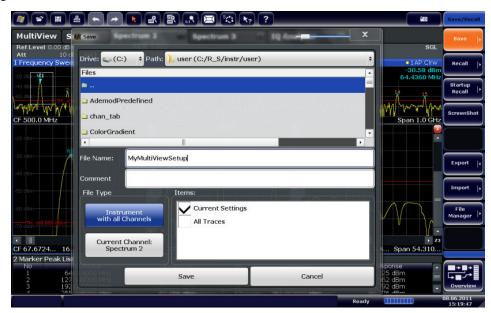


Figure 3-20: Saving the instrument settings to a file

4. Tap the "Save" button.

The file MyMultiViewSetup.dfl is stored in the default directory $C:/R_S/instr/user$.

To load stored instrument settings

You can restore the settings to the instrument at any time using the settings file.

- 1. Press the PRESET button to restore the default instrument settings so you can check that the stored user settings are actually restored afterwards.
- 2.

Tap the "Load" icon in the toolbar.

- 3. In the "Load" dialog box, select the MyMultiViewSetup.dfl file in the default directory C:/R S/instr/user.
- 4. Tap the "Load" button.

All instrument settings are restored and the display should resemble Figure 3-19, which shows the instrument display right before the settings were stored.

Operating the Instrument

3.3.9 Printing and Saving Results

Finally, after a successful measurement, we will document our results. First we will export the numeric trace data, then we will create a screenshot of the graphical display.

To export the trace data

- 1. Press the TRACE key on the front panel.
- 2. Tap the "Trace Config" softkey.
- 3. Tap the "Trace Export" tab.
- 4. Tap the "Export Trace to ASCII File" button.
- 5. Enter the file name MyMultiViewResults.

The trace data is stored to MyMultiViewResults.DAT

To create a screenshot of the display

Tap the "Print immediately" icon in the toolbar.

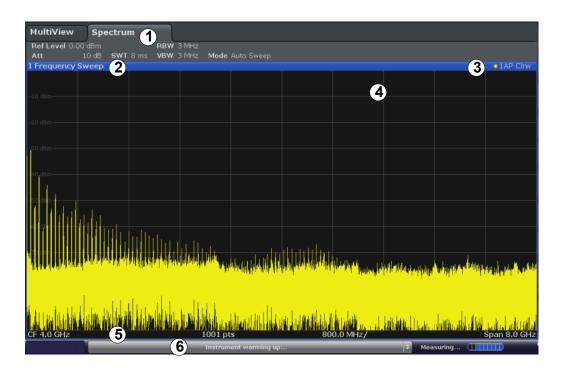
A screenshot of the current display is created. Note that the colors on the screen are inverted in the screenshot to improve printout results.

2. In the "Save Hardcopy as Portable Network Graphics (PNG)" dialog box, enter a file name, e.g. *MyMultiViewDisplay*.

The screenshot is stored to MyMultiViewDisplay.png.

3.4 Operating the Instrument

This chapter provides an overview on how to work with the R&S FSW. It describes:


- What kind of information is displayed in the diagram area
- How to operate the R&S FSW via the front panel keys and other interaction methods
- How to use the Online Help

•	Understanding the Display Information	76
	Accessing the Functionality	
	Changing the Focus	
	Entering Data	
	Displaying Results	
	Getting Help	
	Remote Control	

Operating the Instrument

3.4.1 Understanding the Display Information

The following figure shows a measurement diagram in Spectrum mode. All different information areas are labeled. They are explained in more detail in the following sections.

- 1 = Channel bar for firmware and measurement settings
- 2+3 = Window title bar with diagram-specific (trace) information
- 4 = Diagram area with marker information
- 5 = Diagram footer with diagram-specific information, depending on measurement application
- = Instrument status bar with error messages, progress bar and date/time display

Hiding elements in the display

You can hide some of the elements in the display, for example the status bar or channel bar, to enlarge the display area for the measurement results. ("Setup > Display > Displayed Items")

For details, see the R&S FSW User Manual.

•	Channel Bar	77
•	Window Title Bar	80
•	Marker Information	81
•	Frequency and Span Information in Diagram Footer	82
	Instrument and Status Information	
•	Error Information	83

Operating the Instrument

3.4.1.1 Channel Bar

Using the R&S FSW you can handle several different measurement tasks (channels) at the same time (although they can only be performed asynchronously). For each channel, a separate tab is displayed on the screen. To switch from one channel display to another, simply select the corresponding tab.

If many tabs are displayed, select the tab selection list icon at the right end of the channel bar. Select the channel you want to switch to from the list.

MultiView tab

An additional tab labeled "MultiView" provides an overview of all active channels at a glance. In the "MultiView" tab, each individual window contains its own channel bar with an additional button. Tap this button, or double-tap in any window, to switch to the corresponding channel display quickly.

Icons in the channel bar

The yellow star icon on the tab label (sometimes referred to as a "dirty flag") indicates that invalid or inconsistent data is displayed, that is: the trace no longer matches the displayed instrument settings. Thiscan happen, for example, when you change the measurement bandwidth, but the displayed trace is still based on the old bandwidth. As soon as a new measurement is performed or the display is updated, the icon disappears.

The licon indicates that an error or warning is available for that measurement channel. This is particularly useful if the MultiView tab is displayed.

Operating the Instrument

An orange "IQ" (in MSRA mode only) indicates that the results displayed in the MSRA slave application(s) no longer match the data captured by the MSRA Master. The "IQ" disappears after the results in the slave application(s) are refreshed.

The sicon indicates the currently active channel during an automatic measurement sequence (**Sequencer** functionality).

Channel-specific settings

Beneath the channel name, information on channel-specific settings for the measurement is displayed in the **channel bar**. Channel information varies depending on the active application.

In the Spectrum application, the R&S FSW shows the following settings:

Table 3-5: Channel settings displayed in the channel bar in the Spectrum application

Ref Level	Reference level		
m.+el.Att	Mechanical and electronic RF attenuation that has been set.		
Ref Offset	Reference level offset		
SWT	Sweep time that has been set. If the sweep time does not correspond to the value for automatic coupling, a bullet is displayed in front of the field. The color of the bullet turns red if the sweep time is set below the value for automatic coupling. In addition,		
	the UNCAL flag is shown. In this case, the sweep time must be increased. For FFT sweeps, an estimated duration for data capture <i>and processing</i> is indicated behind the sweep time in the channel bar.		
Meas Time/AQT	Measurement (acquisition) time, calculated from analysis bandwidth and number of samples (for statistics measurements)		
RBW	Resolution bandwidth that has been set. If the bandwidth does not correspond to the value for automatic coupling, a green bullet appears in front of the field.		
VBW	Video bandwidth that has been set. If the bandwidth does not correspond to the value for automatic coupling, a green bullet is displayed in front of the field.		
AnBW	Analysis bandwidth (for statistics measurements)		
Compatible	Compatible device mode (FSP, FSU, default; default not displayed)		
Mode	Indicates which sweep mode type is selected: "Auto FFT": automatically selected FFT sweep mode "Auto sweep": automatically selected swept sweep mode "Sweep": manually selected frequency sweep mode "FFT": manually selected FFT sweep mode		

Icons for individual settings

A bullet next to the setting indicates that user-defined settings are used, not automatic settings. A green bullet indicates this setting is valid and the measurement is correct. A red bullet indicates an invalid setting that does not provide useful results.

Operating the Instrument

Common settings

The channel bar above the diagram not only displays the channel-specific settings. It also displays information on instrument settings that affect the measurement results even though it is not immediately apparent from the display of the measured values. This information is displayed in gray font and only when applicable for the current measurement, as opposed to the channel-specific settings that are always displayed.

The following types of information are displayed, if applicable.

Table 3-6: Common settings displayed in the channel bar

SGL	The sweep is set to single sweep mode.		
Sweep Count	The current signal count for measurement tasks that involve a specific number of subsequent sweeps (see "Sweep Count" setting in "Sweep settings" in the User Manual)		
TRG	Trigger source (for details see "Trigger settings" in the User Manual) BBP: Baseband power (with Digital Baseband Interface R&S FSW-B17 only) EXT: External GP_0: General purpose bit (with Digital Baseband Interface R&S FSW-B17 only) IFP: IF power (+trigger bandwidth) PSE: Power sensor RFP: RF power SQL: Squelch TIM: Time VID: Video		
6dB/RRC/CHN	Filter type for sweep bandwidth See "Filter Type" on page 309		
PA	The preamplifier is activated.		
YIG Bypass	The YIG filter is deactivated.		
GAT	The frequency sweep is controlled via the TRIGGER INPUT connector.		
TDF	A transducer factor is activated.		
75 Ω	The input impedance of the instrument is set to 75 Ω .		
FRQ	A frequency offset ≠ 0 Hz is set.		
DC/AC	DC or AC coupling is used for the input.		
ExtMix <band></band>	An external mixer is activated for input (requires option R&S FSW-B21); the used band is also indicated		

Operating the Instrument

<nor apr="" =""></nor>	The R&S FSW is controlling an external generator (requires option R&S FSW-B10).		
Ext. Gen	NOR : the measurements are normalized with the results of the external generator calibration		
	APR (approximation): the measurements are normalized with the results of the external generator calibration; however, the measurement settings have been changed since calibration		
	If neither label is displayed, no calibration has been performed yet or normalization is not active.		
	For details, see Chapter 6.2.4, "Optional External Generator Control", on page 339.		
LVL	A level offset is applied to the external generator signal (only if external generator control is active).		

Changing the Channel Name

The measurement channels are labeled with their default name. If that name already exists, a sequential number is added. You can change the name of the measurement channel by double-tapping the name in the channel bar and entering a new name.

For an overview of default names, see Table 11-2.

Remote command:

INSTrument:REName on page 719

3.4.1.2 Window Title Bar

Each channel in the R&S FSW display can contain several windows. Each window can display either a graph or a table as a result of the channel measurement. Which type of result evaluation is displayed in which window is defined in the display configuration (see Chapter 3.4.5, "Displaying Results", on page 88). The window title bar indicates which type of evaluation is displayed.

Trace Information in Window Title Bar

Information on the displayed traces is indicated in the window title bar.

(1) Trace color		Color of trace display in diagram
(2) Trace no.	Trace number (1 to 6)	
(3) Detector		Selected detector:
	AP	AUTOPEAK detector
	Pk	MAX PEAK detector
	Mi	MIN PEAK detector
	Sa	SAMPLE detector
	Av	AVERAGE detector

Operating the Instrument

	Rm	RMS detector
	QP	QUASIPEAK detector
(4) Trace Mode		Sweep mode:
	Clrw	CLEAR/WRITE
	Max	MAX HOLD
	Min	MIN HOLD
	Avg	AVERAGE (Lin/Log/Pwr)
	View	VIEW
(5) Smoothing factor	Smth	Smoothing factor, if enabled.
		(See "Smoothing" on page 480)
Norm/NCor		Correction data is not used.

3.4.1.3 Marker Information

Marker information is provided either in the diagram grid or in a separate marker table, depending on the configuration.

Marker information in diagram grid

Within the diagram grid, the x-axis and y-axis positions of the last two markers or delta markers that were set are displayed, if available, as well as their index. The value in the square brackets after the index indicates the trace to which the marker is assigned. (Example: M2[1] defines marker 2 on trace 1.) For more than two markers, a separate marker table is displayed beneath the diagram by default.

Marker information in marker table

In addition to the marker information displayed within the diagram grid, a separate marker table may be displayed beneath the diagram. This table provides the following information for all active markers:

Туре	Marker type: N (normal), D (delta), T (temporary, internal), PWR (power sensor)	
Ref	Reference (for delta markers)	
Trc	Trace to which the marker is assigned	
X-value	X-value of the marker	
Y-value	Y-value of the marker	
Func	Activated marker or measurement function	
Func .Result Result of the active marker or measurement function		

The functions are indicated with the following abbreviations:

Operating the Instrument

FXD	Fixed reference marker
PHNoise	Phase noise measurement
CNT	Signal count
TRK	Signal tracking
NOIse	Noise measurement
MDepth	AM modulation depth
тоі	Third order intercept measurement

3.4.1.4 Frequency and Span Information in Diagram Footer

The information in the diagram footer (beneath the diagram) depends on the current application, measurement, and result display.

For a default measurement in the Spectrum mode, the Diagram result display contains the following information, for example:

Label	Information
CF	Center frequency
Span	Frequency span (frequency domain display)
ms/	Time per division (time domain display)
Pts	Number of sweep points or (rounded) number of currently displayed points in zoom mode

3.4.1.5 Instrument and Status Information

Global instrument settings and functions (such as LXI configuration mode), the instrument status and any irregularities are indicated in the status bar beneath the diagram.

In the MultiView tab, the status bar always displays the information for the currently selected measurement.

The following information is displayed:

Operating the Instrument

Instrument status

EXT ①	The instrument is configured for operation with an external reference.
IQ IN	The optional Digital Baseband Interface (R&S FSW-B17) is being used for digital input
	For details on the Digital Baseband Interface (R&S FSW-B17), see the R&S FSW I/Q Analyzer User Manual.
IQ OUT	The optional Digital Baseband Interface (R&S FSW-B17) is being used to provide digital output
	For details on the Digital Baseband Interface (R&S FSW-B17), see the R&S FSW I/Q Analyzer User Manual.

Progress

The progress of the current operation is displayed in the status bar.

In the MultiView tab, the progress bar indicates the status of the currently selected measurement, not the measurement a Sequencer is currently performing, for example.

Date and time

The date and time settings of the instrument are displayed in the status bar.

Error messages

If errors or irregularities are detected, a keyword and an error message, if available, are displayed in the status bar.

3.4.1.6 Error Information

If errors or irregularities are detected, a keyword and an error message, if available, are displayed in the status bar.

Depending on the type of message, the status message is indicated in varying colors.

Table 3-7: Status bar information - color coding

Color	Туре	Description
Red	Error	An error occurred at the start or during a measurement, e.g. due to missing data or wrong settings, so that the measurement cannot be started or completed correctly.
Orange	Warning	An irregular situation occurred during measurement, e.g. the settings no longer match the displayed results, or the connection to an external device was interrupted temporarily.

Operating the Instrument

Color	Туре	Description
Gray	Information	Information on the status of individual processing steps.
No color	No errors	No message displayed - normal operation.
Green	Measurement successful	Some applications visualize that the measurement was successful by showing a message.

If any error information is available for a measurement channel, an exclamation mark is displayed next to the channel name (1). This is particularly useful when the MultiView tab is displayed, as the status bar in the MultiView tab always displays the information for the currently selected measurement only.

Furthermore, a status bit is set in the STATus:QUEStionable:EXTended:INFO register for the application concerned (see "STATus:QUEStionable:EXTended:INFO Register" on page 665). Messages of a specific type can be queried using the SYST:ERR:EXT? command, see SYSTem:ERRor:EXTended? on page 1121.

The following keywords are used:

DATA ERR	For the optional Digital Baseband Interface only:
	Error in digital I/Q input data
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.
FIFO OVLD	For Digital Baseband Interface (R&S FSW-B17) only:
	Input sample rate from connected instrument is too high
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.
IF OVLD	Overload of the IF signal path in the A/D converter or in the digital IF. Increase the reference level.
INPUT OVLD	The signal level at the RF input connector exceeds the maximum.
	The RF input is disconnected from the input mixer to protect the device. To re-enable measurement, decrease the level at the RF input connector and reconnect the RF input to the mixer input.
LOUNL	Error in the instrument's frequency processing hardware was detected.
NO REF	Instrument was set to an external reference but no signal was detected on the reference input.
OVEN	The optional OCXO reference frequency has not yet reached its operating temperature. The message usually disappears a few minutes after power has been switched on.
OVLD	Overload of the input signal path after the input mixer; (only when RF INPUT path is NOT used, e.g. for input from the optional Digital Baseband Interface or the optional Analog Baseband Interface). Reduce the input level.
PLL UNLOCK	For the optional Digital Baseband Interface only:
	Error in digital I/Q input data
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.

Operating the Instrument

RF OVLD	Overload of the input mixer or of the analog IF path. Increase the RF attenuation (for RF input). Reduce the input level (for digital input)
UNCAL	One of the following conditions applies: Correction data has been switched off. No correction values are available, for example after a firmware update. Record the correction data by performing a self alignment (For details refer to Chapter 3.1.1.6, "Performing a Self-Alignment and a Selftest", on page 25).
WRONG_FW	The firmware version is out-of-date and does not support the currently installed hardware. Until the firmware version is updated, this error message is displayed and self-alignment fails. (For details refer to Chapter 9.3.4.4, "Firmware Updates", on page 606).

3.4.2 Accessing the Functionality

All tasks necessary to operate the instrument can be performed using this user interface. Apart from instrument specific keys, all other keys that correspond to an external keyboard (e.g. arrow keys, ENTER key) operate conform to Microsoft.

For most tasks, there are at least 2 alternative methods to perform them:

- Using the touchscreen
- Using other elements provided by the front panel, e.g. the keypad, rotary knob, or arrow and position keys.

The measurement and instrument functions and settings can be accessed by selecting one of the following elements:

- System and function keys on the front panel of the instrument
- Softkeys on the touchscreen
- Context menus for specific elements on the touchscreen
- Icons on the tool bar in the touchscreen
- Displayed setting on the touchscreen

3.4.3 Changing the Focus

Any selected function is always performed on the currently focused element in the display, e.g. a dialog field, diagram, or table row. Which element is focused is indicated by a blue frame (diagram, window, table) or is otherwise highlighted (softkey, marker etc.). Moving the focus is most easily done by tapping on the element on the touchscreen. Alternatively, use the "Tab" key on the on-screen keyboard or the rotary knob to move the focus from one element to the next on the display.

To move the focus between any displayed diagrams or tables in a window, press the "Change focus" key on the front panel. The focus moves from the diagram to the first table to the next table etc. and then back to the diagram, within the same window.

In fullscreen mode, where a single window is displayed in full size on the screen, this key switches the focus (and the display) from one active window to the next.

Operating the Instrument

3.4.4 Entering Data

Data can be entered in dialog boxes using one of the following methods:

- Using the touchscreen, via the online keyboard
- Using other elements provided by the front panel, e.g. the keypad, rotary knob, or navigation keys
 - The rotary knob acts like the ENTER key when it is pressed.
- Using a connected external keyboard

Transparent dialog boxes

You can change the transparency of the dialog boxes to see the results in the windows behind the dialog box. Thus, you can see the effects that the changes you make to the settings have on the results immediately.

To change the transparency, use the slider at the top of the dialog box.

(The title bar of the dialog box is always slightly transparent and is not affected by the slider.)

Particularities in Windows dialog boxes

In some cases, e.g. if you want to install a printer, original Windows dialog boxes are used. In these dialog boxes, the rotary knob and function keys do not work. Use the touchscreen instead.

3.4.4.1 Entering Numeric Parameters

If a field requires numeric input, the keypad provides only numbers.

- Enter the parameter value using the keypad, or change the currently used parameter value by using the rotary knob (small steps) or the UP or DOWN keys (large steps).
- After entering the numeric value via keypad, press the corresponding unit key. The unit is added to the entry.
- 3. If the parameter does not require a unit, confirm the entered value by pressing the ENTER key or any of the unit keys.
 - The editing line is highlighted to confirm the entry.

3.4.4.2 Entering Alphanumeric Parameters

If a field requires alphanumeric input, you can use the on-screen keyboard to enter numbers and (special) characters (see "On-screen Keyboard" on page 45).

Alternatively, you can use the keypad. Every alphanumeric key represents several characters and one number. The decimal point key (.) represents special characters,

Operating the Instrument

and the sign key (-) toggles between capital and small letters. For the assignment, refer to Table 3-8.

Entering numbers and (special) characters via the keypad

- 1. Press the key once to enter the first possible value.
- 2. All characters available via this key are displayed.
- 3. To choose another value provided by this key, press the key again, until your desired value is displayed.
- 4. With every key stroke, the next possible value of this key is displayed. If all possible values have been displayed, the series starts with the first value again. For information on the series, refer to Table 3-8.
- 5. To change from capital to small letters and vice versa, press the sign key (-).
- 6. When you have chosen the desired value, wait for 2 seconds (to use the same key again), or start the next entry by pressing another key.

Entering a blank

▶ Press the "Space" bar, or press the "0" key and wait 2 seconds.

Correcting an entry:

- 1. Using the arrow keys, move the cursor to the right of the entry you want to delete.
- Press the BACKSPACE key.The entry to the left of the cursor is deleted.
- 3. Enter your correction.

Completing the entry

Press the ENTER key or the rotary knob.

Aborting the entry

Press the ESC key.
The dialog box is closed without changing the settings.

Table 3-8: Keys for alphanumeric parameters

Key name (upper inscription)	Series of (special) characters and number provided
7	7 μ Ω ° € ¥ \$ ¢
8	ABC8ÄÆÅÇ
9	DEF9É

Operating the Instrument

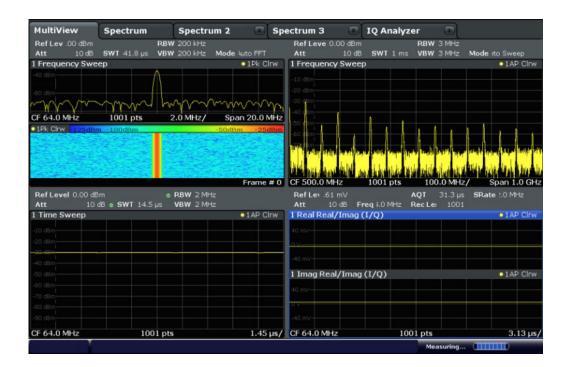
Key name (upper inscription)	Series of (special) characters and number provided
4	GHI4
5	JKL5
6	M N O 6 Ň Ö
1	PQRS1
2	TUV2Ü
3	WXYZ3
0	
	.*:_,;"'?()#
-	<toggles and="" between="" capital="" letters="" small=""></toggles>

3.4.5 Displaying Results

The R&S FSW provides several instrument applications for different analysis tasks and different types of signals, e.g. 3G FDD, I/Q analysis or basic spectrum analysis. For each application, a new measurement channel is created and displayed in a separate tab on the screen.

The results of a measurement channel can be evaluated in many different ways, both graphically and numerically. For each evaluation method the results are displayed in a separate window in the tab.

The R&S FSW allows you to configure the display to suit your specific requirements and optimize analysis.


3.4.5.1 Activating and Deactivating Channels

When you activate an application, a new measurement channel is created which determines the measurement settings for that application. The same application can be activated with different measurement settings by creating several channels for the same application. Whenever you switch channels, the corresponding measurement settings are restored. Each channel is displayed in a separate tab on the screen.

An additional tab ("MultiView") provides an overview of all currently active channels at once.

Only one measurement can be performed at any time, namely the one in the currently active channel. However, in order to perform the configured measurements consecutively, a Sequencer function is provided.

Operating the Instrument

To start a new channel

- 1. Select the MODE key.
- 2. In the "Mode" dialog box, select the required application on the "New Channel" tab. A new tab is displayed for the new channel.

Remote command:

INSTrument:CREate[:NEW] on page 716/ INSTrument:CREate:DUPLicate
on page 716

To change the application in an active channel

- Select the tab of the channel you want to change.
- 2. Select the MODE key.
- In the "Mode" dialog box, select the new application to be displayed on the "Replace Current Channel" tab.
 The selected application is displayed in the current channel.

Remote command:

INSTrument:CREate:REPLace on page 717

To close a measurement channel

➤ XX

Operating the Instrument

Select the "Close" icon on the tab of the measurement channel.

The tab is closed, any running measurements are aborted, and all results for that channel are deleted.

Remote command:

INSTrument:DELete on page 717

3.4.5.2 Laying out the Result Display with the SmartGrid

Measurement results can be evaluated in many different ways, for example graphically, as summary tables, statistical evaluations etc. Each type of evaluation is displayed in a separate window in the channel tab. Up to 16 individual windows can be displayed per measurement channel (i.e. per tab). To arrange the diagrams and tables on the screen, the Rohde & Schwarz SmartGrid function helps you find the target position simply and quickly.

Principally, the layout of the windows on the screen is based on an underlying grid, the SmartGrid. However, the SmartGrid is dynamic and flexible, allowing for many different layout possibilities. The SmartGrid functionality provides the following basic features:

- Windows can be arranged in columns or in rows, or in a combination of both.
- Windows can be arranged in up to four rows and four columns.
- Windows are moved simply by dragging them to a new position on the screen, possibly changing the layout of the other windows, as well.
- All evaluation methods available for the currently selected measurement are displayed as icons in the evaluation bar. If the evaluation bar contains more icons than can be displayed at once on the screen, it can be scrolled vertically. The same evaluation method can be displayed in multiple windows simultaneously.
- New windows are added by dragging an evaluation icon from the evaluation bar to the screen. The position of each new window depends on where you drop the evaluation icon in relation to the existing windows.
- All display configuration actions are only possible in SmartGrid mode. When Smart-Grid mode is activated, the evaluation bar replaces the current softkey menu display. When the SmartGrid mode is deactivated again, the previous softkey menu display is restored.

•	Background Information: The SmartGrid Principle	91
•	How to Activate SmartGrid Mode	92
•	How to Add a New Result Window	92
•	How to Close a Result Window.	93
•	How to Arrange the Result Windows	93

Operating the Instrument

Background Information: The SmartGrid Principle

SmartGrid display

During any positioning action, the underlying SmartGrid is displayed. Different colors and frames indicate the possible new positions. The position in the SmartGrid where you drop the window determines its position on the screen.

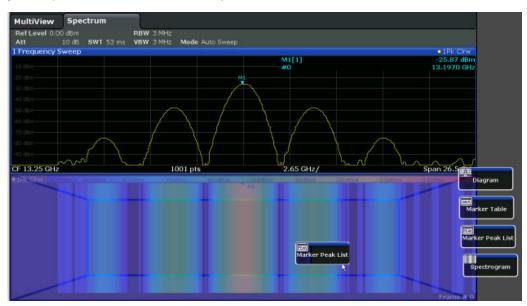


Figure 3-21: Moving a window in SmartGrid mode

The brown area indicates the possible "drop area" for the window, i.e. the area in which the window can be placed. A blue area indicates the (approximate) layout of the window as it would be if the icon were dropped at the current position. The frames indicate the possible destinations of the new window with respect to the existing windows: above/below, right/left or replacement (as illustrated in Figure 3-22). If an existing window would be replaced, the drop area is highlighted in a darker color shade.

Positioning the window

The screen can be divided into up to four rows. Each row can be split into up to four columns, where each row can have a different number of columns. However, rows always span the entire width of the screen and may not be interrupted by a column. A single row is available as the drop area for the window in the SmartGrid. The row can be split into columns, or a new row can be inserted above or below the existing row (if the maximum of 4 has not yet been reached).

Operating the Instrument

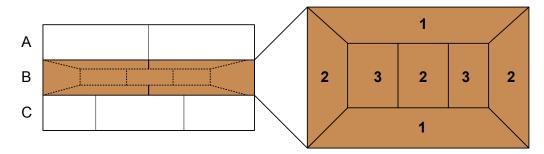


Figure 3-22: SmartGrid window positions

- 1 = Insert row above or below the existing row
- 2 = Create a new column in the existing row
- 3 = Replace a window in the existing row

SmartGrid functions

Once the evaluation icon has been dropped, icons in each window provide delete and move functions.

The "Move" icon allows you to move the position of the window, possibly changing the size and position of the other displayed windows.

The "Delete" icon allows you to close the window, enlarging the display of the remaining windows.

How to Activate SmartGrid Mode

All display configuration actions are only possible in SmartGrid mode. In SmartGrid mode the evaluation bar replaces the current softkey menu display. When the Smart-Grid mode is deactivated again, the previous softkey menu display is restored.

- To activate SmartGrid mode, do one of the following:

Select the "SmartGrid" icon from the toolbar.

- Select the "Display Config" button in the configuration "Overview".
- Select the "Display Config" softkey from the MEAS CONFIG menu.

The SmartGrid functions and the evaluation bar are displayed.

To close the SmartGrid mode and restore the previous softkey menu select the "Close" icon in the right-hand corner of the toolbar, or press any key.

How to Add a New Result Window

Each type of evaluation is displayed in a separate window. Up to 16 individual windows can be displayed per measurement channel (i.e. per tab).

1. Activate SmartGrid mode.

Operating the Instrument

All evaluation methods available for the currently selected measurement are displayed as icons in the evaluation bar.

- Select the icon for the required evaluation method from the evaluation bar.
 If the evaluation bar contains more icons than can be displayed at once on the screen, it can be scrolled vertically. Touch the evaluation bar between the icons and move it up or down until the required icon appears.
- 3. Drag the required icon from the evaluation bar to the SmartGrid, which is displayed in the diagram area, and drop it at the required position. (See "How to Arrange the Result Windows" on page 93 for more information on positioning the window).

Remote command:

LAYout:ADD[:WINDow]? on page 872 / LAYout:WINDow<n>:ADD? on page 876

How to Close a Result Window

► To close a window, activate SmartGrid mode and select the "Delete" icon for the window.

Remote command:

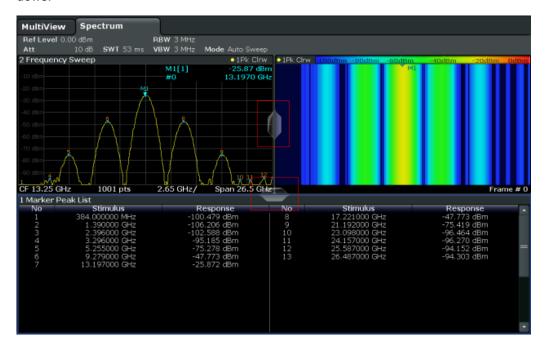
LAYout:REMove[:WINDow] on page 874 / LAYout:WINDow<n>:REMove on page 877

How to Arrange the Result Windows

1. Select an icon from the evaluation bar or the "Move" icon for an existing evaluation window.

- Drag the evaluation over the SmartGrid.A blue area shows where the window will be placed.
- 3. Move the window until a suitable area is indicated in blue.
- 4. Drop the window in the target area.
 - The windows are rearranged to the selected layout, and "Delete" and "Move" icons are displayed in each window.
- 5. To close a window, select the corresponding "Delete" icon.

Operating the Instrument



Remote command:

LAYout:REPLace[:WINDow] on page 874 / LAYout:WINDow<n>:REPLace on page 877

3.4.5.3 Changing the Size of Windows

Each channel tab may contain several windows to evaluate the measurement results using different methods. A "splitter" allows you to change the size of neighboring windows.

The splitters are not available in SmartGrid mode.

► To change the size of two neighboring windows, drag the splitter between the windows in either direction.

3.4.5.4 Switching Between a Split and Maximized Window Display

To get an overview of the results, displaying several windows at the same time may be helpful. However, the individual windows may become rather small. In this case it is useful to maximize an individual window to the entire screen temporarily in order to analyze the results in more detail.

Operating the Instrument

To switch between a split and a maximized display without having to close and re-open windows, press the SPLIT/MAXIMIZE key on the front panel. In maximized display, the currently focused window is maximized. In split display, all active windows are displayed.

3.4.5.5 Changing the Display

The display can be optimized for your individual needs. The following display functions are available and are described in detail in Chapter 9.4, "Display Settings", on page 616 and Chapter 7, "Common Analysis and Display Functions", on page 451.

- Displaying a simulation of the entire front panel of the instrument on the screen ("Front Panel")
- Displaying the main function hardkeys in a separate window on the screen ("Mini Front Panel")
- · Hiding or showing various screen elements
- Selecting a display theme and colors
- Changing the display update rate
- Activating or deactivating the touch-sensitivity of the screen
- Zooming into the diagram

3.4.6 Getting Help

If any questions or problems concerning the R&S FSW arise, an extensive online help system is provided on the instrument and can be consulted at any time. The help system is context-sensitive and provides information specifically for the current operation or setting to be performed. In addition, general topics provide an overview on complete tasks or function groups as well as background information.

3.4.6.1 Calling Up Help

The online help can be opened at any time by selecting one of the "Help" icons on the toolbar or by pressing the F1 key on an external or the online keyboard.

Calling context-sensitive help

➤ To display the "Help" dialog box for the currently focused screen element, e.g. a softkey or a setting in an opened dialog box, select the "Help" icon on the toolbar.

The "Help" dialog box "View" tab is displayed. A topic containing information about the focused screen element is displayed.

Operating the Instrument

If no context-specific help topic is available, a more general topic or the "Contents" tab is displayed.

For standard Windows dialog boxes (e.g. File Properties, Print dialog etc.), no contextsensitive help is available.

- To display a help topic for a screen element not currently focused:
 - a) Select the "Help pointer" icon on the toolbar.

The pointer changes its shape to a "?" and an arrow.

b) Select the screen element to change the focus.

A topic containing information about the selected (now focused) screen element is displayed.

3.4.6.2 Using the Help Window

The Help window contains several tabs:

- "View" shows the selected help topic
- "Contents" contains a table of help contents
- "Index" contains index entries to search for help topics
- "Search" provides text search

The Help toolbar provides some buttons:

- To browse the topics in the order of the table of contents: Up arrow = previous topic, Down arrow = next topic
- To browse the topics visited before: Left arrow = back, Right arrow = forward
- To increase or decrease the font

To navigate the Help, use the touchscreen. Alternatively, you can also use the navigation keys on the front panel.

To search for a topic in the index

The index is sorted alphabetically. You can browse the list, or search for entries in the list.

- 1. Switch to the "Index" tab.
- 2. Select the "Keyboard" icon besides the entry field.
- 3. Enter the first characters of the keyword you are interested in.

Operating the Instrument

The entries containing these characters are displayed.

4. Double-tap the suitable index entry.

The "View" tab with the corresponding help topic is displayed.

To search topics for a text string

- 1. Switch to the "Search" tab.
- 2. Select the "Keyboard" icon besides the entry field.
- Enter the string you want to find.
 If you enter several strings with blanks between, topics containing all words are found (same as AND operator).

For advanced search, consider the following:

- To find a defined string of several words, enclose it in quotation marks. For
 example, a search for "trigger qualification" finds all topics with exactly "trigger
 qualification". A search for trigger qualification finds all topics that contain the
 words trigger and qualification.
- Use "Match whole word" and "Match case" to refine the search.
- Use operators AND, OR, and NOT.

To close the Help window

Select the "Close" icon in the upper right corner of the help window. Or: Press the ESC key.

3.4.7 Remote Control

In addition to working with the R&S FSW interactively, located directly at the instrument, it is also possible to operate and control it from a remote PC. Various methods for remote control are supported:

- Connecting the instrument to a (LAN) network (see Chapter 3.1.5, "Setting Up a Network (LAN) Connection", on page 33)
- Using the LXI browser interface in a LAN network
- Using the Windows Remote Desktop application in a LAN network
- Connecting a PC via the GPIB interface

How to configure the remote control interfaces is described in the User Manual.

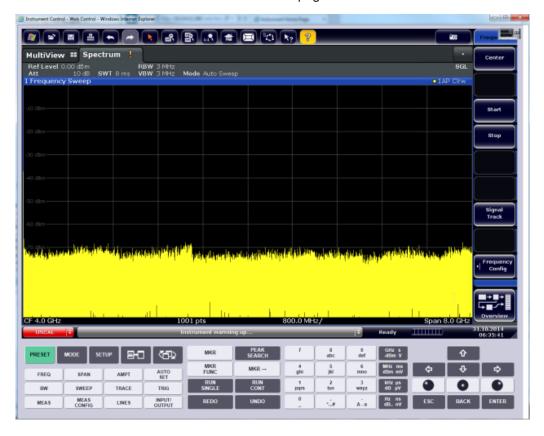
The R&S FSW is delivered with *IECWIN* installed, the auxiliary remote control tool provided free of charge by R&S.

For details on the IECWIN tool, see the "Network and Remote Control" chapter of the R&S FSW User Manual.

Operating the Instrument

3.4.7.1 Using the LXI Browser Interface in a LAN

LAN eXtensions for Instrumentation (LXI) is an instrumentation platform for measuring instruments and test systems that is based on standard Ethernet technology. LXI is intended to be the LAN-based successor to GPIB, combining the advantages of Ethernet with the simplicity and familiarity of GPIB. The LXI browser interface allows for easy configuration of the LAN and remote control of the R&S FSW without additional installation requirements.



Restrictions

Only user accounts with administrator rights can make use of the LXI functionality. For details see Chapter 3.1.2.3, "Login", on page 27.

Via the LXI browser interface to the R&S FSW you can control the instrument remotely from another PC. Manual instrument controls are available via the front panel simulation. File upload and download between the instrument and the remote PC is also available. Using this feature, several users can access *and operate* the R&S FSW simultaneously. This is useful for troubleshooting or training purposes. If necessary, this feature can be deactivated.

For details see "LXI Web Browser Interface" on page 639.

Operating the Instrument

3.4.7.2 Remote Desktop Connection

Remote Desktop is a Windows application which can be used to access and control the instrument from a remote computer through a LAN connection. While the instrument is in operation, the instrument screen contents are displayed on the remote computer. Remote Desktop provides access to all of the applications, files, and network resources of the instrument. Thus, remote operation of the instrument is possible.

With Windows 7, Remote Desktop Client is part of the operating system. For other versions of Windows, Microsoft offers the Remote Desktop Client as an add-on.

3.4.7.3 Connecting a PC via the GPIB Interface

A GPIB interface is integrated on the rear panel of the instrument. You can set the GPIB address and the ID response string. The GPIB language is set as SCPI by default but can be changed to emulate other instruments. Connect a PC to the R&S FSW via the GPIB connection to send remote commands to control and operate the instrument.

4 Applications and Operating Modes

Access: MODE

The R&S FSW provides several applications for different analysis tasks and different types of signals, e.g. W-CDMA, I/Q analysis or basic spectrum analysis. When you activate an application, a new measurement channel is created which determines the measurement settings for that application. The same application can be activated with different measurement settings by creating several channels for the same application. Each channel is displayed in a separate tab on the screen.

The maximum number of measurement channels may be limited by the available memory on the instrument.

Independent vs correlating measurements

With the **conventional R&S FSW Signal and Spectrum Analyzer** you can perform several different measurements almost simultaneously. However, the individual measurements are independent of each other - **each application captures and evaluates its own set of data**, regardless of what the other applications do.

In some cases it may be useful to analyze the exact same input data using different applications. For example, imagine capturing data from a base station and analyzing the RF spectrum in the Analog Demodulation application. If a spur or an unexpected peak occurs, you may want to analyze the same data in the I/Q Analyzer to see the real and imaginary components of the signal and thus detect the reason for the irregular signal. Normally when you switch to a different application, evaluation is performed on the data that was captured by that application, and not the previous one. In our example that would mean the irregular signal would be lost. Therefore, a second operating mode is available in the R&S FSW: Multi-Standard Radio Analyzer (MSRA) mode.

Multi-Standard Radio Analyzer mode

In Multi-Standard Radio Analyzer (MSRA) mode, data acquisition is performed once as an I/Q measurement in a master application, and the captured data is then evaluated by any number of slave applications for different radio standards. Data acquisition and global configuration settings are controlled globally, while the evaluation and display settings can be configured individually for each slave application. Using the Multi-Standard Radio Analyzer, unwanted correlations between different signal components using different transmission standards can be detected. Thus, for example, an irregularity in a GSM burst can be examined closer in the R&S FSW 3G FDD BTS (W-CDMA) slave application to reveal dependencies like a change in the EVM value.

Multi-Standard Real-Time mode

In order to combine the advantages of the MSRA mode with its correlated measurements and the gapless results and frequency mask provided by real-time measurements, a third operating mode has been introduced: the **Multi-Standard Real-Time**

R&S MultiView

(MSRT) mode. This operating mode is only available if one of the real-time options (R&S FSW-K160RE/-B160R/-B512R/-U160R/-U512R) is installed.

In this operating mode, data acquisition is performed once as a real-time measurement, and the captured data is then evaluated by any number of slave applications. Thus, a real-time measurement triggered with a frequency mask can be performed, and the results can be evaluated in the VSA slave application, for example, to detect the cause of a frequency exception.

Distinct operating modes

Although the applications themselves are identical in all operating modes, the handling of the data between applications is not. Thus, the operating mode determines which slave applications are available and active. Whenever you change the operating mode, the currently active measurement channels are closed. The default operating mode is Signal and Spectrum Analyzer mode; however, the presetting can be changed.

Remote command:

INST: MODE SAN, see INSTrument: MODE on page 719

Switching between slave applications


When you switch to a new slave application, a set of parameters is passed on from the current slave application to the new one:

- center frequency and frequency offset
- reference level and reference level offset
- attenuation

After initial setup, the parameters for the measurement channel are stored upon exiting and restored upon re-entering the channel. Thus, you can switch between slave applications quickly and easily.

4.1 R&S MultiView

Each application is displayed in a separate tab. An additional tab ("MultiView") provides an overview of all currently active channels at a glance. In the "MultiView" tab, each individual window contains its own channel bar with an additional button. Select this button to switch to the corresponding channel display quickly.

Remote command:

DISPlay: FORMat on page 871

4.2 Available Applications

Access: MODE

The R&S FSW provides some applications in the base unit while others are available only if the corresponding firmware options are installed. Not all R&S FSW applications are supported in MSRA/MSRT mode.

For details on the MSRT operating mode, see the R&S FSW Real-Time Spectrum Application and MSRT Operating Mode User Manual.

Spectrogram application

Spectrogram measurements are not a separate application, but rather a trace evaluation method, thus they are available as an evaluation method for the Display Configuration, not by creating a new channel. Spectrograms are configured and activated in the "Trace" settings. See Chapter 7.3.1.7, "Working with Spectrograms", on page 470 for details.

Spectrum	103
1xEV-DO BTS	
1xEV-DO MS	
3G FDD BTS	
3G FDD UE	104

802.11ad	104
Amplifier	104
Analog Demodulation	104
Avionics	105
cdma2000 BTS	105
cdma2000 MS	
(Multi-Carrier) Group Delay	
GSM	
I/Q Analyzer	105
LTE	106
Noise Figure	106
Phase Noise	
Pulse Measurements	106
Real-Time Spectrum	106
TD-SCDMA BTS	
TD-SCDMA UE	
Transient Analysis	
Vector Signal Analysis (VSA)	
WLAN	
DOCSIS 3 1	107

Spectrum

In the Spectrum application the provided functions correspond to those of a conventional spectrum analyzer. The analyzer measures the frequency spectrum of the RF input signal over the selected frequency range with the selected resolution and sweep time, or, for a fixed frequency, displays the waveform of the video signal. This application is used in the initial configuration.

For details see Chapter 5, "Measurements", on page 114.

Remote command:

INST:SEL SAN, see INSTrument[:SELect] on page 720

1xEV-DO BTS

The 1xEV-DO BTS application requires an instrument equipped with the 1xEV-DO BTS Measurements option, R&S FSW-K84. This application provides test measurements for 1xEV-DO BTS downlink signals (base station signals) according to the test specification.

For details see the R&S FSW-K84/-K85 User Manual.

Remote command:

INST:SEL BDO, see INSTrument[:SELect] on page 720

1xEV-DO MS

The 1xEV-DO MS application requires an instrument equipped with the 1xEV-DO MS Measurements option, R&S FSW-K85. This application provides test measurements for 1xEV-DO MS uplink signals (mobile signals) according to the test specification.

For details see the R&S FSW-K84/-K85 User Manual.

Remote command:

INST:SEL MDO, see INSTrument[:SELect] on page 720

3G FDD BTS

The 3G FDD BTS application requires an instrument equipped with the 3GPP Base Station Measurements option, R&S FSW-K72. This application provides test measurements for W-CDMA downlink signals (base station signals) according to the test specification.

For details see the R&S FSW-K72/-K73 User Manual.

Remote command:

INST:SEL BWCD, see INSTrument[:SELect] on page 720

3G FDD UE

The 3G FDD UE application requires an instrument equipped with the 3GPP User Equipment Measurements option, R&S FSW-K73. This application provides test measurements for W-CDMA uplink signals (mobile signals) according to the test specification.

For details see the R&S FSW-K72/-K73 User Manual.

Remote command:

INST:SEL MWCD, see INSTrument[:SELect] on page 720

802 11ad

The 802.11ad application requires an instrument equipped with the 802.11ad option, R&S FSW-K95. This application provides measurements and evaluations according to the IEEE 802.11ad standard.

For details see the R&S FSW-K95 User Manual.

Remote command:

INST:SEL WIGIG, see INSTrument[:SELect] on page 720

Amplifier

The Amplifier Measurement application requires an instrument equipped with the Amplifier Measurement option R&S FSW-K18. This application provides measurements to measure the efficiency of traditional amplifiers and amplifiers that support envelope tracking with the R&S FSW.

For details see the R&S FSW-K18 User Manual.

Remote command:

```
INST:SEL AMPL, see INSTrument[:SELect] on page 720
```

Analog Demodulation

The Analog Demodulation application requires an instrument equipped with the corresponding optional software. This application provides measurement functions for demodulating AM, FM, or PM signals.

For details see the R&S FSW-K7 User Manual.

Remote command:

INST:SEL ADEM, see INSTrument[:SELect] on page 720

Avionics

The Avionics application requires an instrument equipped with the corresponding optional software. This application provides measurement functions for measuring avionics (ILS/VOR) signals.

For details see the R&S FSW-K15 User Manual.

Remote command:

INST:SEL AVIONICS, see INSTrument[:SELect] on page 720

cdma2000 BTS

The cdma2000 BTS application requires an instrument equipped with the cdma2000 BTS Measurements option, R&S FSW-K82. This application provides test measurements for cdma2000 BTS downlink signals (base station signals) according to the test specification.

For details see the R&S FSW-K82/-K83 User Manual.

Remote command:

INST:SEL BC2K, see INSTrument[:SELect] on page 720

cdma2000 MS

The cdma2000 MS application requires an instrument equipped with the cdma2000 MS Measurements option, R&S FSW-K83. This application provides test measurements for cdma2000 MS uplink signals (mobile signals) according to the test specification.

For details see the R&S FSW-K82/-K83 User Manual.

Remote command:

INST:SEL MC2K, see INSTrument[:SELect] on page 720

(Multi-Carrier) Group Delay

The Group Delay application requires an instrument equipped with the Multi-Carrier Group Delay Measurements option R&S FSW-K17. This application provides a Multi-Carrier Group Delay measurement.

For details see the R&S FSW-K17 User Manual.

Remote command:

```
INST:SEL MCGD, see INSTrument[:SELect] on page 720
```

GSM

The GSM application requires an instrument equipped with the GSM Measurements option R&S FSW-K10. This application provides GSM measurements.

For details see the R&S FSW-K10 User Manual.

Remote command:

```
INST:SEL GSM, see INSTrument[:SELect] on page 720
```

I/Q Analyzer

The I/Q Analyzer application provides measurement and display functions for I/Q data.

For details see the R&S FSW I/Q Analyzer User Manual.

```
INST:SEL IQ, see INSTrument[:SELect] on page 720
```

LTE

The LTE application requires an instrument equipped with the LTE Measurements option R&S FSW-K10x. This application provides LTE measurements.

For details see the R&S FSW-K10x (LTE Downlink) User Manual.

Remote command:

INST:SEL LTE, see INSTrument[:SELect] on page 720

Noise Figure

The Noise Figure application requires an instrument equipped with the Noise Figure Measurements option R&S FSW-K30. This application provides noise figure measurements.

For details see the R&S FSW-K30 User Manual.

Remote command:

INST:SEL NOISE, see INSTrument[:SELect] on page 720

Phase Noise

The Phase Noise application requires an instrument equipped with the Phase Noise Measurements option, R&S FSW-K40. This application provides measurements for phase noise tests.

For details see the R&S FSW-K40 User Manual.

Remote command:

INST:SEL PNOISE, see INSTrument[:SELect] on page 720

Pulse Measurements

The Pulse application requires an instrument equipped with the Pulse Measurements option, R&S FSW-K6. This application provides measurement functions for pulsed signals.

For details see the R&S FSW-K6 User Manual.

Remote command:

INST:SEL PULSE, see INSTrument[:SELect] on page 720

Real-Time Spectrum

The Real-Time Spectrum application requires an instrument equipped with the Real-Time Spectrum option, (R&S FSW-B160R/-K160RE/-U160R). This application provides real-time measurement functions.

For details see the R&S FSW Real-Time User Manual.

Remote command:

INST:SEL RTIM, see INSTrument[:SELect] on page 720

TD-SCDMA BTS

The TD-SCDMA BTS application requires an instrument equipped with the TD-SCDMA Base Station Measurements option, R&S FSW-K76. This application provides test measurements for TD-SCDMA downlink signals (base station signals) according to the test specification.

For details see the R&S FSW-K76/-K77 User Manual.

Remote command:

INST:SEL BTDS, see INSTrument[:SELect] on page 720

TD-SCDMA UE

The TD-SCDMA UE application requires an instrument equipped with the TD-SCDMA User Equipment Measurements option, R&S FSW-K77. This application provides test measurements for TD-SCDMA uplink signals (mobile signals) according to the test specification.

For details see the R&S FSW-K76/-K77 User Manual.

Remote command:

INST:SEL MTDS, see INSTrument[:SELect] on page 720

Transient Analysis

The Transient Analysis application requires an instrument equipped with the Transient Analysis option, R&S FSW-K60. This application provides measurements and evaluations for Transient Analysis.

For details see the R&S FSW-K60 User Manual.

Remote command:

INST:SEL TA, see INSTrument[:SELect] on page 720

Vector Signal Analysis (VSA)

The VSA application requires an instrument equipped with the Vector Signal Analysis option, R&S FSW-K70. This application provides measurements and evaluations for single-carrier digitally modulated signals.

For details see the R&S FSW-K70 User Manual.

Remote command:

INST:SEL DDEM, see INSTrument[:SELect] on page 720

WLAN

The WLAN application requires an instrument equipped with the WLAN option, R&S FSW-K91/91n. This application provides measurements and evaluations according to the WLAN IEEE 802.11 standards.

For details see the R&S FSW-K91 User Manual.

Remote command:

INST:SEL WLAN, see INSTrument[:SELect] on page 720

DOCSIS 3.1

The DOCSIS 3.1 application requires an instrument equipped with the DOCSIS 3.1 option, R&S FSW-K192. This application provides measurements and evaluations according to the DOCSIS 3.1 standard.

For details see the R&S FSW-K192 User Manual.


Remote command:

INST:SEL DOCS, see INSTrument[:SELect] on page 720

4.3 Selecting the Operating Mode and Applications

Access: MODE

The default operating mode is Signal and Spectrum Analyzer mode, however, the presetting can be changed (see Chapter 9.3.4.5, "General Configuration Settings", on page 607).

The default application in Signal and Spectrum Analyzer mode is a Spectrum measurement.

Switching between applications

When you switch to a new application, a set of parameters is passed on from the current application to the new one:

- center frequency and frequency offset
- reference level and reference level offset
- attenuation

After initial setup, the parameters for the measurement channel are stored upon exiting and restored upon re-entering the channel. Thus, you can switch between applications quickly and easily.

Switching the operating mode	108
Selecting an application	
L New Channel	
L Replace Current Channel	109
L Duplicate Current Channel	109
Closing an application	

Switching the operating mode

To switch the operating mode, select the corresponding tab.

Remote command:

INSTrument:MODE on page 719

Selecting an application

To start a new or replace an existing application, select the corresponding button in the correct tab.

Note: The measurement channels are labeled with their default name. If that name already exists, a sequential number is added. You can change the name of the measurement channel by double-tapping the name in the channel bar and entering a new name.

For an overview of default names see Table 11-2.

Remote command:

INSTrument[:SELect] on page 720

New Channel ← Selecting an application

The application selected on this tab is started in a new channel, i.e. a new tab in the display.

Remote command:

```
INSTrument:CREate[:NEW] on page 716
INSTrument[:SELect] on page 720
```

Replace Current Channel ← Selecting an application

The application selected on this tab is started in the currently displayed channel, replacing the current application.

Remote command:

INSTrument:CREate:REPLace on page 717

Duplicate Current Channel ← **Selecting an application**

The currently active channel can be duplicated, i.e. a new measurement channel of the same type and with the identical measurement settings is started. The name of the new channel is the same as the copied channel, extended by a consecutive number (e.g. "Spectrum" -> "Spectrum 2").

This command is not available if the MSRA Master channel is selected.

Remote command:

```
INSTrument:CREate:DUPLicate on page 716
```

Closing an application

To close an application, simply close the corresponding tab by selecting the "x" next to the channel name.

Remote command:

INSTrument:DELete on page 717

4.4 Running a Sequence of Measurements

Only one measurement can be performed at any time, namely the one in the currently active channel. However, in order to perform the configured measurements consecutively, a Sequencer function is provided.

The Sequencer function is slightly different in MSRA or MSRT operating mode. For details see the R&S FSW MSRA User Manual or the R&S FSW Real-Time Spectrum Application and MSRT Operating Mode User Manual.

•	The Sequencer Concept	.110
•	Sequencer Settings	112
•	How to Set Up the Sequencer	113

4.4.1 The Sequencer Concept

The instrument can only be in one specific channel at any time. Thus, only one measurement can be performed at any time, namely the one in the currently active channel. However, in order to perform the configured measurements consecutively, a Sequencer function is provided, which changes the application of the instrument as required. If activated, the measurements configured in the currently active channels are performed one after the other in the order of the tabs. For each individual measurement, the sweep count is considered. Thus, each measurement may consist of several sweeps. The currently active measurement is indicated by a symbol in the tab label. The result displays of the individual channels are updated in the tabs as the measurements are performed. Sequential operation itself is independent of the currently displayed tab.

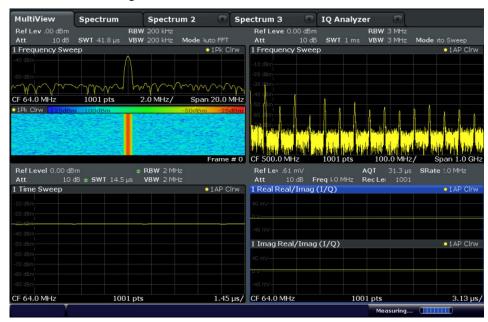
Sequencer modes

Three different Sequencer modes are available:

• Single Sequence

Similar to single sweep mode; each measurement is performed once, until all measurements in all active channels have been performed.

Continuous Sequence


Similar to continuous sweep mode; the measurements in each active channel are performed one after the other, repeatedly, in the same order, until sequential operation is stopped. This is the default Sequencer mode.

Channel-defined Sequence

First, a single sequence is performed. Then, only channels in continuous sweep mode are repeated continuously.

Example: Sequencer procedure

Assume the following active channel definition:

Tab name	application	Sweep mode	Sweep count
Spectrum	Spectrum	Cont. Sweep	5
Spectrum 2	Spectrum	Single Sweep	6
Spectrum 3	Spectrum	Cont. Sweep	2
IQ Analyzer	IQ Analyzer	Single Sweep	7

For **single Sequence**, the following sweeps will be performed:

5x Spectrum, 6x Spectrum 2, 2 x Spectrum 3, 7x IQ Analyzer

For **continuous Sequence**, the following sweeps will be performed:

5x Spectrum, 6x Spectrum 2, 2 x Spectrum 3, 7x IQ Analyzer,

5x Spectrum, 6x Spectrum 2, 2 x Spectrum 3, 7x IQ Analyzer,

...

For **channel-defined Sequence**, the following sweeps will be performed:

5x Spectrum, 6x Spectrum 2, 2 x Spectrum 3, 7x IQ Analyzer,

5x Spectrum, 2 x Spectrum 3,

5x Spectrum, 2 x Spectrum 3,

...

RUN SINGLE/RUN CONT and Single Sweep/Sweep Continuous keys

While the Sequencer is active, the RUN SINGLE and RUN CONT keys control the Sequencer, not individual sweeps. RUN SINGLE starts the Sequencer in single mode, while RUN CONT starts the Sequencer in continuous mode.

The "Single Sweep" and "Continuous Sweep" softkeys control the sweep mode for the currently selected channel only; the sweep mode only has an effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, a channel in single sweep mode is swept only once by the Sequencer. A channel in continuous sweep mode is swept repeatedly.

4.4.2 Sequencer Settings

The "Sequencer" menu is available from the toolbar.

Sequencer in MSRA/MSRT mode

In MSRA/MSRT operating mode and in the Real-Time Spectrum Application, the Sequencer behaves slightly differently.

For details on the MSRA operating mode see the R&S FSW MSRA User Manual. For details on the MSRT operating mode and the Real-Time Spectrum application see the R&S FSW Real-Time Spectrum Application and MSRT Operating Mode User Manual.

Sequencer State11	2
Sequencer Mode11	2

Sequencer State

Activates or deactivates the Sequencer. If activated, sequential operation according to the selected Sequencer mode is started immediately.

Remote command:

SYSTem: SEQuencer on page 723

INITiate<n>:SEQuencer:IMMediate on page 722
INITiate<n>:SEQuencer:ABORt on page 721

Sequencer Mode

Defines how often which measurements are performed. The currently selected mode softkey is highlighted blue. During an active Sequencer process, the selected mode softkey is highlighted orange.

"Single Sequence"

Each measurement is performed once, until all measurements in all active channels have been performed.

"Continuous Sequence"

The measurements in each active channel are performed one after the other, repeatedly, in the same order, until sequential operation is stopped.

This is the default Sequencer mode.

"Channel-defined Sequence"

First, a single sequence is performed. Then, only channels in continuous sweep mode are repeated.

Channel-defined sequence is not available in Multi-Standard Real-Time (MSRT) operating mode.

Remote command:

INITiate<n>:SEQuencer:MODE on page 722

4.4.3 How to Set Up the Sequencer

In order to perform the configured measurements consecutively, a Sequencer function is provided.

- 1. Configure a channel for each measurement configuration as required, including the sweep mode.
- 2. In the toolbar, select the "Sequencer" icon.

The "Sequencer" menu is displayed.

- 3. Toggle the "Sequencer" softkey to "On".
 - A continuous sequence is started immediately.
- 4. To change the Sequencer mode and start a new sequence immediately, select the corresponding mode softkey, or press the RUN SINGLE or RUN CONT key.

The measurements configured in the currently active channels are performed one after the other in the order of the tabs until the Sequencer is stopped. The result displays in the individual channels are updated as the measurements are performed.

To stop the Sequencer

► To stop the Sequencer temporarily, press the highlighted RUN SINGLE or RUN CONT key (not for a channel-defined sequence). To continue the Sequencer, press the key again.

To stop the Sequencer permanently, select the "Sequencer" icon in the toolbar and toggle the "Sequencer" softkey to "Off".

Available Measurement Functions

5 Measurements

In the Spectrum application, the R&S FSW provides a variety of different measurement functions.

- Basic measurements measure the spectrum of your signal or watch your signal in time domain
- Power measurements calculate the powers involved in modulated carrier signals
- Emission measurements detect unwanted signal emission
- Statistic measurements evaluate the spectral distribution of the signal
- Special measurements provide characteristic values of the signal
- EMI measurements detect electromagnetic interference in the signal

The individual functions are described in detail in the following chapters.

Measurements on I/Q-based data

The I/Q Analyzer application (*not Master*) **in MSRA mode** can also perform measurements on the captured I/Q data in the time and frequency domain.

The measurements are configured using the same settings as described here for the Spectrum application.

The results, however, may differ slightly as hardware settings are not adapted automatically as for the Spectrum application. Additionally, the analysis interval used for the measurement is indicated as in all MSRA applications.

For more information see the R&S FSW MSRA User Manual.

•	Available Measurement Functions	114
•	Basic Measurements	119
•	Channel Power and Adjacent-Channel Power (ACLR) Measurement	139
•	Carrier-to-Noise Measurements	191
•	Occupied Bandwidth Measurement (OBW)	195
•	Spectrum Emission Mask (SEM) Measurement	201
•	Spurious Emissions Measurement	245
•	Statistical Measurements (APD, CCDF)	258
	Time Domain Power Measurement	
•	Harmonic Distortion Measurement	277
	Third Order Intercept (TOI) Measurement	
	AM Modulation Depth Measurement	
	Electromagnetic Interference (EMI) Measurement	

5.1 Available Measurement Functions

The measurement function determines which settings, functions and evaluation methods are available in the R&S FSW. The various measurement functions are described in detail here. They are selected in the "Select Measurement" dialog box that is dis-

Available Measurement Functions

played when you press the MEAS key or select "Select Measurement" in the configuration "Overview".

When you select a measurement function, the measurement is started with its default settings immediately and the corresponding measurement configuration menu is displayed. The measurement configuration menu can be displayed at any time by pressing the MEAS CONFIG key.

The easiest way to configure measurements is using the configuration "Overview", see Chapter 6.1, "Configuration Overview", on page 319.

In addition to the measurement-specific parameters, the general parameters can be configured as usual, see Chapter 6, "Common Measurement Settings", on page 319. Many measurement functions provide special result displays or evaluation methods; however, in most cases the general evaluation methods are also available, see Chapter 7, "Common Analysis and Display Functions", on page 451.

After a preset, the R&S FSW performs a basic frequency sweep.

Frequency Sweep	115
Zero Span	116
Ch Power ACLR	116
C/N, C/No	116
OBW	117
Spectrum Emission Mask	117
Spurious Emissions	117
APD	117
CCDF	118
Time Domain Power	118
TOI	118
AM Mod Depth	
Harmonic Distortion	118
EMI	119
Marker Functions	119
All Functions Off	119

Frequency Sweep

A common frequency sweep of the input signal over a specified span. Can be used for general purposes to obtain basic measurement results such as peak levels and spectrum traces. The "Frequency" menu is displayed. This is the default measurement if no other function is selected.

Use the general measurement settings to configure the measurement, e.g. via the "Overview" (see Chapter 6, "Common Measurement Settings", on page 319).

Remote command:

```
[SENSe:]FREQuency:STARt on page 885, [SENSe:]FREQuency:STOP on page 885
```

INITiate<n>[:IMMediate] on page 729
INITiate<n>:CONTinuous on page 728

Available Measurement Functions

Zero Span

A sweep in the time domain at the specified (center) frequency, i.e. the frequency span is set to zero. The display shows the time on the x-axis and the signal level on the y-axis, as on an oscilloscope. On the time axis, the grid lines correspond to 1/10 of the current sweep time.

Use the general measurement settings to configure the measurement, e.g. via the "Overview" (see Chapter 6, "Common Measurement Settings", on page 319).

Most result evaluations can also be used for zero span measurements, although some functions (e.g. markers) may work slightly differently and some may not be available. If so, this will be indicated in the function descriptions (see Chapter 7, "Common Analysis and Display Functions", on page 451).

Remote command:

```
[SENSe:]FREQuency:SPAN on page 884
INITiate<n>[:IMMediate] on page 729
INITiate<n>:CONTinuous on page 728
```

Ch Power ACLR

Measures the active channel or adjacent-channel power for one or more carrier signals, depending on the current measurement configuration, and opens a submenu to configure the channel power measurement.

For details see Chapter 5.3, "Channel Power and Adjacent-Channel Power (ACLR) Measurement", on page 139.

Remote command:

```
CALC:MARK:FUNC:POW:SEL ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:SELect on page 732
Results:
CALC:MARK:FUNC:POW:RES? ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer<sb>:RESult? on page 730
Chapter 11.5.3, "Measuring the Channel Power and ACLR", on page 734
```

C/N, C/No

Measures the carrier/noise ratio and opens a submenu to configure the measurement. Measurements without (C/N) and measurements with reference to the bandwidth (C/No) are possible.

Carrier/noise measurement is only possible in the frequency domain (span > 0).

For details see Chapter 5.4, "Carrier-to-Noise Measurements", on page 191.

```
CALC:MARK:FUNC:POW:SEL CN | CN0CALCulate<n>:MARKer<m>:FUNCtion:
POWer:SELect on page 732
Results:
CALC:MARK:FUNC:POW:RES? CN | CN0, see CALCulate<n>:MARKer<m>:
FUNCtion:POWer<sb>:RESult? on page 730
Chapter 11.5.4, "Measuring the Carrier-to-Noise Ratio", on page 771
```

Available Measurement Functions

OBW

Measures the occupied bandwidth, i.e. the bandwidth which must contain a defined percentage of the power, and opens a submenu to configure the measurement. For details see Chapter 5.5, "Occupied Bandwidth Measurement (OBW)", on page 195.

OBW measurement is only possible in the frequency domain (span > 0).

Remote command:

```
CALC:MARK:FUNC:POW:SEL OBWCALCulate<n>:MARKer<m>:FUNCtion:POWer:
SELect on page 732
```

Results:

```
CALC:MARK:FUNC:POW:RES? OBW, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer<sb>:RESult? on page 730
```

Chapter 11.5.5, "Measuring the Occupied Bandwidth", on page 771

Spectrum Emission Mask

Activates a Spectrum Emission Mask (SEM) measurement, which monitors compliance with a spectral mask, and opens a submenu to configure the measurement.

For details see Chapter 5.6, "Spectrum Emission Mask (SEM) Measurement", on page 201.

Remote command:

```
SENS:SWE:MODE ESP, see [SENSe:]SWEep:MODE on page 775
Results:
CALC:MARK:FUNC:POW:RES? CPOW | PPOW, see CALCulate<n>:MARKer<m>:
FUNCtion:POWer<sb>:RESult? on page 730
CALC:LIM:FAIL?, see CALCulate<n>:LIMit<k>:FAIL? on page 1059
TRACe<n>[:DATA] on page 980
TRACe<n>[:DATA]:X? on page 983
Chapter 11.5.6, "Measuring the Spectrum Emission Mask", on page 773
```

Spurious Emissions

Activates the Spurious Emissions measurement, which monitors unwanted RF products outside the assigned frequency band generated by an amplifier. A submenu to configure the measurement is opened.

For details see Chapter 5.7, "Spurious Emissions Measurement", on page 245.

Remote command:

```
SENS:SWE:MODE LIST, see [SENSe:]SWEep:MODE on page 775 Results:
TRAC:DATA? SPUR, see TRACe<n>[:DATA] on page 980
Chapter 11.5.7, "Measuring Spurious Emissions", on page 809
```

APD

Measures the amplitude probability density (APD) and opens a submenu to configure the measurement.

For details see Chapter 5.8, "Statistical Measurements (APD, CCDF)", on page 258.

```
CALCulate<n>:STATistics:APD[:STATe] on page 823
Results:
CALCulate<n>:STATistics:RESult<t>? on page 831
```

Available Measurement Functions

CCDF

Measures the complementary cumulative distribution function (CCDF) and opens a submenu to configure the measurement.

For details see Chapter 5.8, "Statistical Measurements (APD, CCDF)", on page 258.

Remote command:

```
CALCulate<n>:STATistics:CCDF[:STATe] on page 824
Results:
CALCulate<n>:STATistics:CCDF:X<t>? on page 830
CALCulate<n>:STATistics:RESult<t>? on page 831
```

Time Domain Power

Measures the power in zero span and opens a submenu to configure the measurement. For details see Chapter 5.2, "Basic Measurements", on page 119.

A time domain power measurement is only possible for zero span.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary[:STATe] on page 835 Chapter 11.5.9, "Measuring the Time Domain Power", on page 833
```

TOI

Measures the third order intercept point and opens a submenu to configure the measurement.

For details see Chapter 5.11, "Third Order Intercept (TOI) Measurement", on page 283.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:TOI[:STATe] on page 847
CALCulate<n>:MARKer<m>:FUNCtion:TOI:RESult? on page 848
Chapter 11.5.11, "Measuring the Third Order Intercept Point", on page 847
```

AM Mod Depth

Measures the AM modulation depth and opens a submenu to configure the measurement. An AM-modulated carrier is required in the window to ensure correct operation.

For details see Chapter 5.12, "AM Modulation Depth Measurement", on page 292.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth[:STATe] on page 849
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult? on page 850
Chapter 11.5.12, "Measuring the AM Modulation Depth", on page 849
```

Harmonic Distortion

Measures the harmonic distortion, including the total harmonic distortion, and opens a submenu to configure the measurement.

For details see Chapter 5.10, "Harmonic Distortion Measurement", on page 277.

```
CALCulate<n>:MARKer<m>:FUNCtion:HARMonics[:STATe] on page 843

First harmonic: CALCulate<n>:MARKer<m>:FUNCtion:CENTer on page 881.

THD: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?

on page 845
```

Basic Measurements

List of harmonics: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST?
on page 845

Chapter 11.5.10, "Measuring the Harmonic Distortion", on page 843

FMI

Detects electromagnetic interference in the signal, and opens a submenu to configure the measurement.

For details see Chapter 5.13, "Electromagnetic Interference (EMI) Measurement", on page 295.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:STATe on page 852 Chapter 11.5.13, "Remote Commands for EMI Measurements", on page 851

Marker Functions

In addition to the measurement functions, some special marker functions are available. See Chapter 7.4.3, "Marker Function Configuration", on page 521.

All Functions Off

Switches off all measurement functions and returns to a basic frequency sweep.

5.2 Basic Measurements

Basic measurements are common sweeps in the time or frequency domain which provide an overview of the basic input signal characteristics.

If no other measurement function is selected, or if all measurement functions are switched off, the R&S FSW performs a basic frequency or time sweep.

After a preset, a frequency sweep is performed.

Use the general measurement settings to configure the measurement, e.g. via the "Overview" (see Chapter 6, "Common Measurement Settings", on page 319).

5.2.1 How to Perform a Basic Sweep Measurement

To perform one or more single sweeps

- 1. Configure the frequency and span to be measured ("Frequency" dialog box, see Chapter 6.3, "Frequency and Span Configuration", on page 395).
- 2. Configure the number of sweeps to be performed in a single measurement ("Sweep Config" dialog box, see "Sweep / Average Count" on page 423).
- 3. If necessary, configure how the signal is processed internally ("Bandwidth" dialog box, see "Sweep Type" on page 425).
- If necessary, configure a trigger for the measurement ("Trigger/Gate Settings" dialog box, see Chapter 6.6, "Trigger and Gate Configuration", on page 429).

Basic Measurements

- Define how the results are evaluated for display ("Trace" dialog box, see Chapter 7.3.2.1, "Trace Settings", on page 478).
- 6. If necessary, configure the vertical axis of the display ("Amplitude" dialog box, see Chapter 6.4, "Amplitude and Vertical Axis Configuration", on page 403).
- 7. To start the measurement, select one of the following:
 - RUN SINGLE key
 - "Single Sweep" softkey in the "Sweep" menu

The defined number of sweeps are performed, then the measurement is stopped. While the measurement is running, the RUN SINGLE key is highlighted. To abort the measurement, press the RUN SINGLE key again. The key is no longer highlighted. The results are not deleted until a new measurement is started.

8. To repeat the same number of sweeps without deleting the last trace, select the "Continue Single Sweep" softkey in the "Sweep" menu.

To start continuous sweeping

- If you want to average the trace or search for a maximum over more (or less) than 10 sweeps, configure the "Average/Sweep Count" ("Sweep Config" dialog box, see "Sweep / Average Count" on page 423).
- 2. To start the measurement, select one of the following:
 - RUN CONT key
 - "Continuous Sweep" softkey in the "Sweep" menu

After each sweep is completed, a new one is started automatically. While the measurement is running, the RUN CONT key is highlighted. To stop the measurement, press the RUN CONT key again. The key is no longer highlighted. The results are not deleted until a new measurement is started.

5.2.2 Measurement Examples - Measuring a Sinusoidal Signal

One of the most common measurement tasks that can be handled using a signal analyzer is determining the level and frequency of a signal. When measuring an unknown signal, you can usually start with the presettings.

NOTICE

High input values

If levels higher than +30 dBm (=1 W) are expected or are possible, a power attenuator must be inserted before the RF input of the analyzer. Otherwise, signal levels exceeding 30 dBm can damage the RF attenuator or the input mixer. The total power of all occurring signals must be taken into account.

Test setup

Connect the RF output of the signal generator to the RF input of the R&S FSW.

Basic Measurements

Table 5-1: Signal generator settings (e.g. R&S SMW)

Frequency	128 MHz
Level	-30 dBm

- Measuring the Level and Frequency Using Markers......121

5.2.2.1 Measuring the Level and Frequency Using Markers

The level and frequency of a sinusoidal signal can be measured easily using the marker function. The R&S FSW always displays its amplitude and frequency at the marker position. The frequency measurement uncertainty is determined by the reference frequency of the R&S FSW, the resolution of the marker frequency display and the number of sweep points.

- 1. Select PRESET to reset the instrument.
- 2. Connect the signal to be measured to the RF INPUT connector on the R&S FSW.
- 3. Set the center frequency to 128 MHz.
- 4. Reduce the frequency span to 1 MHz.

Note: Coupled settings. When the frequency span is defined, the resolution bandwidth, the video bandwidth and the sweep time are automatically adjusted, because these functions are defined as coupled functions in the presettings.

5. Select MKR to activate marker 1 and automatically set it to the maximum of the trace.

The level and frequency values measured by the marker are displayed in the marker information at the top of the display.

Note: Performing a peak search. When a marker is initially activated, it automatically performs the peak search function (as shown in the example). If a marker was already active, select the PEAK SEARCH key or the "Peak" softkey in the MKR > menu in order to set the currently active marker to the maximum of the displayed signal.

Increasing the Frequency Resolution

The frequency resolution of the marker is determined by the resolution of the trace. A trace consists of 1001 trace points, i.e. if the frequency span is 1 MHz, each trace point represents a span of approximately 1 kHz. This corresponds to a maximum uncertainty of +/- 0.5 kHz.

You can increase the resolution of the trace by reducing the frequency span.

Basic Measurements

Reducing the frequency span to 10 kHz

► Reduce the frequency span to 10 kHz.

The resolution of the trace is now approximately 10 Hz (10 kHz span / 1001 trace points), thus, the precision of the marker frequency display increases to approximately ±5 Hz.

Setting the Reference Level

The reference level is the level at the upper limit of the diagram. To achieve the widest dynamic range possible for a spectrum measurement, use the entire level span of the R&S FSW. In other words, the highest level that occurs in the signal should be located at the top edge of the diagram (= reference level) or immediately below it.

Low Reference Levels

If the selected reference level is lower than the highest signal that occurs in the spectrum, the signal path in the R&S FSW is overloaded.

In this case, the message "IFOVL" is displayed in the error message field.

In the presettings, the value of the reference level is 0 dBm. If the input signal is -30 dBm, the reference level can be reduced by 30 dB without causing the signal path to be overloaded.

Reducing the reference level by 30 dB

▶ Set the reference level to -30 dBm.

The maximum of the trace is near the maximum of the measurement diagram. The increase in the displayed noise is not substantial. Thus, the distance between the signal maximum and the noise display (=dynamic range) has increased.

Setting the reference level with the help of a marker

You can also use a marker to shift the maximum value of the trace directly to the top edge of the diagram. If the marker is located at the maximum level of the trace (as in this example), the reference level can be moved to the marker level as follows:

- 1. Press the MKR -> key.
- 2. Select "Ref LvI = Mkr LvI".

The reference level is set to the current marker level.

5.2.2.2 Measuring the Signal Frequency Using the Signal Counter

The built-in signal counter allows you to measure the frequency more accurately than measuring it with the marker. The frequency sweep is stopped at the marker, and the R&S FSW measures the frequency of the signal at the marker position (see also Chapter 7.4.1.5, "Performing a Highly Accurate Frequency Measurement (Signal Count)", on page 501).

Basic Measurements

In the following example, the frequency of the generator at 128 MHz is shown using the marker.

Prerequisite

Precise frequency measurements require a precise reference frequency. Therefore, an external reference frequency from the signal generator is used. Connect the signal generator's "Ref OUT" connector to the analyzer's "Ref IN" connector.

- Select PRESET to reset the instrument.
- 2. Set the center frequency to 128 MHz.
- 3. Set the frequency span to 1 MHz.
- Select "Setup" > "Reference" > "External Reference 10 MHz" to activate the external reference frequency.
- 5. Select MKR to activate marker 1 and automatically set it to the maximum of the trace.
 - The level and the frequency of the marker are displayed in the marker results in the diagram or the marker table.
- 6. Select MKR FUNC > "Signal Count" to activate the signal counter.

 The result of the signal counter is displayed in the marker results.
- 7. If necessary, increase the resolution of the signal counter by selecting "Signal Count Resolution" (in the "Signal Count" menu).

Prerequisites for using the internal signal counter

In order to obtain a correct result when measuring the frequency with the internal signal counter, an RF sinusoidal signal or a spectral line must be available. The marker must be located more than 25 dB above the noise level to ensure that the specified measurement accuracy is adhered to.

5.2.3 Measurement Example – Measuring Levels at Low S/N Ratios

The minimum signal level a signal analyzer can measure is limited by its intrinsic noise. Small signals can be swamped by noise and therefore cannot be measured. For signals that are just above the intrinsic noise, the accuracy of the level measurement is influenced by the intrinsic noise of the R&S FSW.

The displayed noise level of a signal analyzer depends on its noise figure, the selected RF attenuation, the selected reference level, the selected resolution and video bandwidth and the detector.

For details see:

- Chapter 6.4.1.2, "RF Attenuation", on page 405
- Chapter 6.4.1.1, "Reference Level", on page 404

Basic Measurements

- Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414
- Chapter 6.5.1.2, "Smoothing the Trace Using the Video Bandwidth", on page 414
- Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464

This measurement example shows the different factors influencing the S/N ratio.

Table 5-2: Signal generator settings (e.g. R&S SMW)

Frequency	128 MHz
Level	-95 dBm

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 128 MHz.
- 3. Set the span to 100 MHz.
- 4. Set the reference level to-30 dBm.

The signal is measured with the auto peak detector and is completely hidden in the intrinsic noise of the R&S FSW.

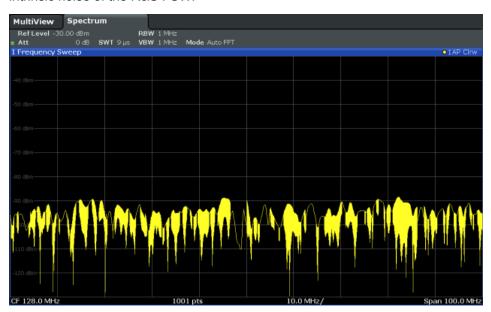


Figure 5-1: Sine wave signal with low S/N ratio

5. To suppress noise spikes, average the trace. In the "Traces" configuration dialog, set the "Trace mode" to "Average" (see "Trace Mode" on page 479).

The traces of consecutive sweeps are averaged. To perform averaging, the R&S FSW automatically switches on the sample detector. The RF signal, therefore, can be more clearly distinguished from noise.

Basic Measurements

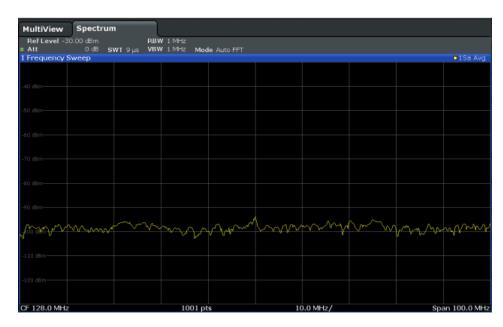


Figure 5-2: RF sine wave signal with low S/N ratio with an averaged trace

6. Instead of trace averaging, you can select a video filter that is narrower than the resolution bandwidth. Set the trace mode back to "Clear Write", then set the VBW to 10 kHz manually in the "Bandwidth" configuration dialog.

The RF signal can be distinguished from noise more clearly.

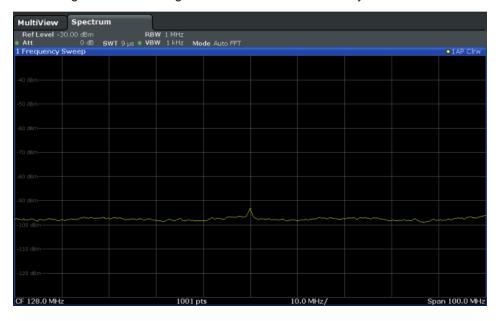


Figure 5-3: RF sine wave signal with low S/N ratio with a smaller video bandwidth

7. By reducing the resolution bandwidth by a factor of 10, the noise is reduced by 10 dB. Set the RBW to 100 kHz.

Basic Measurements

The displayed noise is reduced by approximately 10 dB. The signal, therefore, emerges from noise by about 10 dB. Compared to the previous setting, the video bandwidth has remained the same, i.e. it has increased relative to the smaller resolution bandwidth. The averaging effect of the video bandwidth is therefore reduced. The trace will be noisier.

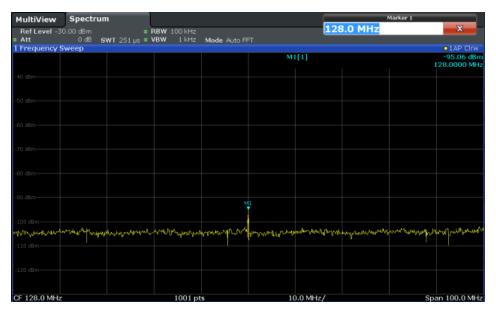


Figure 5-4: Reference signal at a smaller resolution bandwidth

5.2.4 Measurement Examples - Measuring Signal Spectra with Multiple Signals

•	Separating Signals by Selecting the Resolution Bandwidth	126
•	Measuring the Modulation Depth of an AM-Modulated Carrier in the Frequency	
	Domain	.130
•	Measuring AM-Modulated Signals	131

5.2.4.1 Separating Signals by Selecting the Resolution Bandwidth

A basic feature of a Signal and Spectrum Analyzer is the ability to separate the spectral components of a mixture of signals. The resolution at which the individual components can be separated is determined by the resolution bandwidth. Selecting a resolution bandwidth that is too large may make it impossible to distinguish between spectral components, i.e. they are displayed as a single component (see also Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414).

Two signals with the same amplitude can be resolved if the resolution bandwidth is smaller than or equal to the frequency spacing of the signal. If the resolution bandwidth is equal to the frequency spacing, the spectrum display shows a level drop of 3 dB precisely in the center of the two signals. Decreasing the resolution bandwidth makes the level drop larger, which thus makes the individual signals clearer.

Basic Measurements

In this measurement example we will analyze two signals with a level of -30 dBm each and a frequency spacing of 30 kHz.



Figure 5-5: Test setup

Table 5-3: Signal generator settings (e.g. R&S SMW)

	Level	Frequency
Signal generator 1	-30 dBm	128,00 MHz
Signal generator 2	-30 dBm	128,03 MHz

- 1. Select PRESET to reset the instrument.
- 2. Set the center frequency to 128.015 MHz.
- 3. Set the frequency span to 300 kHz.
- 4. Set the resolution bandwidth to 30 kHz and the video bandwidth to 1 kHz.

Note: Larger video bandwidths. The video bandwidth is set to 1 kHz in order to make the level drop in the center of the two signals clearly visible. At larger video bandwidths, the video voltage that results from envelope detection is not sufficiently suppressed. This produces additional voltages, which are visible in the trace, in the transition area between the two signals.

Basic Measurements

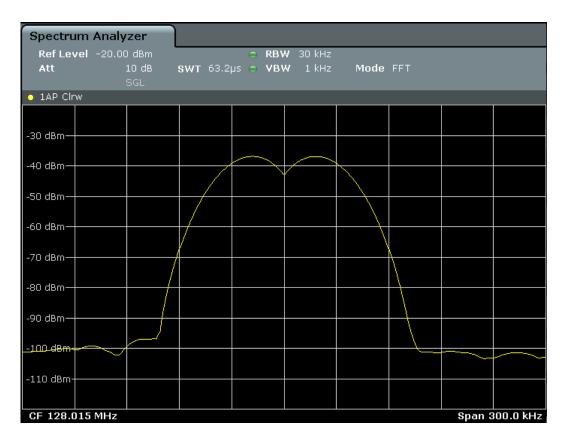


Figure 5-6: Measurement of two equally-leveled RF sinusoidal signals with the resolution bandwidth which corresponds to the frequency spacing of the signals

Matching generator and R&S FSW frequencies

The level drop is located exactly in the center of the display only if the generator frequencies match the frequency display of the R&S FSW exactly. To achieve exact matching, the frequencies of the generators and the R&S FSW must be synchronized.

5. Set the resolution bandwidth to 100 kHz.

It is no longer possible to clearly distinguish the two generator signals.

Basic Measurements

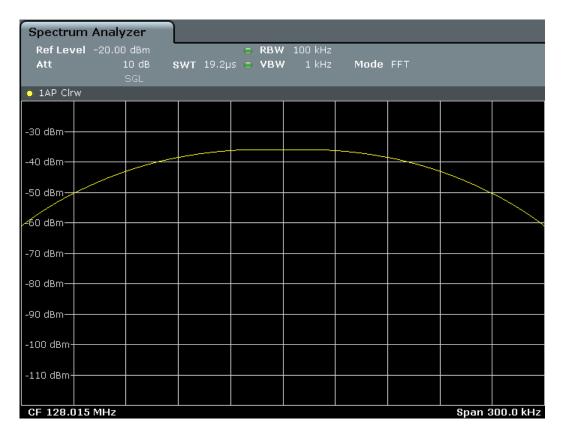


Figure 5-7: Measurement of two equally-leveled RF sinusoidal signals with a resolution bandwidth which is larger than their frequency spacing

6. Set the resolution bandwidth to 1 kHz.

The two generator signals are shown with high resolution. However, the sweep time becomes longer. At smaller bandwidths, the noise display decreases simultaneously (10 dB decrease in noise floor for a decrease in bandwidth by a factor of 10).

Basic Measurements

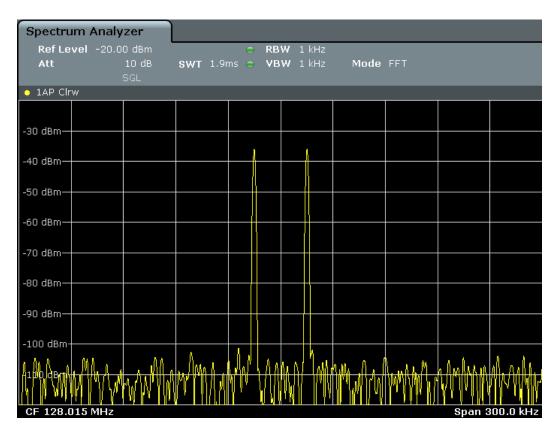


Figure 5-8: Measurement of two equally-leveled RF sinusoidal signals with a resolution bandwidth (1 kHz) which is significantly smaller than their frequency spacing

5.2.4.2 Measuring the Modulation Depth of an AM-Modulated Carrier in the Frequency Domain

In the frequency range display, the AM side bands can be resolved with a narrow bandwidth and measured separately. The modulation depth of a carrier modulated with a sinusoidal signal can then be measured. Since the dynamic range of a signal analyzer is very large, extremely small modulation depths can also be measured precisely. For this purpose, the R&S FSW provides measurement routines that output the modulation depth numerically in percent directly.

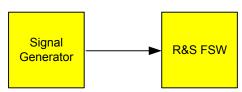


Figure 5-9: Test setup

Table 5-4: Signal generator settings (e.g. R&S SMW)

Frequency	128 MHz
Level	-30 dBm
Modulation	50 % AM, 10 kHz AF

Basic Measurements

- 1. Select PRESET to reset the instrument.
- 2. Set the center frequency to 128 MHz.
- 3. Set the frequency span to 50 kHz.
- 4. Select MEAS > "AM Modulation Depth" to activate the modulation depth measurement.

The R&S FSW automatically sets a marker to the carrier signal in the center of the diagram and one delta marker each to the upper and lower AM sidebands. The R&S FSW calculates the AM modulation depth from the level differences of the delta markers to the main marker and outputs the numeric value in the marker information.

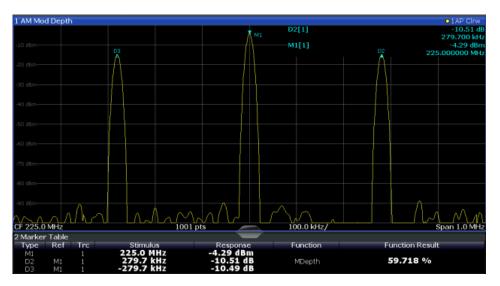


Figure 5-10: Measurement of the AM modulation depth

The modulation depth is displayed as "MDepth". The frequency of the AF signal can be obtained from the frequency display of the delta marker.

5.2.4.3 Measuring AM-Modulated Signals

The R&S FSW rectifies the RF input signal (that is, removes the negative parts) and displays it as a magnitude spectrum. The rectification also demodulates AM-modulated signals. The AF voltage can be displayed in zero span if the modulation sidebands fall within the resolution bandwidth.

Displaying the AF of an AM-modulated signal (Zero Span)

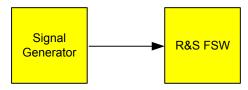


Figure 5-11: Test setup

Basic Measurements

Table 5-5: Signal generator settings (e.g. R&S SMW)

Frequency	128 MHz
Level	-30 dBm
Modulation	50 % AM, 1 kHz AF

- 1. Select PRESET to reset the instrument.
- 2. Set the center frequency to 128 MHz.
- 3. Set the frequency span to 0 Hz or select "Zero Span".
- 4. Set the sweep time to 2.5 ms.
- 5. Set the reference level to 6 *dBm* and the display range to linear (AMPT > "Scale Config" > "Scaling: Linear Percent").
- 6. Define triggering in response to the AF signal using the video trigger to produce a static image.
 - a) Press the TRIG key.
 - b) Select "Video".
 - c) Set the "Trg/Gate Level" to 50%.

The trigger level is displayed as a horizontal line across the entire measurement diagram. The R&S FSW displays the 1 kHz AF signal as a static image in zero span.

Basic Measurements

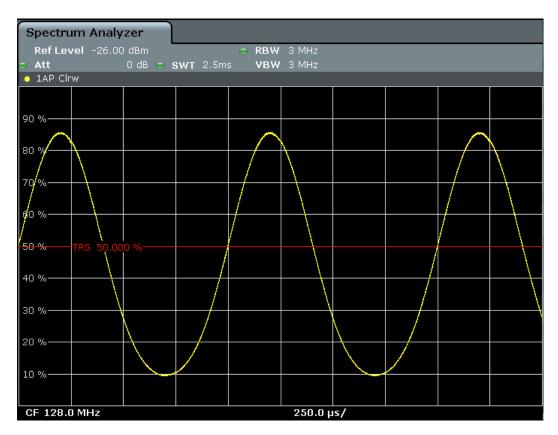


Figure 5-12: Measurement of the AF signal of a carrier that is AM-modulated with 1 kHz

- 7. Activate the internal AM demodulator to output the audio signal.
 - a) Press the MKR FUNC key.
 - b) Select "Marker Demodulation". The R&S FSW automatically switches on the AM audio demodulator. A 1 kHz tone can be heard over headset (via the PHONES connector). If necessary, use the volume control to turn up the volume.

5.2.5 Measurement Examples in Zero Span

For radio transmission systems that use the TDMA method (for example, GSM), transmission quality is determined not only by spectral characteristics but also by characteristics in zero span. A timeslot is assigned to each user since several users share the same frequency. Smooth operation is ensured only if all users adhere exactly to their assigned timeslots.

Both the power during the send phase as well as the timing and duration of the TDMA burst, and rise and fall times of the burst, are important.

Basic Measurements

5.2.5.1 Measuring the Power Characteristic of Burst Signals

To measure power in zero span, the R&S FSW offers easy-to-use functions that measure the power over a predefined time.

Measuring the Power of a GSM Burst During the Activation Phase

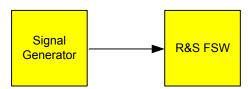


Figure 5-13: Test setup

Table 5-6: Signal generator settings (e.g. R&S SMW)

Frequency	890 MHz
Level	0 dBm
Modulation	GSM, one timeslot activated

- 1. Select PRESET to reset the instrument.
- 2. Set the center frequency to 890 MHz (FREQ).
- 3. Set the frequency span to 0 Hz (SPAN > "Zero Span").
- 4. Set the reference level to 10 dBm (= level of the signal generator +10 dB) (AMPT).
- 5. Set the attenuation to 20 dB (AMPT > "Rf Atten Manual").
- 6. Set the resolution bandwidth to 1 MHz (BW > "Res BW").
- 7. Set the sweep time to 1 ms (SWEEP > "Sweeptime Manual").

The R&S FSW shows the GSM burst continuously across the display.

- 8. Using the video trigger, set triggering on the rising edge of the burst.
 - a) Press the TRIG key.
 - b) Set the "Trg/Gate Source" to "Video".
 - c) Set the "Trg/Gate Level" to 70%.

The R&S FSW shows a static image with the GSM burst at the start of the trace. The trigger level is displayed as a horizontal line labeled with the absolute level for the trigger threshold in the measurement diagram.

- 9. Activate power measurement within the activation phase of the burst in zero span.
 - a) Press the MEAS key.
 - b) Select "Time Domain Power".
 - c) Select "Time Dom Power Config".
 - d) Set the "Limits" state to "On".
 - e) Select the "Left Limit" input field.

Basic Measurements

f) By turning the rotary knob clockwise, move the vertical line "S1" to the start of the burst.

- g) Select the "Right Limit" input field.
- h) By turning the rotary knob clockwise, move the vertical line "S2" to the end of the burst.

The R&S FSW displays the average (mean) power during the activation phase of the burst.

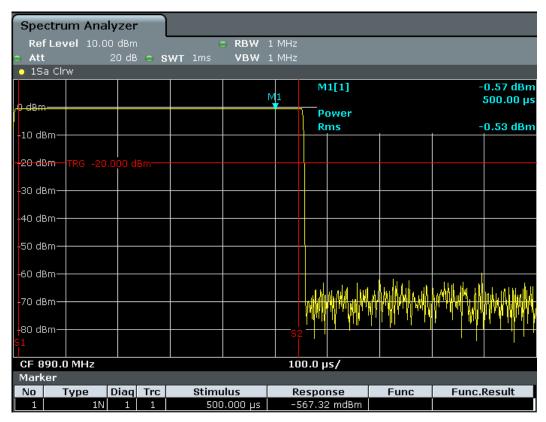


Figure 5-14: Measurement of the average power during the burst of a GSM signal

Measuring the Edges of a GSM Burst with High Time Resolution

Due to the high time resolution of the R&S FSW at the 0 Hz display range, the edges of TDMA bursts can be measured precisely. The edges can be shifted to the display area using the trigger offset.

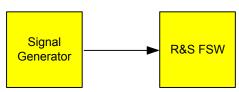


Figure 5-15: Test setup

Basic Measurements

Table 5-7: Signal generator settings (e.g. R&S SMW)

Frequency	890 MHz
Level	0 dBm
Modulation	GSM, one timeslot activated

The measurement is based on the example "Measuring the Power of a GSM Burst During the Activation Phase" on page 134.

- 1. Switch off the power measurement.
 - a) Press the MEAS key.
 - b) Select "All Functions Off".
- 2. Increase the time resolution to $100 \mu s$ (SWEEP > "Sweeptime Manual").
- Shift the rising edge of the GSM burst to the center of the display by defining a trigger offset.
 - a) Press the TRIG key.
 - b) Select "Trigger Offset".
 - c) By turning the rotary knob counterclockwise, reduce the trigger offset until the burst edge is displayed in the center of the display, or enter -50 μ s. The R&S FSW displays the rising edge of the GSM burst.

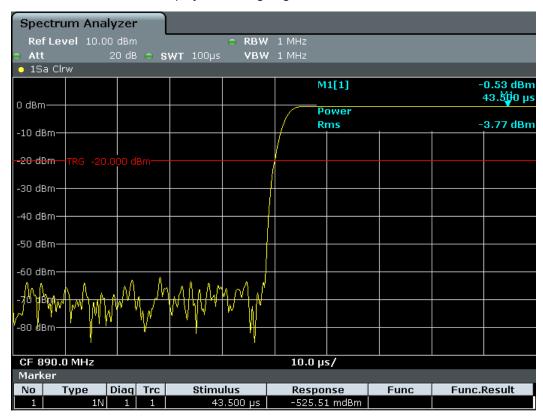


Figure 5-16: Rising edge of the GSM burst displayed with high time resolution

Basic Measurements

4. Move the falling edge of the burst to the center of the display. To do so, switch the trigger "Slope" to "Falling" (TRIG > "Trigger/Gate Config").

The R&S FSW displays the falling edge of the GSM burst.

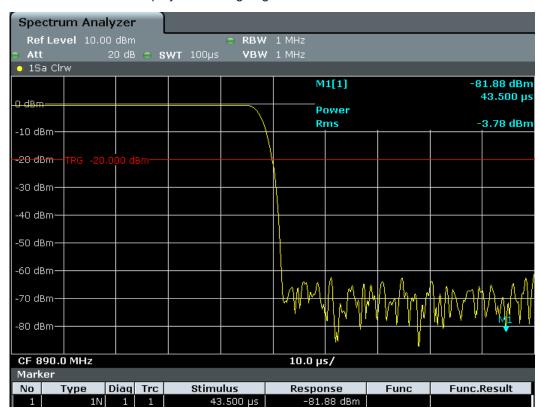


Figure 5-17: Falling edge of the GSM burst displayed with high time resolution

5.2.5.2 Measuring the Signal-to-Noise Ratio of Burst Signals

When TDMA transmission methods are used, the signal-to-noise ratio or the dynamic range for deactivation can be measured by comparing the power values during the activation phase and the deactivation phase of the transmission burst. Therefore, the R&S FSW provides a measurement for absolute and relative power in zero span. In the following example, the measurement is performed using a GSM burst.

Signal-to-Noise Ratio of a GSM Signal

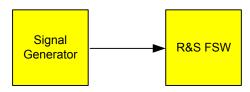


Figure 5-18: Test setup

Basic Measurements

Table 5-8: Signal generator settings (e.g. R&S SMW)

Frequency	890 MHz
Level	0 dBm
Modulation	GSM, one time slot is switched on

- 1. Select PRESET to reset the instrument.
- 2. Set the center frequency to 890 MHz.
- 3. Set the frequency span to 0 Hz.
- 4. Set the resolution bandwidth to 1 MHz.
- 5. Set the reference level to 0 dBm (= level of the signal generator).
- Set the sweep time to 2 ms (SWEEP > "Sweeptime Manual").
 The R&S FSW shows the GSM burst continuously across the display.
- Use the trigger source "Video" and the trigger slope "Rising" to trigger on the rising edge of the burst and shift the start of the burst to the center of the display (see step 3 in "Measuring the Edges of a GSM Burst with High Time Resolution" on page 135).
- 8. Activate power measurement within the activation phase of the burst in zero span.
 - a) Press the MEAS key.
 - b) Select "Time Domain Power".
 - c) Select "Time Dom Power Config".
 - d) Set the "Limits" state to "On".
 - e) Select the "Left Limit" input field.
 - f) By turning the rotary knob clockwise, move the vertical line "S1" to the start of the burst.
 - g) Select the "Right Limit" input field.
 - h) By turning the rotary knob clockwise, move the vertical line "S2" to the end of the burst.
- 9. Measure the power during the deactivation phase of the burst by switching the trigger slope to "Falling" (TRIG > "Trigger/Gate Config").

The R&S FSW initiates triggering in response to the falling edge of the burst. This shifts the burst to the left-hand side of the measurement diagram. The power is measured in the deactivation phase.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

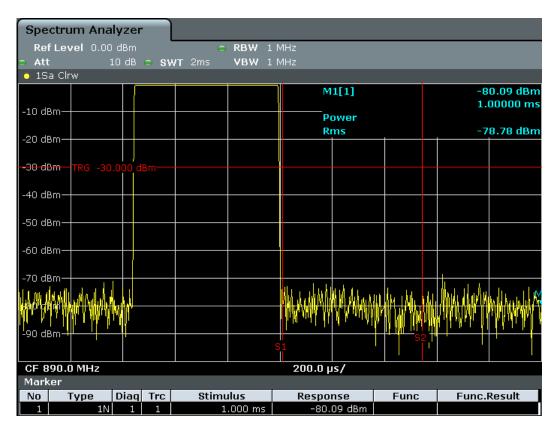


Figure 5-19: Measurement of the signal-to-noise ratio of a GSM burst signal in zero span

5.3 Channel Power and Adjacent-Channel Power (ACLR) Measurement

Measuring the power in channels adjacent to the carrier or transmission channel is useful to detect interference. The results are displayed as a bar chart for the individual channels.

•	About Channel Power Measurements	140
•	Channel Power Results	.140
•	Channel Power Basics	.142
•	Channel Power Configuration	153
	MSR ACLR Configuration	
	How to Perform Channel Power Measurements	
•	Measurement Examples	183
•	Optimizing and Troubleshooting the Measurement	189
	Reference: Predefined CP/ACLR Standards	

Channel Power and Adjacent-Channel Power (ACLR) Measurement

5.3.1 About Channel Power Measurements

Measuring channel power and adjacent channel power is one of the most important tasks for a signal analyzer with the necessary test routines in the field of digital transmission. Theoretically, a power meter could be used to measure channel power at highest accuracy. However, its low selectivity means that it is not suitable for measuring adjacent channel power as an absolute value or relative to the transmit channel power. Only a selective power meter can measure the power in the adjacent channels.

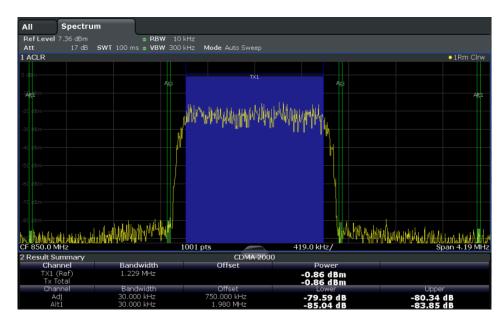
A signal analyzer cannot be classified as a true power meter, because it displays the IF envelope voltage. However, it is calibrated such as to display the power of a pure sine wave signal correctly, irrespective of the selected detector. This calibration cannot be applied for non-sinusoidal signals. Assuming that the digitally modulated signal has a Gaussian amplitude distribution, the signal power within the selected resolution bandwidth can be obtained using correction factors. The internal power measurement routines in the analyzer normally use these correction factors to determine the signal power from IF envelope measurements. These factors apply if and only if the assumption of a Gaussian amplitude distribution is correct.

Apart from this common method, the R&S FSW also has a true power detector, i.e. an RMS detector. It displays the power of the test signal within the selected resolution bandwidth correctly, irrespective of the amplitude distribution, without additional correction factors being required.

The R&S FSW allows you to perform ACLR measurements on input containing multiple signals for different communication standards. A measurement standard is provided that allows you to define multiple discontiguous transmit channels at specified frequencies, independent from the selected center frequency. The ACLR measurement determines the power levels of the individual transmit, adjacent, and gap channels, as well as the total power for each sub block of transmit channels.

A detailed measurement example is provided in Chapter 5.3.7, "Measurement Examples", on page 183.

5.3.2 Channel Power Results


For channel or adjacent-channel power measurements, the individual channels are indicated by different colored bars in the diagram. The height of each bar corresponds to the measured power of that channel. In addition, the name of the channel ("Adj", "Alt1", "TX1", etc., or a user-defined name) is indicated above the bar (separated by a line which has no further meaning). For "Fast ACLR" measurements, which are performed in the time domain, the power versus time is shown for each channel.

Multi-standard radio (MSR) channel power results

The channel power results for MSR signals are described in Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Results are provided for the TX channel and the number of defined adjacent channels above and below the TX channel. If more than one TX channel is defined, you must specify the channel to which the relative adjacent-channel power values refer. By default, it is the TX channel with the maximum power.

Table 5-9: Measurements performed depending on the number of adjacent channels

Number of adj. chan.	Measurement results
0	Channel powers
1	 Channel powers Power of the upper and lower adjacent channel
2	 Channel powers Power of the upper and lower adjacent channel Power of the next higher and lower channel (alternate channel 1)
3	 Channel powers Power of the upper and lower adjacent channel Power of the next higher and lower channel (alternate channel 1) Power of the second next higher and lower adjacent channel (alternate channel 2)
12	 Channel powers Power of the upper and lower adjacent channel Power of all the higher and lower channels (alternate channels 1 to 11)

In the R&S FSW display, only the first neighboring channel of the carrier (TX) channel is labeled "Adj" (adjacent) channel; all others are labeled "Alt" (alternate) channels. In this manual, "adjacent" refers to both adjacent and alternate channels.

The measured power values for the TX and adjacent channels are also output as a table in the Result Summary window. Which powers are measured depends on the number of configured channels.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

For each channel, the following values are displayed:

Label	Description
Channel	Channel name as specified in the "Channel Settings" (see "Channel Names" on page 163).
Bandwidth	Configured channel bandwidth (see "Channel Bandwidths" on page 161)
Offset	Offset of the channel to the TX channel (configured channel spacing, see "Channel Bandwidths" on page 161)
Power (Lower/Upper)	The measured power values for the TX and lower and upper adjacent channels. The powers of the transmission channels are output in dBm or dBm/Hz, or in dBc, relative to the specified reference TX channel.

Retrieving Results via Remote Control

All or specific channel power measurement results can be retrieved using the CALC:MARK:FUNC:POW:RES? command from a remote computer (see CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730).

Alternatively, the results can be output as channel power density, i.e. in reference to the measurement bandwidth.

Furthermore, the measured power values of the displayed trace can be retrieved as usual using the TRAC: DATA? commands (see TRACe<n>[:DATA] on page 980). In this case, the measured power value for each sweep point (by default 1001) is returned.

5.3.3 Channel Power Basics

Some background knowledge on basic terms and principles used in channel power measurements is provided here for a better understanding of the required configuration settings.

•	Measurement Methods	142
•	Measurement Repeatability	144
•	Recommended Common Measurement Parameters	.145
	Measurement on Multi-Standard Radio (MSR) Signals	149

5.3.3.1 Measurement Methods

The channel power is defined as the integration of the power across the channel bandwidth.

The Adjacent Channel Leakage Power Ratio (ACLR) is also known as the Adjacent Channel Power Ratio (ACPR). It is defined as the ratio between the total power of the adjacent channel to the power of the carrier channel. An ACLR measurement with several carrier channels (also known as transmission or TX channels) is also possible and is referred to as a *multicarrier ACLR measurement*.

There are two possible methods for measuring channel and adjacent channel power with a signal analyzer:

- IBW method (Integration BandWidth method)
- Fast ACLR (Zero-span method), i.e. using a channel filter

IBW method

When measuring the channel power, the R&S FSW integrates the linear power which corresponds to the levels of the measurement points within the selected channel. The signal analyzer uses a resolution bandwidth which is far smaller than the channel bandwidth. When sweeping over the channel, the channel filter is formed by the passband characteristics of the resolution bandwidth.

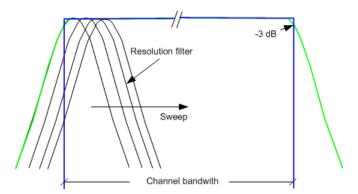


Figure 5-20: Approximating the channel filter by sweeping with a small resolution bandwidth

The following steps are performed:

1. The linear power of all the trace points within the channel is calculated.

 $P_i = 10^{(Li/10)}$

Where P_i = power of the trace pixel i

L_i = displayed level of trace point i

- The powers of all trace points within the channel are summed up and the sum is divided by the number of trace points in the channel.
- 3. The result is multiplied by the quotient of the selected channel bandwidth and the noise bandwidth of the resolution filter (RBW).

Since the power calculation is performed by integrating the trace within the channel bandwidth, this method is called the IBW method (Integration Bandwidth method).

Fast ACLR

The integrated bandwidth method (IBW) calculates channel power and ACLR from the trace data obtained during a continuous sweep over the selected span. Most parts of this sweep are neither part of the channel itself nor the defined adjacent channels. Therefore, most of the samples taken during the sweep time cannot be used for channel power or ACLR calculation.

To decrease the measurement times, the R&S FSW offers a "Fast ACLR" mode. In Fast ACLR mode, the power of the frequency range between the channels of interest is not measured, because it is not required for channel power or ACLR calculation. The

Channel Power and Adjacent-Channel Power (ACLR) Measurement

measurement time per channel is set with the sweep time. It is equal to the selected measurement time divided by the selected number of channels.

In the "Fast ACLR" mode, the R&S FSW measures the power of each channel in the time domain, with the defined channel bandwidth, at the center frequency of the channel in question. The digital implementation of the resolution bandwidths makes it possible to select filter characteristics that are precisely tailored to the signal. For CDMA2000, for example, the power in the useful channel is measured with a bandwidth of 1.23 MHz. The power of the adjacent channels is measured with a bandwidth of 30 kHz. Therefore the R&S FSW changes from one channel to the other and measures the power at a bandwidth of 1.23 MHz or 30 kHz using the RMS detector.

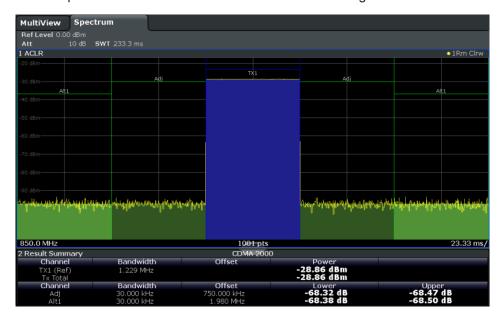


Figure 5-21: Measuring the channel power and adjacent channel power ratio for CDMA2000 signals with zero span (Fast ACLR)

5.3.3.2 Measurement Repeatability

The repeatability of the results, especially in the narrow adjacent channels, strongly depends on the measurement time for a given resolution bandwidth. A longer sweep time can increase the probability that the measured value converges to the true value of the adjacent channel power, but obviously increases measurement time.

Assume a measurement with five channels (1 channel plus 2 lower and 2 upper adjacent channels) and a sweep time of 100 ms. This measurement requires a measurement time per channel of 20 ms. To calculate the power in one channel, the analyzer considers the following number of effective samples:

<sweep time in channel> * <selected resolution bandwidth>

For example, for a sweep time of 100 ms the analyzer considers (30 kHz / 4.19 MHz) * 100 ms * 10 kHz \approx 7 samples. Whereas in Fast ACLR mode, it considers (100 ms / 5) * 30 kHz \approx 600 samples. If you compare these numbers, you understand the increase of repeatability with a 95 % confidence level (2 δ). It rises from \pm 2.8 dB in normal mode to \pm 0.34 dB in Fast ACLR mode for a sweep time of 100 ms.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

For the same repeatability, the integration method requires a sweep time of 8.5 s. The Figure 5-22 shows the standard deviation of the results as a function of the sweep time.

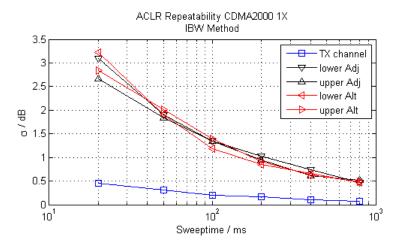


Figure 5-22: Repeatability of adjacent channel power measurement on CDMA2000 standard signals if the integration bandwidth method is used

The Figure 5-23 shows the repeatability of power measurements in the transmit channel and of relative power measurements in the adjacent channels as a function of sweep time. The standard deviation of measurement results is calculated from 100 consecutive measurements. Consider the scaling when you compare power values.

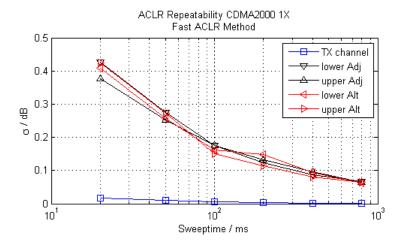


Figure 5-23: Repeatability of adjacent channel power measurements on CDMA2000 signals in the fast ACLR mode

5.3.3.3 Recommended Common Measurement Parameters

The following sections provide recommendations on the most important measurement parameters for channel power measurements.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

All instrument settings for the selected channel setup (channel bandwidth, channel spacing) can be optimized automatically using the "Adjust Settings" function (see "Optimized Settings (Adjust Settings)" on page 159).

The easiest way to configure a measurement is using the configuration "Overview", see Chapter 6.1, "Configuration Overview", on page 319.

Sweep Time

The sweep time is selected depending on the desired reproducibility of results. Reproducibility increases with sweep time since power measurement is then performed over a longer time period. As a general approach, approximately 500 non-correlated measured values are required for a reproducibility of 0.5 dB. (That means: 95 % of the measurements are within 0.5 dB of the true measured value). Approximately 5000 measured values are required for a reproducibility of 0.1 dB (99 %). These values are valid for white noise. The measured values are considered as non-correlated if their time interval corresponds to the reciprocal of the measured bandwidth.

The number of A/D converter values, N, used to calculate the power, is defined by the sweep time. The time per trace pixel for power measurements is directly proportional to the selected sweep time.

If the sample detector is used, it is best to select the smallest sweep time possible for a given span and resolution bandwidth. The minimum time is obtained if the setting is coupled, that is: the time per measurement is minimal. Extending the measurement time does not have any advantages. The number of samples for calculating the power is defined by the number of trace points in the channel.

If the RMS detector is used, the selection of sweep times can affect the repeatability of the measurement results. Repeatability is increased at longer sweep times.

If the RMS detector is used, the number of samples can be estimated as follows:

Since only uncorrelated samples contribute to the RMS value, the number of samples can be calculated from the sweep time and the resolution bandwidth.

Samples can be assumed to be uncorrelated if sampling is performed at intervals of 1/RBW. The number of uncorrelated samples is calculated as follows:

N_{decorr} = SWT * RBW

(N_{decorr} means uncorrelated samples)

The number of uncorrelated samples per trace pixel is obtained by dividing N_{decorr} by 1001 (= pixels per trace).

The "Sweep Time" can be defined using the softkey in the "Ch Power" menu or in the "Sweep" configuration dialog box (see "Sweep Time" on page 160).

Frequency Span

The frequency span must cover at least the channels to be measured plus a measurement margin of approximately 10 %.

If the frequency span is large in comparison to the channel bandwidth (or the adjacent-channel bandwidths) being analyzed, only a few points on the trace are available per

Channel Power and Adjacent-Channel Power (ACLR) Measurement

channel. The calculated waveform for the used channel filter is less accurate, which has a negative effect on the measurement accuracy. It is therefore strongly recommended that you consider the described formulas when you select the frequency span.

The frequency span for the defined channel settings can be optimized. Use the "Adjust Settings" function in the "Ch Power" menu or the "General Settings" tab of the "ACLR Setup" dialog box (see "Optimized Settings (Adjust Settings)" on page 159). You can set the frequency span manually in the "Frequency" configuration dialog box, see Chapter 6.3.3, "How To Define the Frequency Range", on page 402.

For channel power measurements the "Adjust Settings" function sets the frequency span as follows:

"(No. of transmission channels – 1) x transmission channel spacing + 2 x transmission channel bandwidth + measurement margin"

For adjacent-channel power measurements, the "Adjust Settings" function sets the frequency span as a function of the following parameters:

- Number of transmission channels
- Transmission channel spacing
- Adjacent-channel spacing
- Bandwidth of one of adjacent-channels ADJ, ALT1 or ALT2, whichever is furthest away from the transmission channels

"(No. of transmission channels -1) * (transmission channel spacing +2) * (adjacent-channel spacing + adjacent-channel bandwidth) + measurement margin"

The measurement margin is approximately 10 % of the value obtained by adding the channel spacing and the channel bandwidth.

Resolution Bandwidth (RBW)

It is important to suppress spectral components outside the channel to be measured, especially of the adjacent channels. At the same time you expect an acceptable measurement speed. To fulfill both these requirements, the appropriate resolution bandwidth is essential. As a general approach, set the resolution bandwidth to values between 1 % and 4 % of the channel bandwidth.

If the spectrum within the channel to be measured and the spectrum around the channel has a flat characteristic, you can select a larger resolution bandwidth. In the standard setting, e.g. for standard IS95A REV at an adjacent channel bandwidth of 30 kHz, a resolution bandwidth of 30 kHz is used. This yields correct results since the spectrum in the neighborhood of the adjacent channels normally has a constant level.

You can optimize the resolution bandwidth for the defined channel settings. Use the "Adjust Settings" function in the "Ch Power" menu or the "General Settings" tab of the "ACLR Setup" dialog box (see "Optimized Settings (Adjust Settings)" on page 159). You can set the RBW manually in the "Bandwidth" configuration dialog box, see "RBW" on page 310.

Except for the IS95 CDMA standards, the "Adjust Settings" function sets the resolution bandwidth (RBW) as a function of the channel bandwidth:

"RBW ≤ 1/40 of channel bandwidth"

The maximum resolution bandwidth (concerning the requirement RBW \leq 1/40) resulting from the available RBW steps (1, 3) is selected.

Video Bandwidth (VBW)

For a correct power measurement, the video signal must not be limited in bandwidth. A restricted bandwidth of the logarithmic video signal causes signal averaging and thus results in a too low indication of the power (-2.51 dB at very low video bandwidths). Thus, select the video bandwidth at least three times the resolution bandwidth:

"VBW ≥ * RBW"

The video bandwidth for the defined channel settings can be optimized. Use the "Adjust Settings" function in the "Ch Power" menu or the "General Settings" tab of the "ACLR Setup" dialog box (see "Optimized Settings (Adjust Settings)" on page 159). You can set the VBW manually in the "Bandwidth" configuration dialog box, see "VBW" on page 421.

The video bandwidth (VBW) is set as a function of the channel bandwidth (see formula above) and the smallest possible VBW with regard to the available step size is selected.

Detector

The RMS detector correctly indicates the power irrespective of the characteristics of the signal to be measured. The whole IF envelope is used to calculate the power for each measurement point. The IF envelope is digitized using a sampling frequency which is at least five times the resolution bandwidth which has been selected. Based on the sample values, the power is calculated for each measurement point using the following formula:

$$P_{RMS} = \sqrt{\frac{1}{N}} \cdot \sum_{i=1}^{N} s_i^2$$

Where:

s_i = linear digitized video voltage at the output of the A/D converter

N = number of A/D converter values per measurement point

P_{RMS} = power represented by a measurement point

When the power has been calculated, the power units are converted into decibels and the value is displayed as a measurement point.

In principle, the sample detector would be possible as well. Due to the limited number of measurement points used to calculate the power in the channel, the sample detector would yield less stable results.

The RMS detector can be set for the defined channel settings automatically. Use the "Adjust Settings" function in the "Ch Power" menu or the "General Settings" tab of the "ACLR Setup" dialog box (see "Optimized Settings (Adjust Settings)" on page 159). You can set the detector manually in the "Traces" configuration dialog box, see "Detector" on page 479.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Trace Averaging

Avoid averaging, which is often performed to stabilize the measurement results but leads to a level indication that is too low. The reduction in the displayed power depends on the number of averages and the signal characteristics in the channel to be measured.

The "Adjust Settings" function switches off trace averaging. You can deactivate the trace averaging manually in the "Traces" configuration dialog box, see "Average Mode" on page 480.

Reference Level

To achieve an optimum dynamic range, set the reference level so that the signal is as close to the reference level as possible without forcing an overload message. However, if the signal-to-noise ratio becomes too small, the dynamic range is also limited. The measurement bandwidth for channel power measurements is significantly smaller than the signal bandwidth. Thus, the signal path can be overloaded although the trace is still significantly below the reference level.

Selecting a predefined standard or automatically adjusting settings does not affect the reference level. The reference level can be set automatically using the "Auto Level" function in the AUTO SET menu, or manually in the "Amplitude" menu.

5.3.3.4 Measurement on Multi-Standard Radio (MSR) Signals

Modern base stations can contain multiple signals for different communication standards. A new measurement standard is provided for the R&S FSW ACLR measurement that allows you to measure such MSR signals, including non-contiguous setups. Multiple (also non-) contiguous transmit channels can be specified at absolute frequencies, independent from the common center frequency selected for display.

Signal structure

Up to 18 transmit channels can be grouped in a maximum of 5 *sub blocks*. Between two sub blocks, two gaps are defined: a *lower gap* and an *upper gap*. Each gap in turn contains two channels (*gap channels*). The channels in the upper gap are identical to those in the lower gap, but inverted. To either side of the outermost transmit channels, lower and upper adjacent channels can be defined as in common ACLR measurement setups.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Figure 5-24: MSR signal structure

Sub block and channel definition

The sub blocks are defined by a specified center frequency, RF bandwidth, and number of transmit channels.

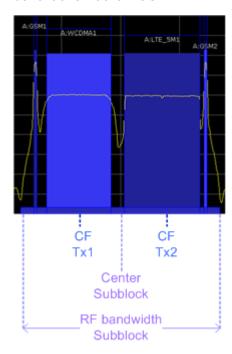


Figure 5-25: Sub block definition

As opposed to common ACLR channel definitions, the Tx channels are defined at absolute frequencies, rather than by a spacing relative to the (common) center frequency. Each transmit channel can be assigned a different technology, used to predefine the required bandwidth.

Gap channels and CACLR

If two or more sub blocks are defined, the power in the gaps between the sub blocks must also be measured. Gap channels are defined using bandwidths and spacings, relative to the outer edges of the surrounding sub blocks. Since the upper and lower gap channels are symmetrical, only two gap channels must be configured. The required spacing can be determined according to the following formula (indicated for lower channels):

Spacing = [CF of the gap channel] - [left sub block center] + ([RF bandwidth of left sub block] /2)

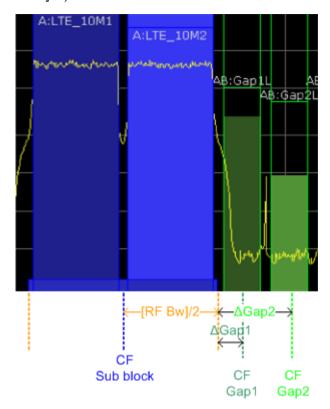


Figure 5-26: Gap channel definition for lower gap

According to the MSR standard, the *Cumulative Adjacent Channel Leakage Ratio* (*CACLR*) power must be determined for the gap channels. The CACLR power is measured in the two gap channels for the upper and lower gap. The power in the gap channels is then set in relation to the power of the two closest transmission channels to either side of the gap. The CACLR power for the gap channels is indicated in the Result Summary.

In addition, the ACLR power for the individual gap channels is indicated in the Result Summary. The ACLR power of the lower gap channels refers to the TX channel to the left of the gap. The ACLR power of the upper gap channels refers to the TX channel to the right of the gap. A separate relative limit value can be defined for the ACLR power.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Adjacent channels

Adjacent channels are defined as in common ACLR measurements using bandwidths and spacings, relative to the uppermost or lowermost transmit channels in the sub blocks (see also Figure 5-24):

- The spacing of the lower adjacent channels refers to the CF of the first Tx channel in the first sub block.
- The spacing of the upper adjacent channels refers to the CF of the last Tx channel in the last sub block.

The upper and lower adjacent channels can also be defined asymmetrically (see "Symmetrical Adjacent Setup" on page 169). This is particularly useful if the lowest Tx channel and highest Tx channel use different standards and thus require different bandwidths for adjacent channel power measurement.

Channel display for MSR signals

As in common ACLR measurements, the individual channels are indicated by different colored bars in the diagram. The height of each bar corresponds to the measured power of that channel. In addition, the name of the channel is indicated above the bar. Sub blocks are named A,B,C,D,E and are also indicated by a slim blue bar along the frequency axis.

Tx channel names correspond to the specified technology (for LTE including the bandwidth), followed by a consecutive number. (If the channel is too narrow to display the channel name, "..." is displayed instead.) The assigned sub block is indicated with the channel name, e.g. "B: LTE_5M1" for the first Tx channel in sub block B that uses the LTE 5 MHz bandwidth technology.

Adjacent and alternate channels are displayed as in common ACLR measurements.

Gap channels are indicated using the following syntax:

- The names of the surrounding sub blocks (e.g. "AB" for the gap between sub blocks A and B),
- The channel name ("Gap1" or "Gap2")
- "L" (for lower) or "U" (for upper)

For example: "ABGap1L" indicates the first lower gap channel between sub blocks A and B

Both the lower and upper gap channels are displayed.

The gap channels can be hidden if they do not reach a minimum size, or deactivated entirely. This enhances the result display, as fewer lines and bars are displayed. If gap channels are deactivated, the power results are not calculated and thus are not shown in the Result Summary table.

Furthermore, channel names for all TX, adjacent, and alternate channels are now userdefinable.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Channel power results

The Result Summary for MSR signal measurements is similar to the table for common signals (see Chapter 5.3.2, "Channel Power Results", on page 140). However, the Tx channel results are grouped by sub blocks, and sub block totals are provided instead of a total Tx channel power. Instead of the individual channel frequency offsets, the absolute center frequencies are indicated for the transmit channels.

The CACLR and ACLR power results for each gap channel are appended at the end of the table. The CACLR results are calculated as the power in the gap channel divided by the power sum of the two closest transmission channels to either side of it.

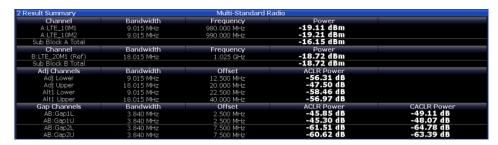


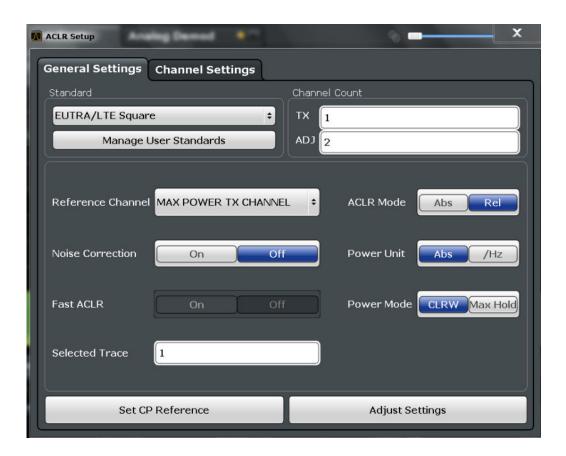
Figure 5-27: Result summary for asymmetrical channel definition

Remote command:

CALCulate:MARKer:FUNCtion:POWer<sb>:RESult? GACLr or
CALCulate:MARKer:FUNCtion:POWer<sb>:RESult? MACM , see
CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730

Restrictions and dependencies

As the signal structure in multi-standard radio signals can vary considerably, you can define the channels very flexibly for the ACLR measurement with the R&S FSW. No checks or limitations are implemented concerning the channel definitions, apart from the maximum number of channels to be defined. Thus, you are not notified if transmit channels for a specific sub block lie outside the defined frequency range for the sub block, or if transmit and gap channels overlap.


5.3.4 Channel Power Configuration

Channel Power (CP) and Adjacent-Channel Power (ACLR) measurements are selected via the "Channel Power ACLR" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "ACLR Setup" dialog box, which is displayed when you select the "CP/ACLR Config" softkey from the "CH Power" menu.

If the "Multi-Standard Radio" standard is selected (see "Standard" on page 155), the "ACLR Setup" dialog box is replaced by the "MSR ACLR Setup" dialog box. See Chapter 5.3.5, "MSR ACLR Configuration", on page 163 for a description of these settings.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

The easiest way to configure a measurement is using the configuration "Overview", see Chapter 6.1, "Configuration Overview", on page 319.

The remote commands required to perform these tasks are described in Chapter 11.5.3, "Measuring the Channel Power and ACLR", on page 734.

5.3.4.1 General CP/ACLR Measurement Settings

General measurement settings are defined in the "ACLR Setup" dialog, in the "General Settings" tab.

Standard	155
L Predefined Standards	
L User-Defined Standards	
Number of Channels (Tx, ADJ)	
Reference Channel	
Noise Cancelation	157
Fast ACLR	158
Selected Trace	158
Absolute and Relative Values (ACLR Mode)	158
Channel Power Levels and Density (Power Unit)	158

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Power Mode	159
Setting a Fixed Reference for Channel Power Measurements (Set CP Reference)	159
Optimized Settings (Adjust Settings)	159
Sweep Time	160

Standard

The main measurement settings can be stored as a standard file. When such a standard is loaded, the required channel and general measurement settings are automatically set on the R&S FSW. However, the settings can be changed. Predefined standards are available for standard measurements, but standard files with user-defined configurations can also be created.

Note: If the "Multi-Standard Radio" standard is selected, the "ACLR Setup" dialog box is replaced by the "MSR ACLR Setup" dialog box (see Chapter 5.3.5, "MSR ACLR Configuration", on page 163).

If any other predefined standard (or "NONE") is selected, the "ACLR Setup" dialog box is restored (see Chapter 5.3.4, "Channel Power Configuration", on page 153).

Note that changes in the configuration are not stored when the dialog boxes are exchanged.

Predefined Standards ← Standard

Predefined standards contain the main measurement settings for standard measurements. When such a standard is loaded, the required channel settings are automatically set on the R&S FSW. However, the settings can be changed.

The predefined standards contain the following settings:

- Channel bandwidths
- Channel spacings
- Detector
- Trace Average setting
- Resolution Bandwidth (RBW)
- Weighting Filter

Predefined standards can be selected via the "CP/ACLR Standard" softkey in the "CH Power" menu or in the "General Settings" tab of the "CP/ACLR Setup" dialog box.

For details on the available standards, see Chapter 5.3.9, "Reference: Predefined CP/ACLR Standards", on page 190.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735

User-Defined Standards ← **Standard**

Access: "CP/ACLR Setup" > "General Settings" tab > "Manage User Standards"

In addition to the predefined standards, you can save your own standards with your specific measurement settings in an XML file so you can use them again later. User-defined standards are stored on the instrument in the $C:\R_S\$ instr\acp_std directory.

A sample file is provided for an MSR ACLR measurement (MSR_ACLRExample.xml). It sets up the measurement for the MSR signal generator waveform described in the file C:\R S\INSTR\USER\waveform\MSRA GSM WCDMA LET GSM.wv.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Note that ACLR user standards are not supported for Fast ACLR and multicarrier ACLR measurements.

Note: User standards created on an analyzer of the R&S FSP family are compatible to the R&S FSW. User standards created on an R&S FSW, however, are not necessarily compatible to the analyzers of the R&S FSP family and may not work there.

The following parameter definitions are saved in a user-defined standard:

- Number of adjacent channels
- Channel bandwidth of transmission (Tx), adjacent (Adj) and alternate (Alt) channels
- Channel spacings
- Weighting filters
- Resolution bandwidth
- Video bandwidth
- Detector
- ACLR limits and their state
- Sweep time and sweep time coupling
- Trace and power mode
- (MSR only: sub block and gap channel definition)

Save the current measurement settings as a user-defined standard, load a stored measurement configuration, or delete an existing configuration file.

For details see Chapter 5.3.6.4, "How to Manage User-Defined Configurations", on page 182.

Remote command:

To query all available standards:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?

on page 735

To load a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735

Channel Power and Adjacent-Channel Power (ACLR) Measurement

To save a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE on page 736 To delete a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete on page 735

Number of Channels (Tx, ADJ)

Up to 18 carrier channels and up to 12 adjacent channels can be defined.

Results are provided for the Tx channel and the number of defined adjacent channels above and below the Tx channel. If more than one Tx channel is defined, the carrier channel to which the relative adjacent-channel power values should be referenced must be defined (see "Reference Channel" on page 157).

Note: If several carriers (Tx channels) are activated for the measurement, the number of sweep points is increased to ensure that adjacent-channel powers are measured with adequate accuracy.

For more information on how the number of channels affects the measured powers, see Chapter 5.3.2, "Channel Power Results", on page 140.

Remote command:

Number of Tx channels:

[SENSe:] POWer: ACHannel: TXCHannel: COUNt on page 740

Number of Adjacent channels:

[SENSe:] POWer: ACHannel: ACPairs on page 736

Reference Channel

The measured power values in the adjacent channels can be displayed relative to the transmission channel. If more than one Tx channel is defined, define which one is used as a reference channel.

Tx Channel 1	Transmission channel 1 is used.
	(Not available for MSR ACLR)
Min Power Tx Channel	The transmission channel with the lowest power is used as a reference channel.
Max Power Tx Chan- nel	The transmission channel with the highest power is used as a reference channel (Default).
Lowest & Highest Channel	The outer left-hand transmission channel is the reference channel for the lower adjacent channels, the outer right-hand transmission channel that for the upper adjacent channels.

Remote command:

```
[SENSe:] POWer: ACHannel: REFerence: TXCHannel: MANual on page 744 [SENSe:] POWer: ACHannel: REFerence: TXCHannel: AUTO on page 743
```

Noise Cancelation

The R&S FSW can correct the results by removing the inherent noise of the analyzer, which increases the dynamic range.

In this case, a reference measurement of the inherent noise of the analyzer is carried out. The measured noise power is then subtracted from the power in the channel that is being analyzed (first active trace only).

Channel Power and Adjacent-Channel Power (ACLR) Measurement

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen. To enable the correction function after changing one of these settings, activate it again. A new reference measurement is carried out.

Noise cancellation is also available in zero span.

Currently, noise cancellation is only available for the following trace detectors (see "Detector" on page 479):

- RMS
- Average
- Sample
- Positive Peak

Remote command:

[SENSe:] POWer: NCORrection on page 897

Fast ACLR

If activated, instead of using the IBW method, the R&S FSW sets the center frequency to the different channel center frequencies consecutively and measures the power with the selected measurement time (= sweep time/number of channels).

Remote command:

[SENSe:] POWer: HSPeed on page 750

Selected Trace

The CP/ACLR measurement can be performed on any active trace.

Remote command:

[SENSe:] POWer: TRACe on page 734

Absolute and Relative Values (ACLR Mode)

The powers of the adjacent channels are output in dBm or dBm/Hz (absolute values), or in dBc, relative to the specified reference Tx channel.

"Abs" The absolute power in the adjacent channels is displayed in the unit

of the y-axis, e.g. in dBm, dBµV.

"Rel" The level of the adjacent channels is displayed relative to the level of

the transmission channel in dBc.

Remote command:

[SENSe:] POWer: ACHannel: MODE on page 766

Channel Power Levels and Density (Power Unit)

By default, the channel power is displayed in absolute values. If "/Hz" is activated, the channel power density is displayed instead. Thus, the absolute unit of the channel power is switched from dBm to dBm/Hz.

Note: The channel power density in dBm/Hz corresponds to the power inside a bandwidth of 1 Hz and is calculated as follows:

"channel power density = channel power – log_{10} (channel bandwidth)"

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Thus you can measure the signal/noise power density, for example, or use the additional functions Absolute and Relative Values (ACLR Mode) and Reference Channel to obtain the signal to noise ratio.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ on page 765

Power Mode

The measured power values can be displayed directly for each trace ("Clear/Write"), or only the maximum values over a series of measurements can be displayed ("Max Hold"). In the latter case, the power values are calculated from the current trace and compared with the previous power value using a maximum algorithm. The higher value is retained. If "Max Hold" mode is activated, "Pwr Max" is indicated in the table header. Note that the *trace* mode remains unaffected by this setting.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE on page 730

Setting a Fixed Reference for Channel Power Measurements (Set CP Reference)

If only one Tx channel and no adjacent channels are defined, the currently measured channel power can be used as a fixed reference value for subsequent channel power measurements.

When you select this button, the channel power currently measured on the Tx channel is stored as a fixed reference power. In the following channel power measurements, the power is indicated relative to the fixed reference power. The reference value is displayed in the "Reference" field (in relative ACLR mode); the default value is 0 dBm.

Note: In adjacent-channel power measurement, the power is always referenced to a transmission channel (see "Reference Channel" on page 157), thus, this function is not available.

Remote command:

[SENSe:] POWer: ACHannel: REFerence: AUTO ONCE on page 743

Optimized Settings (Adjust Settings)

All instrument settings for the selected channel setup (channel bandwidth, channel spacing) can be optimized automatically.

The adjustment is carried out only once. If necessary, the instrument settings can be changed later.

The following settings are optimized by "Adjust Settings":

- "Frequency Span" on page 146
- "Resolution Bandwidth (RBW)" on page 147
- "Video Bandwidth (VBW)" on page 148
- "Detector" on page 148
- "Trace Averaging" on page 149

Note: The reference level is not affected by this function. To adjust the reference level automatically, use the Setting the Reference Level Automatically (Auto Level) function in the AUTO SET menu.

Remote command:

[SENSe:] POWer: ACHannel: PRESet on page 733

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Sweep Time

With the RMS detector, a longer sweep time increases the stability of the measurement results. For recommendations on setting this parameter, see "Sweep Time" on page 146.

The sweep time can be set via the softkey in the "Ch Power" menu and is identical to the general setting in the "Sweep" configuration dialog box.

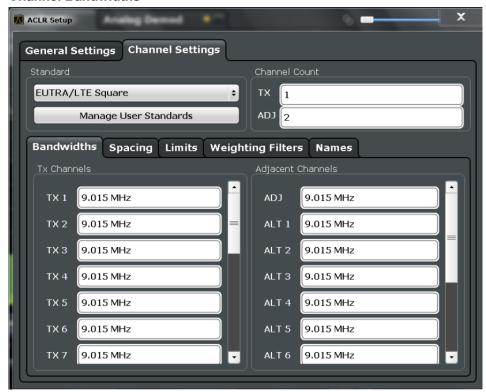
Remote command:

[SENSe:] SWEep:TIME on page 893

5.3.4.2 Channel Setup

The "Channel Settings" tab in the "ACLR Setup" dialog box provides all the channel settings to configure the channel power or ACLR measurement. You can define the channel settings for all channels, independent of the defined number of *used* Tx or adjacent channels (see "Number of Channels (Tx, ADJ)" on page 157).

For details on setting up channels, see Chapter 5.3.6.2, "How to Set up the Channels", on page 179.


In addition to the specific channel settings, the general settings "Standard" on page 155 and "Number of Channels (Tx, ADJ)" on page 157 are also available in this tab.

The following settings are available in individual subtabs of the "Channel Settings" tab.

Channel Bandwidths	161
Channel Spacings	161
Limit Checking	162
Weighting Filters	163
Channel Names	163

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Channel Bandwidths

The Tx channel bandwidth is normally defined by the transmission standard.

The correct bandwidth is set automatically for the selected standard. The bandwidth for each channel is indicated by a colored bar in the display.

For measurements that require channel bandwidths which deviate from those defined in the selected standard, use the IBW method ("Fast ACLR Off"). With the IBW method, the channel bandwidth borders are right and left of the channel center frequency. Thus, you can visually check whether the entire power of the signal under test is within the selected channel bandwidth.

The value entered for any Tx channel is automatically also defined for all subsequent Tx channels. Thus, only enter one value if all Tx channels have the same bandwidth.

The value entered for any ADJ or ALT channel is automatically also defined for all alternate (ALT) channels. Thus, only enter one value if all adjacent channels have the same bandwidth.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] on page 738
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel on page 737
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> on page 737
```

Channel Spacings

Channel spacings are normally defined by the transmission standard but can be changed.

If the spacings are not equal, the channel distribution in relation to the center frequency is as follows:

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Odd number of Tx channels	The middle Tx channel is centered to center frequency.
Even number of Tx channels	The two Tx channels in the middle are used to calculate the frequency between those two channels. This frequency is aligned to the center frequency.

The spacings between all Tx channels can be defined individually. When you change the spacing for one channel, the value is automatically also defined for all subsequent Tx channels. This allows you to set up a system with equal Tx channel spacing quickly. For different spacings, set up the channels from top to bottom.

Tx1-2	Spacing between the first and the second carrier
Tx2-3 Spacing between the second and the third carrier	

If you change the adjacent-channel spacing (ADJ), all higher adjacent channel spacings (ALT1, ALT2, ...) are multiplied by the same factor (new spacing value/old spacing value). Again, only enter one value for equal channel spacing. For different spacing, configure the spacings from top to bottom.

For details, see Chapter 5.3.6.2, "How to Set up the Channels", on page 179 Remote command:

```
[SENSe:]POWer:ACHannel:SPACing:CHANnel<ch> on page 740
[SENSe:]POWer:ACHannel:SPACing[:ACHannel] on page 739
[SENSe:]POWer:ACHannel:SPACing:ALTernate<ch> on page 739
```

Limit Checking

During an ACLR measurement, the power values can be checked whether they exceed user-defined or standard-defined limits. A relative or absolute limit can be defined, or both. Both limit types are considered, regardless whether the measured levels are absolute or relative values. The check of both limit values can be activated independently. If any active limit value is exceeded, the measured value is displayed in red and marked by a preceding asterisk in the result table.

The results of the power limit checks are also indicated in the STAT: QUES: ACPL status registry (see "STATus:QUEStionable: ACPLimit Register" on page 664).

Remote command:

```
CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 749

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe on page 745

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute on page 744

CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe

on page 746
```

Channel Power and Adjacent-Channel Power (ACLR) Measurement

```
CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative] on page 745
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute:STATe
on page 747
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute on page 747
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe
on page 749
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative] on page 748
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative] on page 748
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult? on page 746
```

Weighting Filters

Weighting filters allow you to determine the influence of individual channels on the total measurement result. For each channel you can activate or deactivate the use of the weighting filter and define an individual weighting factor ("Alpha" value).

Weighting filters are not available for all supported standards and cannot always be defined manually where they are available.

Remote command:

Activating/Deactivating:

```
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel<ch> on page 743
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel on page 742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> on page 742
Alpha value:
[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel<ch> on page 741
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel on page 740
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<ch> on page 741
```

Channel Names

In the R&S FSW's display, carrier channels are labeled "Tx" by default; the first neighboring channel is labeled "Adj" (adjacent) channel; all others are labeled "Alt" (alternate) channels. You can define user-specific channel names for each channel which are displayed in the result diagram and result table.

Remote command:

```
[SENSe:]POWer:ACHannel:NAME:ACHannel on page 738
[SENSe:]POWer:ACHannel:NAME:ALTernate<ch> on page 738
[SENSe:]POWer:ACHannel:NAME:CHANnel<ch> on page 738
```

5.3.5 MSR ACLR Configuration

ACLR measurements can also be performed on input containing multiple signals for different communication standards. A new measurement standard is provided that allows you to define multiple discontiguous transmit channels at specified frequencies, independent from the selected center frequency. If the "Multi-Standard Radio" standard is selected (see "Standard" on page 155), the "ACLR Setup" dialog box is replaced by the "MSR ACLR Setup" dialog box.

For more information, see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

The remote commands required to perform these tasks are described in Chapter 11.5.3, "Measuring the Channel Power and ACLR", on page 734.

•	General MSR ACLR Measurement Settings	.164
•	MSR Sub Block and Tx Channel Definition	.169
•	MSR Adjacent Channel Setup	172
	MSR Gap Channel Setup.	
	MSR Channel Names	

5.3.5.1 General MSR ACLR Measurement Settings

General MSR ACLR measurement settings are defined in the "MSR ACLR Setup" dialog, in the "MSR General Settings" tab.

To display the "MSR ACLR Setup" dialog box, do one of the following:

- From the "CH Power" menu, select the "CP/ACLR Standard" softkey and then select the "Multi-Standard Radio" standard. Then select the "CP/ACLR Config" softkey.
- Select the "CP/ACLR Config" softkey from the "CH Power" menu. Then select the "Multi-Standard Radio" standard from the "Standard" selection list.

Standard	165
L Predefined Standards	
L User-Defined Standards	165
Number of Sub Blocks	167
Reference Channel	167
Noise Cancelation	167
Selected Trace	168
Absolute and Relative Values (ACLR Mode)	168
Channel Power Levels and Density (Power Unit)	168
Power Mode	168

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Optimized Settings (Adjust Settings)	168
Symmetrical Adjacent Setup	
Limit Checking	169

Standard

The main measurement settings can be stored as a standard file. When such a standard is loaded, the required channel and general measurement settings are automatically set on the R&S FSW. However, the settings can be changed. Predefined standards are available for standard measurements, but standard files with user-defined configurations can also be created.

Note: If the "Multi-Standard Radio" standard is selected, the "ACLR Setup" dialog box is replaced by the "MSR ACLR Setup" dialog box (see Chapter 5.3.5, "MSR ACLR Configuration", on page 163).

If any other predefined standard (or "NONE") is selected, the "ACLR Setup" dialog box is restored (see Chapter 5.3.4, "Channel Power Configuration", on page 153).

Note that changes in the configuration are not stored when the dialog boxes are exchanged.

Predefined Standards ← **Standard**

Predefined standards contain the main measurement settings for standard measurements. When such a standard is loaded, the required channel settings are automatically set on the R&S FSW. However, the settings can be changed.

The predefined standards contain the following settings:

- Channel bandwidths
- Channel spacings
- Detector
- Trace Average setting
- Resolution Bandwidth (RBW)
- Weighting Filter

Predefined standards can be selected via the "CP/ACLR Standard" softkey in the "CH Power" menu or in the "General Settings" tab of the "CP/ACLR Setup" dialog box.

For details on the available standards, see Chapter 5.3.9, "Reference: Predefined CP/ ACLR Standards", on page 190.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735

User-Defined Standards ← **Standard**

Access: "CP/ACLR Setup" > "General Settings" tab > "Manage User Standards"

In addition to the predefined standards, you can save your own standards with your specific measurement settings in an XML file so you can use them again later. User-defined standards are stored on the instrument in the $C: R_S \in Acp_std$ directory.

A sample file is provided for an MSR ACLR measurement (MSR_ACLRExample.xml). It sets up the measurement for the MSR signal generator waveform described in the file $C:\R$ S\INSTR\USER\waveform\MSRA_GSM_WCDMA_LET_GSM.wv.

Note that ACLR user standards are not supported for Fast ACLR and multicarrier ACLR measurements.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Note: User standards created on an analyzer of the R&S FSP family are compatible to the R&S FSW. User standards created on an R&S FSW, however, are not necessarily compatible to the analyzers of the R&S FSP family and may not work there.

The following parameter definitions are saved in a user-defined standard:

- Number of adjacent channels
- Channel bandwidth of transmission (Tx), adjacent (Adj) and alternate (Alt) channels
- Channel spacings
- Weighting filters
- Resolution bandwidth
- Video bandwidth
- Detector
- ACLR limits and their state
- Sweep time and sweep time coupling
- Trace and power mode
- (MSR only: sub block and gap channel definition)

Save the current measurement settings as a user-defined standard, load a stored measurement configuration, or delete an existing configuration file.

For details see Chapter 5.3.6.4, "How to Manage User-Defined Configurations", on page 182.

Remote command:

To query all available standards:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?

on page 735

To load a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735

To save a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE on page 736

Channel Power and Adjacent-Channel Power (ACLR) Measurement

To delete a standard:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete on page 735

Number of Sub Blocks

Defines the number of sub blocks, i.e. groups of transmission channels in an MSR signal.

For more information, see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Remote command:

[SENSe:] POWer: ACHannel: SBCount on page 752

Reference Channel

The measured power values in the adjacent channels can be displayed relative to the transmission channel. If more than one Tx channel is defined, define which one is used as a reference channel.

Tx Channel 1	Transmission channel 1 is used. (Not available for MSR ACLR)
Min Power Tx Channel	The transmission channel with the lowest power is used as a reference channel.
Max Power Tx Chan- nel	The transmission channel with the highest power is used as a reference channel (Default).
Lowest & Highest Channel	The outer left-hand transmission channel is the reference channel for the lower adjacent channels, the outer right-hand transmission channel that for the upper adjacent channels.

Remote command:

```
[SENSe:] POWer: ACHannel: REFerence: TXCHannel: MANual on page 744 [SENSe:] POWer: ACHannel: REFerence: TXCHannel: AUTO on page 743
```

Noise Cancelation

The R&S FSW can correct the results by removing the inherent noise of the analyzer, which increases the dynamic range.

In this case, a reference measurement of the inherent noise of the analyzer is carried out. The measured noise power is then subtracted from the power in the channel that is being analyzed (first active trace only).

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen. To enable the correction function after changing one of these settings, activate it again. A new reference measurement is carried out.

Noise cancellation is also available in zero span.

Currently, noise cancellation is only available for the following trace detectors (see "Detector" on page 479):

- RMS
- Average
- Sample
- Positive Peak

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Remote command:

[SENSe:] POWer:NCORrection on page 897

Selected Trace

The CP/ACLR measurement can be performed on any active trace.

Remote command:

[SENSe:] POWer:TRACe on page 734

Absolute and Relative Values (ACLR Mode)

The powers of the adjacent channels are output in dBm or dBm/Hz (absolute values), or in dBc, relative to the specified reference Tx channel.

"Abs" The absolute power in the adjacent channels is displayed in the unit

of the y-axis, e.g. in dBm, dBµV.

"Rel" The level of the adjacent channels is displayed relative to the level of

the transmission channel in dBc.

Remote command:

[SENSe:] POWer: ACHannel: MODE on page 766

Channel Power Levels and Density (Power Unit)

By default, the channel power is displayed in absolute values. If "/Hz" is activated, the channel power density is displayed instead. Thus, the absolute unit of the channel power is switched from dBm to dBm/Hz.

Note: The channel power density in dBm/Hz corresponds to the power inside a bandwidth of 1 Hz and is calculated as follows:

"channel power density = channel power – log₁₀(channel bandwidth)"

Thus you can measure the signal/noise power density, for example, or use the additional functions Absolute and Relative Values (ACLR Mode) and Reference Channel to obtain the signal to noise ratio.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ on page 765

Power Mode

The measured power values can be displayed directly for each trace ("Clear/Write"), or only the maximum values over a series of measurements can be displayed ("Max Hold"). In the latter case, the power values are calculated from the current trace and compared with the previous power value using a maximum algorithm. The higher value is retained. If "Max Hold" mode is activated, "Pwr Max" is indicated in the table header. Note that the *trace* mode remains unaffected by this setting.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE on page 730

Optimized Settings (Adjust Settings)

All instrument settings for the selected channel setup (channel bandwidth, channel spacing) can be optimized automatically.

The adjustment is carried out only once. If necessary, the instrument settings can be changed later.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

The following settings are optimized by "Adjust Settings":

- "Frequency Span" on page 146
- "Resolution Bandwidth (RBW)" on page 147
- "Video Bandwidth (VBW)" on page 148
- "Detector" on page 148
- "Trace Averaging" on page 149

Note: The reference level is not affected by this function. To adjust the reference level automatically, use the Setting the Reference Level Automatically (Auto Level) function in the AUTO SET menu.

Remote command:

```
[SENSe:] POWer: ACHannel: PRESet on page 733
```

Symmetrical Adjacent Setup

If enabled, the upper and lower adjacent and alternate channels are defined symmetrically. This is the default behavior.

If disabled, the upper and lower channels can be configured differently. This is particularly useful if the lowest Tx channel and highest Tx channel use different standards and thus require different bandwidths for adjacent channel power measurement.

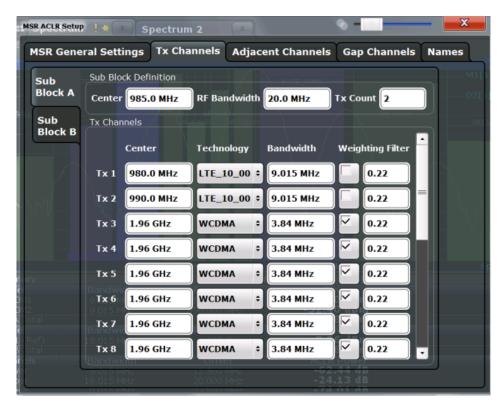
Remote command:

```
[SENSe:] POWer: ACHannel: SSETup on page 756
```

Limit Checking

Activates or deactivates limit checks globally for all adjacent and gap channels. In addition to this setting, limits must be defined and activated individually for each channel.

The results of the power limit checks are also indicated in the STAT: QUES: ACPL status registry (see "STATus:QUEStionable: ACPL imit Register" on page 664).


Remote command:

```
CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 749
```

5.3.5.2 MSR Sub Block and Tx Channel Definition

The "Tx Channels" tab in the "MSR ACLR Setup" dialog box provides all the channel settings to configure sub blocks and Tx channels in MSR ACLR measurements.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

For details on MSR signals, see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

For details on setting up channels, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181.

The Tx channel settings for the individual sub blocks are configured in individual subtabs of the "Tx Channel Settings" tab.

SUD BIOCK Definition	170
L Sub Block Center Frequency	171
L RF Bandwidth	
L Number of Tx Channels (Tx Count)	171
Tx Channel Definition	171
L Tx Center Frequency	171
L Technology Used for Transmission	171
L Tx Channel Bandwidth	172
L Weighting Filters	172

Sub Block Definition

Sub blocks are groups of transmit channels in an MSR signal. Up to five sub blocks can be defined. They are defined as an RF bandwidth around a center frequency with a specific number of transmit channels (max. 18).

Sub blocks are named A,B,C,D,E and are indicated by a slim blue bar along the frequency axis.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Sub Block Center Frequency ← Sub Block Definition

Defines the center of an MSR sub block. Note that the position of the sub block also affects the position of the adjacent gap channels.

Remote command:

[SENSe:] POWer: ACHannel: SBLock < sb>: FREQuency: CENTer on page 753

RF Bandwidth ← Sub Block Definition

Defines the bandwidth of the individual MSR sub block. Note that sub block ranges also affect the position of the adjacent gap channels.

Remote command:

[SENSe:] POWer: ACHannel: SBLock < sb>: RFBWidth on page 754

Number of Tx Channels (Tx Count) ← Sub Block Definition

Defines the number of transmit channels the specific sub block contains. The maximum is 18 Tx channels.

Remote command:

[SENSe:]POWer:ACHannel:SBLock<sb>:TXCHannel:COUNt on page 755

Tx Channel Definition

As opposed to common ACLR channel definitions, the Tx channels are defined at absolute frequencies, rather than by a spacing relative to the (common) center frequency. Each transmit channel can be assigned a different technology, used to predefine the required bandwidth.

The Tx channel settings for the individual sub blocks are configured in individual subtabs of the "Tx Channel Settings" tab.

For details on configuring MSR Tx channels, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181.

Remote command:

[SENSe:]POWer:ACHannel:SBLock<sb>:NAME[:CHANnel<ch>] on page 764

Tx Center Frequency ← **Tx Channel Definition**

Defines the (absolute) center frequency of an MSR Tx channel. Each Tx channel is defined independently of the others; automatic spacing as in common ACLR measurements is not performed.

Note that the position of the adjacent channels is also affected by:

- The position of the first Tx channel in the first sub block
- The position of last Tx channel in the last sub block

Remote command:

[SENSe:] POWer: ACHannel: SBLock < sb >: CENTer[: CHANnel < ch >] on page 753

Technology Used for Transmission ← **Tx Channel Definition**

The technology used for transmission by the individual channel can be defined for each channel. The required channel bandwidth and use of a weighting filter are preconfigured automatically according to the selected technology standard.

"GSM" Transmission according to GSM standard
"W-CDMA" Transmission according to W-CDMA standard

Channel Power and Adjacent-Channel Power (ACLR) Measurement

"LTE xxx"

Transmission according to LTE standard for different channel band-

widths

"USER" User-defined transmission; no automatic preconfiguration possible

Remote command:

[SENSe:]POWer:ACHannel:SBLock<sb>:TECHnology[:CHANnel<ch>]
on page 754

Tx Channel Bandwidth ← Tx Channel Definition

The Tx channel bandwidth is normally defined by the transmission technology standard. The correct bandwidth is predefined automatically for the selected technology. Each Tx channel is defined independently of the others; automatic bandwidth configuration for subsequent channels as in common ACLR measurements is not performed.

The bandwidth for each channel is indicated by a colored bar in the display.

Remote command:

[SENSe:]POWer:ACHannel:SBLock<sb>:BANDwidth|BWIDth[:CHANnel<ch>]
on page 752

Weighting Filters ← Tx Channel Definition

Weighting filters allow you to determine the influence of individual channels on the total measurement result. For each channel, you can activate or deactivate the use of the weighting filter and define an individual weighting factor ("Alpha" value).

Remote command:

Activating/Deactivating:

[SENSe:]POWer:ACHannel:FILTer:STATe:SBLock<sb>:CHANnel<ch>
on page 752
Alpha value:

[SENSe:]POWer:ACHannel:FILTer:ALPHa:SBLock<sb>:CHANnel<ch>
on page 751

5.3.5.3 MSR Adjacent Channel Setup

The "Adjacent Channel" tab in the "MSR ACLR Setup" dialog box provides all the channel settings to configure adjacent and gap channels in MSR ACLR measurements.

For symmetrical channel definition (see "Symmetrical Adjacent Setup" on page 169), the dialog box is reduced as the upper and lower channels are identical.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

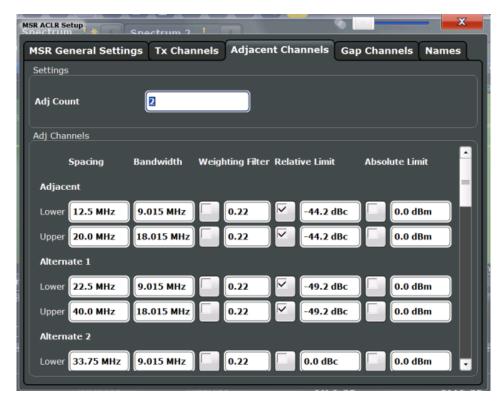


Figure 5-28: Asymmetrical adjacent channel definition

For details on setting up channels, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181.

Number of Adjacent Channels (ADJ Count)	173
Adjacent Channel Definition	173
L Adjacent Channel Spacings	174
L Adjacent Channel Bandwidths	174
L Weighting Filters	
L Limit Checking	

Number of Adjacent Channels (ADJ Count)

Defines the number of adjacent channels *above and below* the Tx channel block in an MSR signal. You must define the carrier channel to which the relative adjacent-channel power values refer (see "Reference Channel" on page 157).

Remote command:

[SENSe:] POWer: ACHannel: ACPairs on page 736

Adjacent Channel Definition

Defines the channels adjacent to the transmission channel block in MSR signals. A maximum of 12 adjacent channels can be defined.

For MSR signals, adjacent channels are defined in relation to the center frequency of the first and last transmission channel in the entire block, i.e.:

The lower adjacent channels are defined in relation to the CF of the first Tx channel in the first sub block.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

The upper adjacent channels are defined in relation to the CF of the last Tx channel in the last sub block.

Adjacent channels are named "Adj" and "Alt1" to "Alt11" by default; the names can be changed manually (see Chapter 5.3.5.5, "MSR Channel Names", on page 178).

In all other respects, channel definition is identical to common ACLR measurements.

Adjacent Channel Spacings ← **Adjacent Channel Definition**

Channel spacings are normally predefined by the selected technology but can be changed.

For MSR signals, adjacent channels are defined in relation to the center frequency of the first and last transmission channel in the entire block, i.e.:

- The spacing of the lower adjacent channels refers to the CF of the first Tx channel in the first sub block.
- The spacing of the upper adjacent channels refers to the CF of the last Tx channel in the last sub block.

For details, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181

Remote command:

```
[SENSe:]POWer:ACHannel:SPACing[:ACHannel] on page 739
[SENSe:]POWer:ACHannel:SPACing:ALTernate<ch> on page 739
[SENSe:]POWer:ACHannel:SPACing:UACHannel on page 755
[SENSe:]POWer:ACHannel:SPACing:UALTernate<ch> on page 756
```

Adjacent Channel Bandwidths Adjacent Channel Definition

The adjacent channel bandwidth is normally predefined by the transmission technology standard. The correct bandwidth is set automatically for the selected technology. The bandwidth for each channel is indicated by a colored bar in the display.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel on page 737
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> on page 737
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:UACHannel on page 756
[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:UALTernate<ch> on page 757
```

Weighting Filters ← Adjacent Channel Definition

Weighting filters allow you to determine the influence of individual channels on the total measurement result. For each channel, you can activate or deactivate the use of the weighting filter and define an individual weighting factor ("Alpha" value).

Remote command:

Activating/Deactivating:

```
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel on page 742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> on page 742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UACHannel on page 758
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UALTernate<ch> on page 758
Alpha value:
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel on page 740
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<ch> on page 741
```

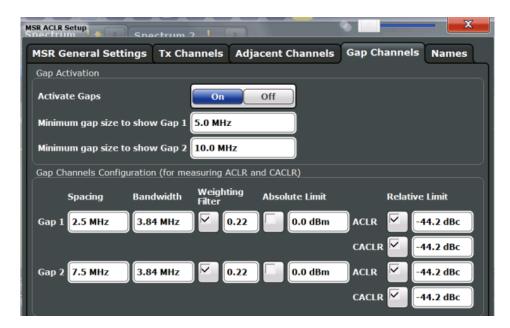
Channel Power and Adjacent-Channel Power (ACLR) Measurement

```
[SENSe:] POWer: ACHannel: FILTer: ALPHa: UACHannel on page 757
[SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate<ch>> on page 757
```

Limit Checking ← **Adjacent Channel Definition**

During an ACLR measurement, the power values can be checked whether they exceed user-defined or standard-defined limits. A relative or absolute limit can be defined, or both, for each individual adjacent channel. Both limit types are considered, regardless whether the measured levels are absolute or relative values. The check of both limit values can be activated independently. If any active limit value is exceeded, the measured value is displayed in red and marked by a preceding asterisk in the result table.

Note that in addition to activating limit checking for individual channels, limit checking must also be activated globally for the MSR ACLR measurement (see "Limit Checking" on page 169).


Remote command:

```
CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 749
CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe on page 745
CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute on page 744
CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe
on page 746
CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative] on page 745
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute:STATe
on page 747
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute on page 747
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe
on page 749
CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative] on page 748
CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult? on page 746
```

5.3.5.4 MSR Gap Channel Setup

The "Gap Channels" tab in the "MSR ACLR Setup" dialog box provides all the channel settings to configure adjacent and gap channels in MSR ACLR measurements.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

For details on MSR signals, see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

For details on setting up channels, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181.

Activate Gaps	
Minimum gap size to show gap 1/2	176
Gap Channel Definition	
L Gap Channel Spacings	
L Gap Channel Bandwidths	177
L Weighting Filters	
L Limit Checking	

Activate Gaps

If enabled, the gap channels are displayed and channel power results are calculated and displayed in the Result Summary.

Remote command:

[SENSe:] POWer: ACHannel: AGCHannels on page 761

Minimum gap size to show gap 1/2

If the gap between the sub blocks does not exceed the specified bandwidth, the gap channels are not displayed in the diagram. The gap channel results are not calculated in the result summary.

Remote command:

[SENSe:] POWer:ACHannel:GAP<gap>:MSIZe on page 762

Gap Channel Definition

Between two sub blocks in an MSR signal, two gaps are defined: a *lower gap* and an *upper gap*. Each gap in turn contains two channels, the *gap channels*. The channels in the upper gap are identical to those in the lower gap, but inverted. Thus, in the R&S FSW MSR ACLR measurement, only two gap channels are configured.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Gap channels are indicated using the following syntax:

- The names of the surrounding sub blocks (e.g. "AB" for the gap between sub blocks A and B),
- The channel name ("Gap1" or "Gap2")
- "L" (for lower) or "U" (for upper)

Gap Channel Spacings ← **Gap Channel Definition**

Gap channel spacings are normally predefined by the MSR standard but can be changed.

Gap channels are defined using bandwidths and spacings, relative to the outer edges of the surrounding sub blocks. Since the upper and lower gap channels are identical, only two channels must be configured. The required spacing can be determined according to the following formula (indicated for lower channels):

Spacing = [CF of the gap channel] - [left sub block center] + ([RF bandwidth of left sub block] /2)

(See also Figure 5-25 and Figure 5-26.)

For details, see Chapter 5.3.6.3, "How to Configure an MSR ACLR Measurement", on page 181.

Remote command:

```
[SENSe:] POWer: ACHannel: SPACing: GAP < gap > on page 763
```

Gap Channel Bandwidths ← **Gap Channel Definition**

The gap channel bandwidth is normally predefined by the transmission technology standard. The correct bandwidth is set automatically for the selected technology. The bandwidth for each channel is indicated by a colored bar in the display (if the gap is not too narrow, see "Channel display for MSR signals" on page 152).

Remote command:

```
[SENSe:] POWer: ACHannel: BANDwidth | BWIDth: GAP < gap > on page 761
```

Weighting Filters ← Gap Channel Definition

Weighting filters allow you to determine the influence of individual channels on the total measurement result. For each channel, you can activate or deactivate the use of the weighting filter and define an individual weighting factor ("Alpha" value).

Remote command:

```
[SENSe:]POWer:ACHannel:FILTer:STATe:GAP<gap> on page 762
[SENSe:]POWer:ACHannel:FILTer:ALPHa:GAP<gap> on page 762
```

Limit Checking ← **Gap Channel Definition**

During an ACLR measurement, the power values can be checked whether they exceed user-defined or standard-defined limits. A relative or absolute limit can be defined, or both, for each individual gap channel. Both limit types are considered, regardless whether the measured levels are absolute or relative values. The check of both limit values can be activated independently. Furthermore, relative limits can be defined and activated individually for ACLR or CACLR power levels.

If any active limit value is exceeded, the measured value is displayed in red and marked by a preceding asterisk in the result table.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Note that in addition to activating limit checking for individual channels, limit checking must also be activated globally for the MSR ACLR measurement (see "Limit Checking" on page 169).

Remote command:

```
CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 749

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ABSolute:STATe on page 759

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative:]STATe
on page 760

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative:]STATe
on page 760

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ABSolute on page 759

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative] on page 759

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative] on page 759

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative]
on page 760

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative]
On page 760

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:RESult? on page 765
```

5.3.5.5 MSR Channel Names

Channel names for all TX, adjacent, and alternate channels are user-definable.

In the "Names" tab of the "MSR ACLR Setup" dialog box, you can define a customized name for each channel in each sub block. Note that the names are not checked for uniqueness.

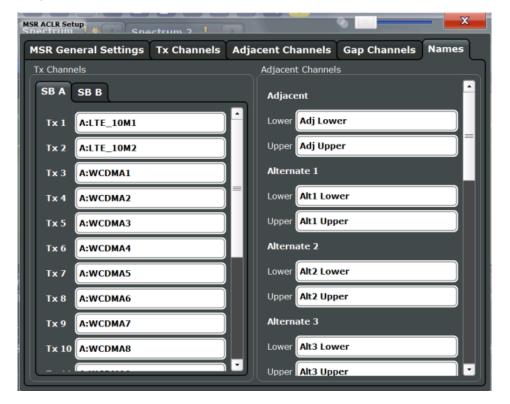


Figure 5-29: Channel name definition for asymmetric adjacent channels

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Remote command:

[SENSe:]POWer:ACHannel:SBLock<sb>:NAME[:CHANnel<ch>] on page 764
[SENSe:]POWer:ACHannel:NAME:ACHannel on page 738
[SENSe:]POWer:ACHannel:NAME:ALTernate<ch>> on page 738
[SENSe:]POWer:ACHannel:NAME:UACHannel on page 763
[SENSe:]POWer:ACHannel:NAME:UALTernate<ch>> on page 763

5.3.6 How to Perform Channel Power Measurements

The following step-by-step instructions demonstrate the most common tasks when performing channel power measurements.

•	How to Perform a Standard Channel Power Measurement	179
•	How to Set up the Channels	179
•	How to Configure an MSR ACLR Measurement	181
•	How to Manage User-Defined Configurations	182
	How to Compare the Ty Channel Power in Successive Measurements	

5.3.6.1 How to Perform a Standard Channel Power Measurement

Performing a channel power or ACLR measurement according to common standards is a very easy and straightforward task with the R&S FSW.

- 1. Press the MEAS key or select "Select Measurement" in the "Overview".
- Select "Channel Power ACLR".
 The measurement is started immediately with the default settings.
- Select the "CP / ACLR Standard" softkey and select a standard from the list.
 The measurement is restarted with the predefined settings for the selected standard.
- 4. If necessary, edit the settings for your specific measurement as described in Chapter 5.3.6.2, "How to Set up the Channels", on page 179, or load a user-defined configuration (see "To load a user-defined configuration" on page 182).

5.3.6.2 How to Set up the Channels

Channel definition is the basis for measuring power levels in certain frequency ranges. Usually, the power levels in one or more carrier (Tx) channels and possibly the adjacent channels are of interest. Up to 18 carrier channels and up to 12 adjacent channels can be defined.

When a measurement standard is selected, all settings including the channel bandwidths and channel spacings are set according to the selected standard. Select a stan-

Channel Power and Adjacent-Channel Power (ACLR) Measurement

dard in the "Ch Power" menu or the "ACLR Setup" dialog box. You can adjust the settings afterwards.

Channel setup consists of the following settings:

- The number of transmission (Tx) and adjacent channels
- The bandwidth of each channel
- For multicarrier ACLR measurements: which Tx channel is used as a reference
- The spacing between the individual channels
- Optionally: the names of the channels displayed in the diagram and result table
- Optionally: the influence of individual channels on the total measurement result ("Weighting Filter")
- Optionally: limits for a limit check on the measured power levels

Changes to an existing standard can be stored as a user-defined standard, see Chapter 5.3.6.4, "How to Manage User-Defined Configurations", on page 182.

► In the "Ch Power" menu, select the "CP / ACLR Config" softkey, then select the "Channel Settings" tab to configure the channels in the "ACLR Setup" dialog box.

In the "Channel Setup" dialog box, you can define the channel settings for all channels, independent of the defined number of *used* Tx or adjacent channels.

To define channel spacings

Channel spacings are normally defined by the selected standard but can be changed.

▶ In the "Channel Settings" tab of the "ACLR Setup" dialog box, select the "Spacing" subtab.

The value entered for any Tx channel is automatically also defined for all subsequent Tx channels. Thus, only enter one value if all Tx channels have the same spacing.

If the channel spacing for the adjacent or an alternate channel is changed, all higher alternate channel spacings are multiplied by the same factor (new spacing value/old spacing value). The lower adjacent-channel spacings remain unchanged. Only enter one value for equal channel spacing.

Example: Defining channel spacing

In the default setting, the adjacent channels have the following spacing: 20 kHz ("ADJ"), 40 kHz ("ALT1"), 60 kHz ("ALT2"), 80 kHz ("ALT3"), 100 kHz ("ALT4"), ...

Set the spacing of the first adjacent channel ("ADJ") to 40 kHz. For all other adjacent channels, the spacing is multiplied by factor 2: 80 kHz ("ALT1"), 120 kHz ("ALT2"), 160 kHz ("ALT3"), ...

Starting from the default setting, set the spacing of the fifth adjacent channel ("ALT4") to 150 kHz. For all higher adjacent channels, the spacing is multiplied by factor 1.5: 180 kHz ("ALT5"), 210 kHz ("ALT6"), 240 kHz ("ALT7"), ...

5.3.6.3 How to Configure an MSR ACLR Measurement

You configure ACLR measurements on MSR signals in a special configuration dialog box on the R&S FSW.

- 1. Press the MEAS key or select "Select Measurement" in the "Overview".
- 2. Select "Channel Power ACLR".
 - The measurement is started immediately with the default settings.
- Select the "CP / ACLR Standard" softkey and select the "Multi-Standard Radio" standard from the list.
- 4. Select the "CP / ACLR Config" softkey to configure general MSR settings, including the number of sub blocks (up to 5).
 - To configure asymmetric adjacent channels, deactivate the "Symmetrical" option in the general MSR settings.
- 5. Select the "Tx Channels" tab to configure the sub blocks and transmission channels.

For each sub block:

- a) Define the (center frequency) position and bandwidth of the sub block, as well as the number of transmission channels it contains.
- b) For each transmission channel in the sub block, define the center frequency and select the technology used for transmission. If necessary, edit the bandwidth and define the use of a weighting filter for the channel.
- 6. Select the "Adjacent Channels" tab to configure the adjacent channels.
- 7. Define the number of adjacent channels and the settings for each channel:
 - The spacing, defined as the distance of the center frequency from the center frequency of the first transmission channel in the first sub block.
 For asymmetrical channels, define the upper adjacent channel spacing as the distance from the center frequency of the last transmission channel in the last sub block.
 - The bandwidth
 - If necessary, a weighting filter
 - Optionally, define *and activate* relative or absolute limits, or both, against which the power levels of the channel are to be checked.
- 8. Select the "Gap Channels" tab to configure the gap channels.
- 9. Define the settings for the two (upper or lower) gap channels; since the upper and lower channels are identical, it is only necessary to configure two channels.
 - The spacing, defined as the distance of the center frequency from the outer edge of the sub block to the left or right of the gap. The required spacing can be determined as follows:
 - Spacing = [CF of the gap channel] [left sub block center] + ([RF bandwidth of left sub block] /2)
 - The bandwidth

Channel Power and Adjacent-Channel Power (ACLR) Measurement

- If necessary, a weighting filter
- Optionally, define and activate relative or absolute limits, or both, against which
 the power levels of the channel are to be checked.
- 10. If power limits are defined and activated, activate global limit checking for the measurement on the "MSR General Settings" tab.
- 11. Optionally, store the settings for the MSR ACLR measurement as a user-defined standard as described in "To store a user-defined configuration" on page 182. Otherwise the configuration is lost when you select a different measurement standard.

5.3.6.4 How to Manage User-Defined Configurations

You can define measurement configurations independently of a predefined standard and save the current ACLR configuration as a "user standard" in an XML file. You can then load the file and thus the settings again later.

User-defined standards are not supported for "Fast ACLR" and multicarrier ACLR measurements.

Compatibility to R&S FSP

User standards created on an analyzer of the R&S FSP family are compatible to the R&S FSW. User standards created on an R&S FSW, however, are not necessarily compatible to the analyzers of the R&S FSP family and may not work there.

To store a user-defined configuration

- In the "Ch Power" menu, select the "CP / ACLR Config" softkey to display the "ACLR Setup" dialog box.
- 2. Configure the measurement as required (see also Chapter 5.3.6.2, "How to Set up the Channels", on page 179).
- 3. In the "General Settings" tab, select the "Manage User Standards" button to display the "Manage" dialog box.
- 4. Define a file name for the user standard and select its storage location.

 By default, the XML file is stored in C:\R_S\Instr\acp_std\. However, you can define any other storage location.
- 5. Select "Save".

To load a user-defined configuration

- 1. In the "General Settings" tab of the "ACLR Setup" dialog box, select the "Manage User Standards" button to display the "Manage" dialog box.
- 2. Select the user standard file.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

3. Select "Load".

The stored settings are automatically set on the R&S FSW and the measurement is restarted with the new parameters.

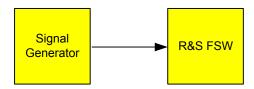
5.3.6.5 How to Compare the Tx Channel Power in Successive Measurements

For power measurements with only one Tx channel and no adjacent channels, you can define a fixed reference power and compare subsequent measurement results to the stored reference power.

- 1. Configure a measurement with only one Tx channel and no adjacent channels (see also Chapter 5.3.6.2, "How to Set up the Channels", on page 179).
- 2. Select the "Set CP Reference" softkey in the "Ch Power" menu, or the "Set CP Reference" button in the "ACLR Setup" dialog box.

The channel power currently measured on the Tx channel is stored as a fixed reference power. The reference value is displayed in the "Reference" field of the result table (in relative ACLR mode).

- 3. Start a new measurement.
 - The resulting power is indicated relative to the fixed reference power.
- 4. Repeat this for any number of measurements.
- 5. To start a new measurement without the fixed reference, temporarily define a second channel or preset the instrument.


5.3.7 Measurement Examples

The R&S FSW has test routines for simple channel and adjacent channel power measurements. These routines give quick results without any complex or tedious setting procedures.

- Measurement Example 1 ACPR Measurement on a CDMA2000 Signal........... 183

5.3.7.1 Measurement Example 1 – ACPR Measurement on a CDMA2000 Signal

Test setup:

Channel Power and Adjacent-Channel Power (ACLR) Measurement

Signal generator settings (e.g. R&S SMW):

Frequency:	850 MHz
Level:	0 dBm
Modulation:	CDMA2000

Procedure:

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 850 MHz.
- 3. Set the span to 4 MHz.
- 4. Set the reference level to +10 dBm.
- 5. Select the "Channel Power ACLR" measurement function from the "Select Measurement" dialog box.
- 6. Set the "CDMA2000 1X" standard for adjacent channel power measurement in the "ACLR Setup" dialog box.

The R&S FSW sets the channel configuration according to the 2000 standard with two adjacent channels above and 2 below the transmit channel. The spectrum is displayed in the upper part of the screen, the numeric values of the results and the channel configuration in the lower part of the screen. The various channels are represented by vertical lines on the graph.

The frequency span, resolution bandwidth, video bandwidth and detector are selected automatically to give correct results. To obtain stable results – especially in the adjacent channels (30 kHz bandwidth) which are narrow in comparison with the transmission channel bandwidth (1.23 MHz) – the RMS detector is used.

- 7. Set the optimal reference level and RF attenuation for the applied signal level using the "Auto Level" function in the AUTO SET menu.
- 8. Activate "Fast ACLR" mode in the "ACLR Setup" dialog box to increase the repeatability of results.

The R&S FSW sets the optimal RF attenuation and the reference level based on the transmission channel power to obtain the maximum dynamic range. The Figure 5-30 shows the result of the measurement.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

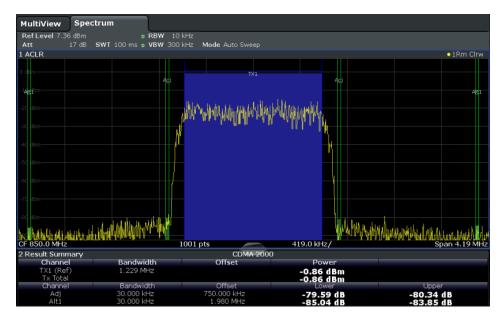
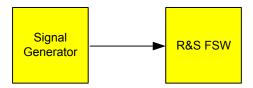



Figure 5-30: Adjacent channel power measurement on a CDMA2000 1x signal

5.3.7.2 Measurement Example 2 – Measuring Adjacent Channel Power of a W-CDMA Uplink Signal

Test setup:

Signal generator settings (e.g. R&S FSW SMW):

Frequency:	1950 MHz
Level:	4 dBm
Modulation:	3GPP W-CDMA Reverse Link

Procedure:

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 1950 MHz.
- 3. Select the "Channel Power ACLR" measurement function from the "Select Measurement" dialog box.
- 4. Set the "W-CDMA 3GPP REV" standard for adjacent channel power measurement in the "ACLR Setup" dialog box.

The R&S FSW sets the channel configuration to the W-CDMA standard for mobiles with two adjacent channels above and below the transmit channel. The frequency span, the resolution and video bandwidth and the detector are automatically set to the correct values. The spectrum is displayed in the upper window and the channel power, the level ratios of the adjacent channel powers and the channel configuration in the lower window. The individual channels are displayed as bars in the graph.

5. Set the optimal reference level and RF attenuation for the applied signal level using the "Auto Level" function.

The R&S FSW sets the optimum RF attenuation and the reference level for the power in the transmission channel to obtain the maximum dynamic range. The following figure shows the result of the measurement.

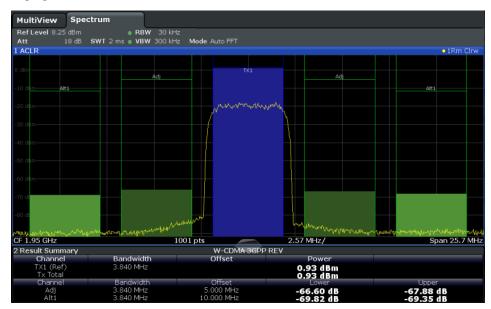


Figure 5-31: Measuring the relative adjacent channel power on a W-CDMA uplink signal

The R&S FSW measures the power of the individual channels with zero span. A root raised cosine filter with the parameters α = 0.22 and chip rate 3.84 Mcps (= receive filter for W-CDMA) is used as channel filter.

Optimum Level Setting for ACLR Measurements on W-CDMA Signals

The dynamic range for ACLR measurements is limited by the thermal noise floor, the phase noise and the intermodulation (spectral regrowth) of the signal analyzer. The power values produced by the R&S FSW due to these factors accumulate linearly. They depend on the applied level at the input mixer. The three factors are shown in the figure below for the adjacent channel (5 MHz carrier offset).

Channel Power and Adjacent-Channel Power (ACLR) Measurement

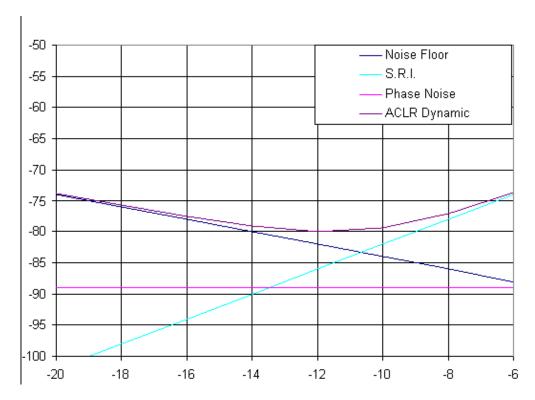


Figure 5-32: Dynamic range for ACLR measurements on W-CDMA uplink signals as a function of the mixer level

The level of the W-CDMA signal at the input mixer is shown on the horizontal axis, i.e. the measured signal level minus the selected RF attenuation. The individual components which contribute to the power in the adjacent channel and the resulting relative level (total ACPR) in the adjacent channel are displayed on the vertical axis. The optimum mixer level is -12 dBm. The relative adjacent channel power (ACPR) at an optimum mixer level is -77 dBc. At a given signal level, the mixer level is set in 1 dB steps with the 1 dB RF attenuator. Thus, the optimum range spreads from -10 dBm to -14 dBm.

To set the attenuation parameter manually, the following method is recommended:

➤ Set the RF attenuation so that the mixer level (= measured channel power – RF attenuation) is between -10 dBm and -14 dBm.

This method is automated with the "Auto Level" function. Especially in remote control mode, e.g. in production environments, set the attenuation parameters correctly before the measurement. That saves the time required for automatic setting.

To measure the R&S FSW's intrinsic dynamic range for W-CDMA adjacent channel power measurements, a filter which suppresses the adjacent channel power is required at the output of the transmitter. A SAW filter with a bandwidth of 4 MHz, for example, can be used.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

5.3.7.3 Measurement Example 3 – Measuring the Intrinsic Noise of the R&S FSW with the Channel Power Function

Noise in any bandwidth can be measured with the channel power measurement functions. Thus the noise power in a communication channel can be determined, for example. If the noise spectrum within the channel bandwidth is flat, the noise marker can be used to determine the noise power in the channel by considering the channel bandwidth. However, in the following cases, the channel power measurement method must be used to obtain correct measurement results:

- If phase noise and noise that normally increases towards the carrier is dominant in the channel to be measured
- If there are discrete spurious signals in the channel

Test setup:

Leave the RF input of the R&S FSW open-circuited or terminate it with 50 Ω.

Procedure:

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 1 GHz and the span to 1 MHz.
- 3. To obtain maximum sensitivity, set RF attenuation to 0 dB and the reference level to -40 dBm.
- 4. Select the "Channel Power ACLR" measurement function from the "Select Measurement" dialog box.
- In the "ACLR Setup" dialog box, set up a single Tx channel with the channel bandwidth 1.23 MHz.
- Select the "Adjust Settings" softkey.
 The settings for the frequency span, the bandwidth (RBW and VBW) and the detector are automatically set to the optimum values required for the measurement.
- 7. Stabilize the measurement result by increasing the sweep time. Set the sweep time to 1 s.

The trace becomes much smoother because of the RMS detector and the channel power measurement display is much more stable.

Channel Power and Adjacent-Channel Power (ACLR) Measurement

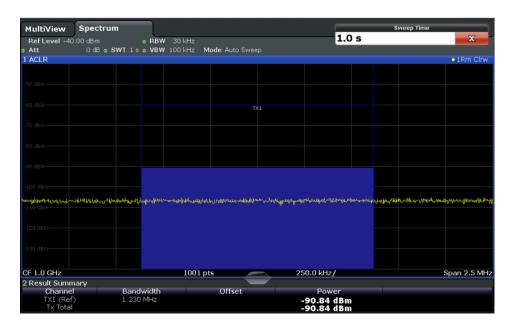


Figure 5-33: Measurement of the R&S FSW's intrinsic noise power in a 1.23 MHz channel bandwidth.

5.3.8 Optimizing and Troubleshooting the Measurement

If the results do not meet your expectations, or if you want to minimize the measurement duration, try the following methods to optimize the measurement:

- Only activate as many adjacent channels as necessary to minimize the required span and thus the required measurement time for the measurement.
- Increase the RBW to minimize the measurement time; however, consider the
 requirements of the standard if you need to measure according to standard! The
 automatic settings are always according to standard.
- Take advantage of the speed optimization mode in the "Sweep" settings if you do not require the larger dynamic range (see "Optimization" on page 424).
- Reduce the sweep time and thus the amount of data to be captured and calculated; however, consider the requirements regarding the standard deviation.
- To improve the stability of the measured results, increase the sweep time, which also leads to more averaging steps.
- Instead of trace averaging, use an RMS detector with a higher sweep time to obtain better average power results in less time.
- To determine a channel power level quickly, use the Time Domain Power Measurement (TDP) rather than a Channel Power measurement. The TDP measurement is a zero span measurement where the sweep time determines the measurement time. Due to the FFT measurement, duplicate averaging is performed, providing very stable results very quickly.

Note, however, that for TDP measurements, channel filters are not available and a fixed RBW is used. Thus, the measurement may not be according to standard for some test cases.

5.3.9 Reference: Predefined CP/ACLR Standards

When using predefined standards for ACLR measurement, the test parameters for the channel and adjacent-channel measurements are configured automatically.

You can select a predefined standard via the "CP / ACLR Standard" softkey in the "Ch Power" menu or the selection list in the "General Settings" tab of the "ACLR Setup" dialog box (see "Standard" on page 155).

Table 5-10: Predefined CP / ACLR standards with remote command parameters

Standard	Remote parameter
None	NONE
Multi-Standard Radio	MSR
EUTRA/LTE Square	EUTRa
EUTRA/LTE Square/RRC	REUTra
W-CDMA 3GPP FWD	FW3Gppcdma
W-CDMA 3GPP REV	RW3Gppcdma
CDMA IS95A FWD	F8CDma
CDMA IS95A REV	R8CDma
CDMA IS95C Class 0 FWD*)	FIS95c0
CDMA IS95C Class 0 REV*)	RIS95c0
CDMA J-STD008 FWD	F19Cdma
CDMA J-STD008 REV	R19Cdma
CDMA IS95C Class 1 FWD*)	FIS95c1
CDMA IS95C Class 1 REV*)	RIS95c1
CDMA2000	S2CDma
TD-SCDMA FWD	FTCDma
TD-SCDMA REV	TRCDma
WLAN 802.11A	AWLAN
WLAN 802.11B	BWLAN
WIMAX	WIMax
WIBRO	WIBRo
GSM	GSM
RFID 14443	RFID14443
TETRA	TETRa
PDC	PDC
PHS	PHS
CDPD	CDPD

Carrier-to-Noise Measurements

Standard	Remote parameter
APCO-25 P2	PAPCo25
User Standard	USER
Customized Standard	<string></string>

For the R&S FSW, the channel spacing is defined as the distance between the center frequency of the adjacent channel and the center frequency of the transmission channel. The definition of the adjacent-channel spacing in standards IS95C and CDMA 2000 is different. These standards define the adjacent-channel spacing from the center of the transmission channel to the closest border of the adjacent channel. This definition is also used by the R&S FSW for the standards marked with an asterisk *).

5.4 Carrier-to-Noise Measurements

The R&S FSW can easily determine the carrier-to-noise ratio, also normalized to a 1 Hz bandwidth.

•	About the Measurement	191
•	Carrier-to-Noise Results	192
•	Carrier-to-Noise Configuration	193
•	How to Determine the Carrier-to-Noise Ratio.	194

5.4.1 About the Measurement

The largest signal in the frequency span is the carrier. It is searched when the C/N or C/N_0 function is activated and is marked using a fixed reference marker ("FXD").

To determine the noise power, a channel with a defined bandwidth at the defined center frequency is analyzed. The power within this channel is integrated to obtain the noise power level. (If the carrier is within this channel, an extra step is required to determine the correct noise power level, see below.)

The noise power of the channel is subtracted from the maximum carrier signal level, and in the case of a C/N_0 measurement, it is referred to a 1 Hz bandwidth.

For this measurement, the RMS detector is activated.

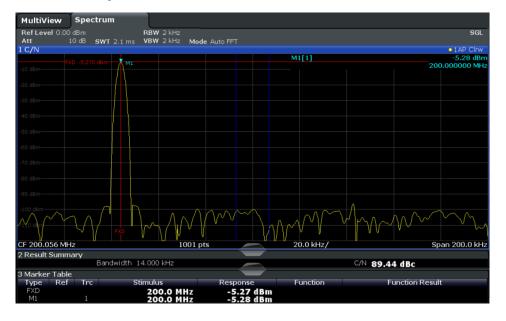
The carrier-to-noise measurements are only available in the frequency domain (span >0).

Measurement process

Depending on whether the carrier is inside or outside the analyzed channel, the measurement process for the carrier-to-noise ratio varies:

Carrier-to-Noise Measurements

 The carrier is outside the analyzed channel: In this case, it is sufficient to switch on the desired measurement function and to set the channel bandwidth. The carrier/ noise ratio is displayed on the screen.

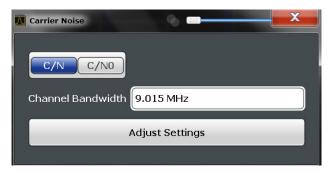

- The carrier is inside the analyzed channel: In this case, the measurement must be performed in two steps:
 - First, perform the reference measurement by switching on either the C/N or the C/N₀ measurement and waiting for the end of the next measurement run. The fixed reference marker is set to the maximum of the measured carrier signal.
 - Then, switch off the carrier so that only the noise of the test setup is active in the channel. The carrier-to-noise ratio is displayed after the subsequent measurement has been completed.

Frequency Span

The frequency span should be set to approximately 4 times the channel bandwidth in order to measure the carrier-to-noise ratio correctly. This setting is defined automatically by the "Adjust Settings" function.

5.4.2 Carrier-to-Noise Results

As a result of the carrier-to-noise measurement the evaluated bandwidth and the calculated C/N ratio are displayed in the result window. The fixed reference marker is indicated in the diagram.


Remote command:

You can also query the determined carrier-to-noise ratio via the remote command CALC:MARK:FUNC:POW:RES? CN or CALC:MARK:FUNC:POW:RES? CN0, see CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730.

Carrier-to-Noise Measurements

5.4.3 Carrier-to-Noise Configuration

The Carrier-to-noise ratio (C/N) and the Carrier-to-noise ratio in relation to the bandwidth (C/N $_0$) measurements are selected via the corresponding button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "Carrier Noise" configuration dialog box, which is displayed as a tab in the "Analysis" dialog box or when you select the "Carrier Noise Config" softkey from the "Carrier Noise" menu.

Carrier-to-noise measurements are not available in zero span mode.

The easiest way to configure a measurement is using the configuration "Overview", see Chapter 6.1, "Configuration Overview", on page 319.

The remote commands required to perform these tasks are described in Chapter 11.5.4, "Measuring the Carrier-to-Noise Ratio", on page 771.

C/N	193
C/N ₀	193
Channel Bandwidth	
Adjust Settings	

C/N

Switches the measurement of the carrier/noise ratio on or off. If no marker is active, marker 1 is activated.

The measurement is performed on the trace that marker 1 is assigned to. To shift marker 1 and measure another trace, use the "Marker to Trace" softkey in the "Marker" menu (see "Assigning the Marker to a Trace" on page 308).

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 732

CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730

CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733
```

C/N₀

Switches the measurement of the carrier/noise ratio with reference to a 1 Hz bandwidth on or off. If no marker is active, marker 1 is activated.

Carrier-to-Noise Measurements

The measurement is performed on the trace that marker 1 is assigned to. To shift marker 1 and measure another trace, use the "Marker to Trace" softkey in the "Marker" menu (see "Assigning the Marker to a Trace" on page 308).

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 732
CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733
```

Channel Bandwidth

Defines the measurement channel bandwidth.

The default setting is 14 kHz.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] on page 738
```

Adjust Settings

Enables the RMS detector and adjusts the span to the selected channel bandwidth according to:

"4 x channel bandwidth + measurement margin"

The adjustment is performed once; if necessary, the setting can be changed later on.

Remote command:

```
[SENSe:] POWer: ACHannel: PRESet on page 733
```

5.4.4 How to Determine the Carrier-to-Noise Ratio

- 1. Press the "C/N, C/N₀" softkey to configure the carrier-to-noise ratio measurement.
- 2. To change the channel bandwidth to be analyzed, press the "Channel Bandwidth" softkey.
- 3. To optimize the settings for the selected channel configuration, press the "Adjust Settings" softkey.
- To activate the measurements without reference to the bandwidth, press the "C/N" softkey.
 - To activate the measurements with reference to the bandwidth, press the $^{\circ}\text{C/N}_{0}^{\circ}$ softkev .
- If the carrier signal is located within the analyzed channel bandwidth, switch off the carrier signal so that only the noise is displayed in the channel and perform a second measurement.

The carrier-to-noise ratio is displayed after the measurement has been completed.

Occupied Bandwidth Measurement (OBW)

5.5 Occupied Bandwidth Measurement (OBW)

An important characteristic of a modulated signal is its occupied bandwidth. In a radio communications system, for instance, the occupied bandwidth must be limited to enable distortion-free transmission in adjacent channels.

•	About the Measurement	.195
•	OBW Results	.197
•	OBW Configuration.	. 198
	How to Determine the Occupied Bandwidth	
	Measurement Example	

5.5.1 About the Measurement

The occupied bandwidth is defined as the bandwidth containing a defined percentage of the total transmitted power. A percentage between 10 % and 99.9 % can be set.

Measurement principle

The bandwidth containing 99% of the signal power is to be determined, for example. The algorithm first calculates the total power of all displayed points of the trace. In the next step, the points from the right edge of the trace are summed up until 0.5 % of the total power is reached. Auxiliary marker 1 is positioned at the corresponding frequency. Then the points from the left edge of the trace are summed up until 0.5 % of the power is reached. Auxiliary marker 2 is positioned at this point. 99 % of the power is now between the two markers. The distance between the two frequency markers is the occupied bandwidth which is displayed in the marker field.

Occupied Bandwidth Measurement (OBW)

OBW within defined search limits - multicarrier OBW measurement in one sweep

The occupied bandwidth of the signal can also be determined within defined search limits instead of for the entire signal. Thus, only a single sweep is required to determine the OBW for a multicarrier signal. To do so, search limits are defined for an individual carrier and the OBW measurement is restricted to the frequency range contained within those limits. Then the search limits are adapted for the next carrier and the OBW is automatically re-calculated for the new range.

For step-by-step instructions see "How to determine the OBW for a multicarrier signal using search limits" on page 200.

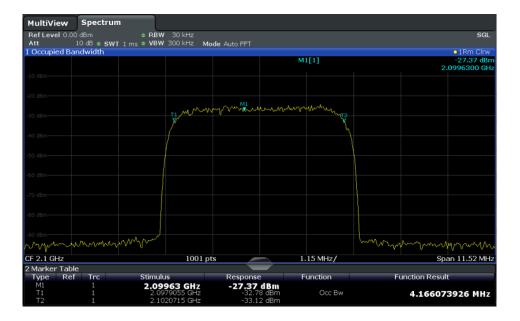
Prerequisites

To ensure correct power measurement, especially for noise signals, and to obtain the correct occupied bandwidth, the following prerequisites and settings are necessary:

- Only the signal to be measured is displayed in the window, or search limits are defined to include only one (carrier) signal. An additional signal would falsify the measurement.
- RBW << occupied bandwidth (approx. 1/20 of occupied bandwidth, for voice communication type: 300 Hz or 1 kHz)
- VBW ≥ 3 x RBW
- RMS detector
- Span ≥ 2 to 3 x occupied bandwidth

Some of the measurement specifications (e.g. PDC, RCR STD-27B) require measurement of the occupied bandwidth using a peak detector. The detector setting of the R&S FSW has to be changed accordingly then.

Occupied Bandwidth Measurement (OBW)


5.5.2 OBW Results

As a result of the OBW measurement the occupied bandwidth ("Occ BW") is indicated in the marker results. Furthermore, the marker at the center frequency and the temporary markers are indicated.

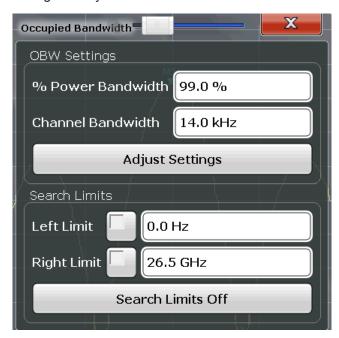
The measurement is performed on the trace with marker 1. In order to evaluate another trace, marker 1 must be placed on another trace (see Assigning the Marker to a Trace).

The OBW calculation is repeated if the Search Limits are changed, without performing a new sweep. Thus, the OBW for a multicarrier signal can be determined using only one sweep.

Remote command:

The determined occupied bandwidth can also be queried using the remote command CALC:MARK:FUNC:POW:RES? OBW or CALC:MARK:FUNC:POW:RES? AOBW. While the OBW parameter returns only the occupied bandwidth, the AOBW parameter also returns the position and level of the temporary markers T1 and T2 used to calculate the occupied bandwidth.

CALC:MARK:FUNC:POW:SEL OBW, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:SELect on page 732


CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733

CALC:MARK:FUNC:POW:RES? OBW, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer<sb>:RESult? on page 730

Occupied Bandwidth Measurement (OBW)

5.5.3 **OBW Configuration**

OBW measurements are selected via the "OBW" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "Occupied Bandwidth" dialog box, which is displayed as a tab in the "Analysis" dialog box or when you select the "OBW Config" softkey from the "OBW" menu.

This measurement is not available in zero span.

Configuring search limits for OBW measurement

The OBW measurement uses the same search limits as defined for marker search (see "Search Limits" on page 515). However, only the left and right limits are considered.

The remote commands required to perform these tasks are described in Chapter 11.5.5, "Measuring the Occupied Bandwidth", on page 771.

% Power Bandwidth	198
Channel Bandwidth	199
Adjust Settings	199
Search Limits (Left / Right)	199
Deactivating All Search Limits	

% Power Bandwidth

Defines the percentage of total power in the displayed frequency range which defines the occupied bandwidth. Values from 10% to 99.9% are allowed.

Remote command:

[SENSe:] POWer:BANDwidth|BWIDth on page 772

Occupied Bandwidth Measurement (OBW)

Channel Bandwidth

Defines the channel bandwidth for the transmission channel in single-carrier measurements. This bandwidth is used to optimize the test parameters (for details see "Adjust Settings" on page 199). The default setting is 14 kHz.

For measurements according to a specific transmission standard, define the bandwidth specified by the standard for the transmission channel.

For multicarrier measurements this setting is irrelevant.

Remote command:

```
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] on page 738
```

Adjust Settings

Optimizes the instrument settings for the measurement of the occupied bandwidth according to the specified channel bandwidth.

This function is only useful for single carrier measurements.

All instrument settings relevant for power measurement within a specific frequency range are optimized:

- Frequency span: 3 × channel bandwidth
- RBW ≤ 1/40 of channel bandwidth
- VBW ≥ 3 × RBW
- Detector: RMS

The reference level is not affected by "Adjust Settings". For an optimum dynamic range it should be selected such that the signal maximum is close to the reference level (see "Setting the Reference Level Automatically (Auto Level)" on page 408).

The adjustment is carried out only once. If necessary, the instrument settings can be changed later.

Remote command:

```
[SENSe:] POWer: ACHannel: PRESet on page 733
```

Search Limits (Left / Right)

If activated, limit lines are defined and displayed for the search. Only results within the limited search range are considered.

For details on limit lines for searches see "Peak search limits" on page 500.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 995
CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 995
```

Deactivating All Search Limits

Deactivates the search range limits.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994 CALCulate<n>:THReshold:STATe on page 997
```

Occupied Bandwidth Measurement (OBW)

5.5.4 How to Determine the Occupied Bandwidth

How to determine the OBW for a single signal

- Select the "OBW" measurement function from the "Select Measurement" dialog box.
- 2. Select the "OBW Config" softkey to display the "Occupied Bandwidth" configuration dialog box.
- 3. Define the percentage of power ("% Power Bandwidth") that defines the bandwidth to be determined.
- 4. If necessary, change the channel bandwidth for the transmission channel.
- 5. To optimize the settings for the selected channel configuration, select "Adjust Settings".
- 6. Start a sweep.

The result is displayed as OBW in the marker results.

How to determine the OBW for a multicarrier signal using search limits

- Select the "OBW" measurement function from the "Select Measurement" dialog box.
- 2. Select the "OBW Config" softkey to display the "Occupied Bandwidth" configuration dialog box.
- 3. Define the percentage of power ("% Power Bandwidth") that defines the bandwidth to be determined.
- 4. Define search limits so the search area contains only the first carrier signal:
 - a) Enter values for the left or right limits, or both.
 - b) Enable the use of the required limits.
- Start a sweep.

The result for the first carrier is displayed as OBW in the marker results.

- 6. Change the search limits so the search area contains the next carrier signal as described in step 4.
 - The OBW is re-calculated and the result for the next carrier is displayed. A new sweep is not necessary!
- 7. Continue in this way until all carriers have been measured.

5.5.5 Measurement Example

In the following example, the bandwidth that occupies 99% of the total power of a PDC signal at 800 MHz, level 0 dBm is measured.

Spectrum Emission Mask (SEM) Measurement

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 800 MHz.
- 3. Set the reference level to -10 dBm.
- 4. Select the "OBW" measurement function from the "Select Measurement" dialog box.
- 5. Set the percentage of power to 99%.
- 6. Set the channel bandwidth to 21 kHz as specified by the PDC standard.
- 7. Optimize the settings for the selected channel configuration by selecting "Adjust Settings".
- 8. Adjust the reference level to the measured total power by selecting the "Auto Level" softkey in the AUTO SET menu.
- 9. The PDC standard requires the peak detector for OBW measurement. In the "Traces" configuration dialog, set the trace detector to "Positive Peak".
- 10. Start a sweep.

The result is displayed as OBW in the marker results.

5.6 Spectrum Emission Mask (SEM) Measurement

The R&S FSW supports Spectrum Emission Mask (SEM) measurements.

About the Measurement	201
Typical Applications	202
SEM Results	
SEM Basics	
SEM Configuration	216
How to Perform a Spectrum Emission Mask Measurement	
Measurement Example: Multi-SEM Measurement	
Reference: SEM File Descriptions	

5.6.1 About the Measurement

The Spectrum Emission Mask (SEM) measurement defines a measurement that monitors compliance with a spectral mask. The mask is defined with reference to the input signal power. The R&S FSW allows for a flexible definition of all parameters in the SEM measurement. The analyzer performs measurements in predefined frequency ranges with settings that can be specified individually for each of these ranges.

In the basic Spectrum application, spectrum emissions can be measured for multiple sub blocks of channels, where the sub blocks can include gaps or overlap, and define separate masks. Radio signals using multiple standards can also be analyzed.

Spectrum Emission Mask (SEM) Measurement

SEM measurement configurations can be saved to an XML file which can then be exported to another application or loaded on the R&S FSW again later. Some predefined XML files are provided that contain ranges and parameters according to the selected standard.

To improve the performance of the R&S FSW for spectrum emission mask measurements, a "Fast SEM" mode is available.

A special limit check for SEM measurements allows for monitoring compliance of the spectrum.

5.6.2 Typical Applications

Spectrum Emission Mask measurements are typically performed to ensure that modulated signals remain within the valid signal level ranges. These ranges are defined by a particular transmission standard, both in the transmission channel and neighboring channels. Any violations of the mask can interfere with other transmissions.

The 3GPP TS 34.122 standard, for example, defines a mask for emissions outside the transmission channel. This mask is defined relative to the input signal power. Three frequency ranges to each side of the transmission channel are defined.

5.6.3 SEM Results

As a result of the Spectrum Emission Mask measurement, the following results are displayed in a diagram (see also Chapter 5.6.4.2, "Limit Lines in SEM Measurements", on page 208):

- The measured signal levels
- The result of the limit check (mask monitoring)
- The defined limit lines
- TX channel power "P"
- The used power class

Multi-SEM measurements

Multi-SEM measurements are SEM measurements with more than one sub block. In these measurements, each sub block has its own power class definitions. In this case, the power class is not indicated in the graphical result displays.

Example:

For example, in Figure 5-34, "31 < P < 39" is indicated as the used power class is defined from 31 to 39.

Spectrum Emission Mask (SEM) Measurement

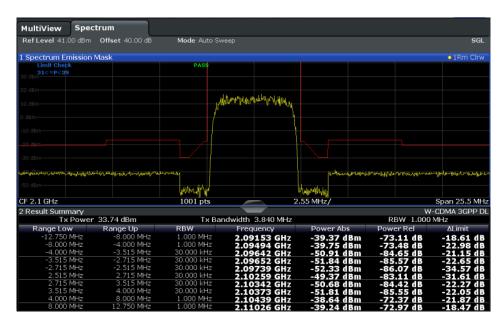


Figure 5-34: Spectrum Emission Mask result displays

In addition to the graphical results of the SEM measurement displayed in the diagram, a result summary is displayed to evaluate the limit check results (see also Chapter 5.6.4.2, "Limit Lines in SEM Measurements", on page 208).

The following information is provided in the result summary:

Label	Description
General Information	
Standard	Loaded standard settings
Tx Power	Power of the reference range
Tx Bandwidth	Tx bandwidth used by the reference range
RBW	RBW used by the reference range
Range results	
Range Low	Start of the frequency range the peak value was found in
Range Up	Frequency range end the peak value was found in
RBW	RBW of the range
Frequency	Frequency of the peak power level
Power Abs	Absolute peak power level within the range
Power Rel	Peak power level within the range, relative to the "Tx Power"
ΔLimit	Deviation of the peak power level from the limit line

You can define in which detail the data is displayed in the result summary in the "List Evaluation" settings (see Chapter 5.6.5.7, "List Evaluation (Results Configuration)",

Spectrum Emission Mask (SEM) Measurement

on page 231). By default, one peak per range is displayed. However, you can change the settings to display only peaks that exceed a threshold ("Margin").

Detected peaks are not only listed in the Result Summary, they are also indicated by blue squares in the diagram (optionally, see Show Peaks in the "List Evaluation" settings).

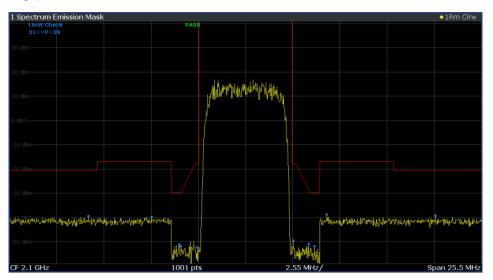


Figure 5-35: Detected peak display in SEM measurement

Furthermore, you can export the results of the result summary to a file which can be exported to another application for further analysis.

Results for SEM with multiple sub blocks

In the Spectrum application only, spectrum emissions can be measured for multiple sub blocks of channels (see Chapter 5.6.4.5, "SEM with Multiple Sub Blocks ("Multi-SEM")", on page 212 for details). Up to three sub blocks (with two gaps) can be defined. For each sub block and each gap, the results described above are provided individually in the result summary.

Spectrum Emission Mask (SEM) Measurement

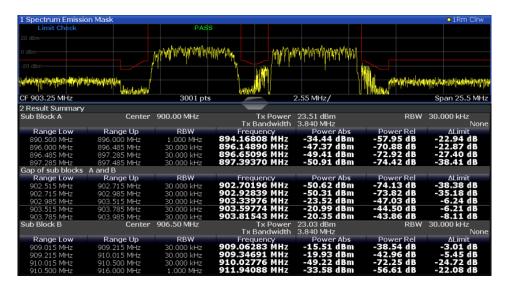


Figure 5-36: SEM results for multiple sub blocks

Retrieving Results via Remote Control

The measurement results of the spectrum emission mask test can be retrieved using the CALC:LIM:FAIL? command from a remote computer; see CALCulate<n>: LIMit<k>:FAIL? on page 1059 for a detailed description.

The *power* result for the reference range can be queried using CALC:MARK:FUNC:POW:RES? CPOW;

The *peak* power for the reference range can be queried using

CALC:MARK:FUNC:POW:RES? PPOW, see CALCulate<n>:MARKer<m>:FUNCtion: POWer<sb>:RESult? on page 730.

The measured power *trace* can be queried using TRAC:DATA? and TRAC:DATA:X?, see TRACe < n > [:DATA] on page 980 and TRACe < n > [:DATA]:X? on page 983:

The measured peak power list can be queried using TRAC: DATA? LIST, see TRACe < n > [:DATA] on page 980.

5.6.4 SEM Basics

Some background knowledge on basic terms and principles used in SEM measurements is provided here for a better understanding of the required configuration settings.

•	Ranges and Range Settings	206
	Limit Lines in SEM Measurements	
•	Fast SEM Measurements	.210
•	Multi-Standard Radio (MSR) SEM Measurements	212
	SEM with Multiple Sub Blocks ("Multi-SEM").	

Spectrum Emission Mask (SEM) Measurement

5.6.4.1 Ranges and Range Settings

In the Spectrum Emission Mask measurements, a range defines a segment for which you can define the following parameters separately:

- Start and stop frequency
- RBW
- VBW
- Sweep time
- Sweep points
- Reference level
- Attenuator settings
- Preamplifier settings
- Transducer settings
- Limit values

Via the sweep list, you define the ranges and their settings. For details on settings, refer to Chapter 5.6.5.1, "Sweep List", on page 216.

For details on defining the limits (masks), see Chapter 5.6.4.2, "Limit Lines in SEM Measurements", on page 208.

For details on defining the limits (masks), see the base unit description "Working with Lines in SEM".

Range definition

After a preset, the sweep list contains a set of default ranges and parameters. For each range, you can change the parameters listed above. You can insert or delete ranges.

The changes of the sweep list are only kept until you load another parameter set (by pressing PRESET or by loading an XML file). If you want a parameter set to be available permanently, create an XML file for this configuration (for details refer to "How to save a user-defined SEM settings file" on page 236).

If you load one of the provided XML files, the sweep list contains ranges and parameters according to the selected standard.

Reference range

The range containing the center frequency is defined as the reference range for all other ranges in the sweep list. All range limits are defined in relation to the reference range. The TX power used as a reference for all power level results in the result summary is also calculated for this reference range. You can define whether the power used for reference is the peak power level or the integrated power of the reference range. In the "Sweep List", the reference range is highlighted in blue and cannot be deleted.

Spectrum Emission Mask (SEM) Measurement

Rules

The following rules apply to ranges:

- The minimum span of a range is 20 Hz.
- The individual ranges must not overlap (but can have gaps).
- The maximum number of ranges is 30.
- The minimum number of ranges is 3.
- The reference range cannot be deleted.
- Center the reference range on the center frequency.
- The current "TX Bandwidth" defines the minimum span of the reference range (see "Channel Power Settings" on page 224).
- Define frequency values for each range relative to the center frequency.

To change the start frequency of the first range or the stop frequency of the last range, select the appropriate span with the SPAN key. You can define a span that is smaller than the combined span of all ranges. In this case, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Sweep points

You can define a minimum number of sweep points for each range. The total number of available sweep points is then distributed among the ranges in consideration of the minimum values. If the total number of sweep points is not enough to satisfy the minimum sweep point requirements in all ranges, the R&S FSW adjusts the global number of Sweep Points accordingly. By default, each range has a minimum of one sweep point.

This allows you to increase the resolution within a specific range for detailed analysis; you do not have to increase the overall number of sweep points and thus the measurement time for the SEM measurement.

Symmetrical ranges

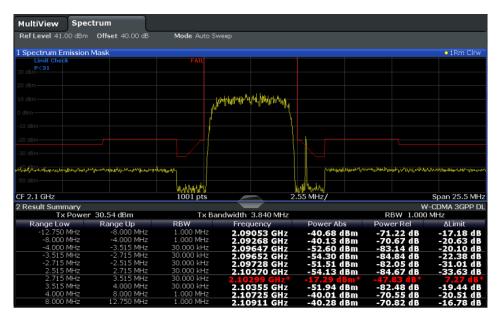
You can easily define a sweep list with symmetrical range settings, i.e. the ranges to the left and right of the reference range are defined symmetrically. When symmetrical setup is activated, the current sweep list configuration is changed to define a symmetrical setup regarding the reference range. The number of ranges to the left of the reference range is reflected to the right, i.e. any missing ranges on the right are inserted, while superfluous ranges are removed. The values in the ranges to the right of the reference range are adapted symmetrically to those in the left ranges.

Symmetrical ranges fulfill the conditions required for "Fast SEM" mode (see Chapter 5.6.4.3, "Fast SEM Measurements", on page 210).

Power classes

If the signal power level to be monitored varies and the limits vary accordingly, you can define power classes, which can then be assigned to the frequency ranges. Thus, the limits for the signal levels can be defined differently for varying input levels. For

Spectrum Emission Mask (SEM) Measurement


instance, for higher input levels a transmission standard can allow for higher power levels in adjacent channels, whereas for lower input levels the allowed deviation can be stricter. Up to four different power classes can be defined.

5.6.4.2 Limit Lines in SEM Measurements

On the R&S FSW, the spectrum emission mask is defined using limit lines. Limit lines allow you to check the measured data (that is, the trace results) against specified limit values. Generally, it is possible to define limit lines for any measurement in the Spectrum application using the LINES key. For SEM measurements, however, special limit lines are available via the "Sweep List", and it is strongly recommended that you use only these limit line definitions.

In the "Sweep List", you can define a limit line for each power class that varies its level according to the specified frequency ranges. Special limit lines are automatically defined for each power class according to the current "Sweep List" settings every time the settings change. These limit lines are labeled "_SEM_LINE_<xxx>_ABS<0...3>" and "_SEM_LINE_<xxx>_REL<0...3>", where <xxx> is an index to distinguish limit lines between different measurement channels.

The limit line defined for the currently used power class is indicated by a red line in the display. The result of the limit check is indicated at the top of the diagram. Note that only "Pass" or "Fail" is indicated; a "margin" function as for general limit lines is not available.

The indicated limit line depends on the settings in the "Sweep List". Several types of limit checks are possible:

Spectrum Emission Mask (SEM) Measurement

Table 5-11: Limit check types

Limit check type	Pass/fail criteria	Limit line definition
Absolute	Absolute power levels must not exceed limit line	Defined by the "Abs Limit Start"/ "Abs Limit Stop" values for each range
Relative	Power deviations relative to the TX channel power must not exceed limit line	Defined by the "Rel Limit Start"/ "Rel Limit Stop" values (relative to the TX channel power), fixed for each range.
Relative with function f(x)	If the power exceeds both the absolute and the relative limits, the check fails (see Relative limit line functions below)	Defined by the maximum of the absolute or relative start and stop limit values for each range. Thus, the start or stop point of the limit range, or both, are variable (since the maximum can vary).
Abs and Rel	If the power exceeds both the absolute and the relative limits, the check fails.	The less strict (higher) limit line is displayed for each range.
		If you use a function to define the relative limit start or stop value, the signal is checked against an additional condition: the power must exceed the absolute limit, as well as the absolute and relative function values.
Abs or Rel	or Rel If the power exceeds either the absolute or the relative limits, the	The stricter (lower) limit line is displayed for each range.
check fails.	If you use a function to define the relative limit start or stop value, the signal is checked against an additional condition: if the power exceeds the absolute limit, or the higher of the absolute and relative function values, the check fails.	

Relative limit line functions

A new function allows you to define limit lines whose start or end points (or both) are variable, depending on the carrier power. Thus, the resulting limit line can change its slope within the range, depending on the carrier power. Common relative limit lines are calculated once for the defined start and end points and maintain a constant slope.

If the relative limit value function is used in combination with the "Abs and Rel" or "Abs or Rel" limit check types, an additional condition is considered for the limit check (see Table 5-11).

Limit check results in the result summary

For each range, the peak measured value and the deviation of these values from the limit line are displayed in the result summary. If the limit check is passed for the range, the deviation represents the closest value to the limit line. If the limit check is passed for the range, the deviation represents the closest value to the limit line. If the limit check for the range fails, the deviation represents the maximum violation against the limit line. Furthermore, the absolute power levels and the relative deviation of the peaks from the TX channel power are displayed. Values that exceed the limit are indicated in red and by an asterisk (*).

Spectrum Emission Mask (SEM) Measurement

Although a margin functionality is not available for the limit check, a margin (threshold) for the peak values to be displayed in the Result Summary can be defined. (In the "List Evaluation" settings, see Chapter 5.6.5.7, "List Evaluation (Results Configuration)", on page 231).

5.6.4.3 Fast SEM Measurements

To improve the performance of the R&S FSW for spectrum emission mask measurements, a "Fast SEM" mode is available. If this mode is activated, several consecutive ranges with identical sweep settings are combined to one sweep internally, which makes the measurement considerably faster. The displayed results remain unchanged and still consist of several ranges. Thus, measurement settings that apply only to the results, such as limits or transducer factors, can nevertheless be defined individually for each range.

Prerequisites

"Fast SEM" mode is available if the following criteria apply:

- The frequency ranges are consecutive, without frequency gaps
- The following sweep settings are identical (for details see Chapter 5.6.5.1, "Sweep List", on page 216):
 - Filter Type
 - RBW
 - VBW
 - Sweep Time Mode
 - Reference Level
 - Rf Attenuation Mode
 - RF Attenuation
 - Preamplification

Activating Fast SEM mode

"Fast SEM" mode is activated in the sweep list (see Chapter 5.6.5.1, "Sweep List", on page 216) or using a remote command. Activating the mode for one range automatically activates it for all ranges in the sweep list.

Remote command:

[SENSe:]ESPectrum<sb>:HighSPeed on page 778

Spectrum Emission Mask (SEM) Measurement

Fast SEM not supported for multiple sub blocks

For SEM with multiple sub blocks, fast SEM is not available. If more than one sub block is defined and a standard is loaded which contains an active fast SEM setting, this setting is disabled.

For more information on multi-SEM measurements, see Chapter 5.6.4.5, "SEM with Multiple Sub Blocks ("Multi-SEM")", on page 212.

Consequences

When the "Fast SEM" mode is activated, the ranges for which these criteria apply are displayed as one single range. The sweep time is defined as the sum of the individual sweep times, initially, but can be changed.

If "Symmetrical Setup" mode is active when "Fast SEM" mode is activated, not all sweep list settings can be configured symmetrically automatically (see also "Symmetric Setup" on page 221).

Any other changes to the sweep settings of the combined range are applied to each included range and remain changed even after deactivating "Fast SEM" mode.

Example

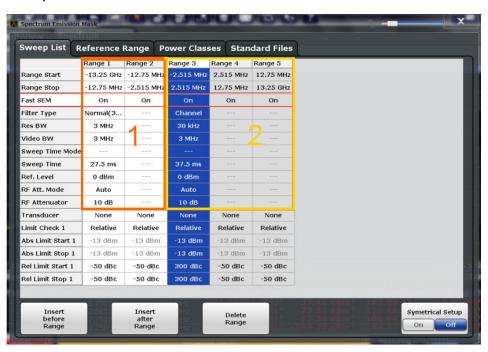


Figure 5-37: Sweep list using Fast SEM mode

In Figure 5-37, a sweep list is shown for which Fast SEM is activated. The formerly five separately defined ranges are combined to two sweep ranges internally.

Spectrum Emission Mask (SEM) Measurement

5.6.4.4 Multi-Standard Radio (MSR) SEM Measurements

Multi-standard radio (MSR) measurements allow you to perform SEM tests on signals with multiple carriers using different digital standards. MSR measurements are described in the specification 3GPP TS 37.141. Various typical combinations of standards for base station tests are described, e.g. LTE FDD and W-CDMA carriers. By performing an MSR SEM measurement you can determine if or how the different carriers affect each other, i.e. if unwanted emissions occur. On the R&S FSW, the MSR SEM measurement is a standard measurement as for single carriers. The MSR settings merely provide a convenient way of configuring the sweep list for all required ranges according to the specification quickly.

Refined settings allow the R&S FSW to calculate the SEM limits according to standard 3GPP 37.141 V12.2.0, which distinguishes between base station configurations and power values.

5.6.4.5 SEM with Multiple Sub Blocks ("Multi-SEM")

In the Spectrum application only, spectrum emissions can be measured for multiple sub blocks of channels (also referred to as a "Multi-SEM" measurement). Sub blocks are a set of multiple ranges around a defined center frequency (carrier). Multiple sub blocks can include gaps or overlap, and each sub block defines a separate mask. In the overlapping masks, multi-limit lines are calculated. Up to three sub blocks (with two gaps) can be defined. For each sub block, the familiar configuration settings concerning ranges, limit lines and MSR can be defined individually.

Comparison to "traditional" SEM measurement

The default SEM measurement is simply a special case of "Multi-SEM" - consisting of one single block. Only if the number of sub blocks in the basic SEM configuration is larger than 1, multiple sub blocks are inserted in the configuration settings and result tables.

Particular features of configuring multiple sub blocks

The sub blocks are independent of the global start, stop, center and span frequencies for the complete SEM measurement. Thus, there can be gaps that can even include other carrier ranges, but are not configured for the SEM measurement.

For each sub block, you define:

- The center frequency of the reference range of the sub block; center frequencies must be defined in ascending order for sub blocks A,B,C
- The reference range; note that although individual ranges of different sub blocks can overlap, reference ranges for different sub blocks cannot; they must define distinct frequency ranges
- The sweep list, including the limit lines
- Optionally: a standard file or MSR settings to be used for measurement (if one is selected, the other is disabled)

Spectrum Emission Mask (SEM) Measurement

Fast SEM not supported for multiple sub blocks

For SEM with multiple sub blocks, fast SEM is not available. If more than one sub block is defined and a standard is loaded which contains an active fast SEM setting, this setting is disabled.

Absolute vs relative frequencies

In the default configuration with only one sub block, frequencies are defined relative to the center frequency; this is the familiar configuration.

For setups with more than one sub block, frequencies are defined relative to the center frequency of the reference ranges for the individual sub blocks. However, in the result summary, frequencies are indicated as absolute values. Relative frequencies that refer to different reference ranges would be inconvenient and difficult to analyze.

Limit check behavior for overlapping masks

Since spectrum emission masks are defined individually for each sub block, and sub blocks can overlap, the question arises what happens during the limit check in the overlapping regions? To answer this question, we must distinguish the following cases:

- For the reference range, no limit checking is performed, as the reference range contains the carrier
- For other ranges, only the limit lines defined for ranges between the carriers, that is
 the reference ranges to either side, are significant. In other words: if a limit line definition covers the frequency area of several carriers, only the limit lines for ranges
 between the corresponding reference range and the next closest reference range
 are significant.

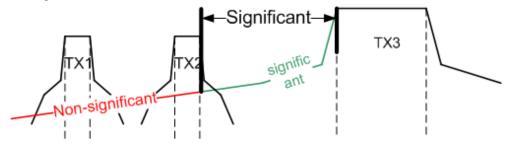


Figure 5-38: Behavior for overlapping masks

 For the ranges in which multiple limit lines are significant, a range-specific function determines the behavior of the limit check

Limit calculation for individual ranges

For each range a function can be defined that determines the behavior of the limit check if there are multiple limit lines:

- "NONE": In reference ranges no limit check is performed;
 Reference ranges always use the function "NONE".
 For other ranges, see the combinations for overlapping ranges below.
- "SUM": sum of the two limit lines (calculated for linear powers) is used
- "MAX": maximum of the two limit lines is used

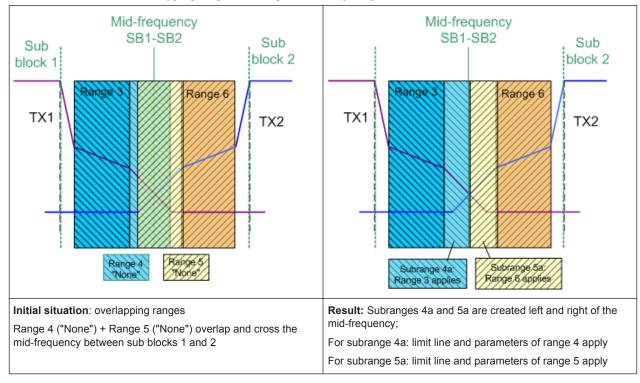
Spectrum Emission Mask (SEM) Measurement

This leads to the following combinations for overlapping ranges:

- "MAX+MAX": maximum of the two limit lines is used
- "MAX+SUM": maximum of the two limit lines is used
- "SUM+SUM": sum of the two limit lines (calculated for linear powers) is used
- "NONE+MAX"/"NONE+SUM": limit line (and parameters) of the "NONE" range are ignored
- "NONE+NONE": depends on the position of the overlapping ranges in relation to the mid-frequency between the two neighboring sub blocks:
 - Overlap is completely *below* the mid-frequency: limits and parameters of the left sub block are used
 - Overlap is completely above the mid-frequency: limits and parameters of the right sub block are used
 - Overlap crosses the mid-frequency: new subranges are created: one to the left of the mid-frequency, one to the right of the mid-frequency. The left subrange uses the limits and parameters of the left sub block, the right subrange uses the limits and parameters of the right sub block.

Different RBWs in overlapping ranges

If different RBWs are defined for the overlapping ranges, the following parameters from the range with the smaller RBW are considered for both ranges:


- RBW
- VBW
- Attenuation
- Reference level
- Transducer
- Filter type
- (proportional) sweep time

In the range with the higher RBW, the following offset is applied to the limit line:

-10*log(RBW_{large} / RBW_{small})

Spectrum Emission Mask (SEM) Measurement

Table 5-12: Limit lines in overlapping ranges crossing the mid-frequency

Global SEM limit check

For the complete SEM measurement, which can consist of multiple sub blocks, only one single limit check is performed. A single limit line is calculated according to the individual range limit lines and the defined functions for overlapping ranges. The measured values are then compared with this single limit line. If the limit is exceeded in any range, the result of the limit check is "failed".

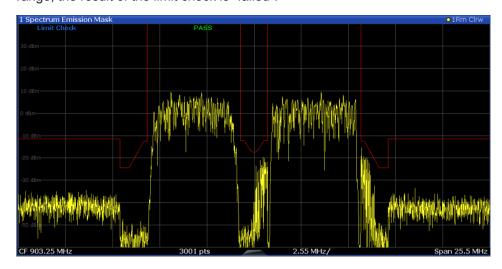


Figure 5-39: Summarized limit line for multiple sub blocks

Spectrum Emission Mask (SEM) Measurement

5.6.5 SEM Configuration

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask"

The SEM measurement is started immediately with the default settings.

The remote commands required to perform these tasks are described in Chapter 11.5.6, "Measuring the Spectrum Emission Mask", on page 773.

Global span settings

The span of the signal to be monitored is configured in the general span settings (see Chapter 6.3.2, "Frequency and Span Settings", on page 397). Only ranges within this global span are considered for the SEM measurement.

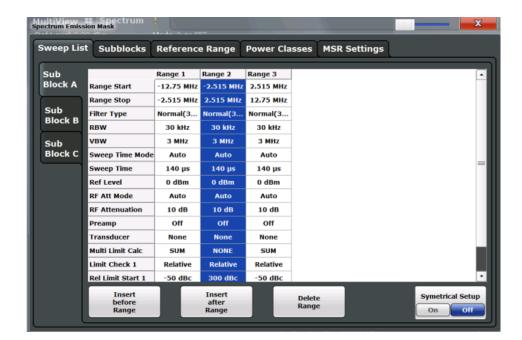
Multi-SEM configuration

In the Spectrum application only, spectrum emissions can be measured for multiple sub blocks of channels (see Chapter 5.6.4.5, "SEM with Multiple Sub Blocks ("Multi-SEM")", on page 212). Up to three sub blocks (with two gaps) can be defined. For each sub block, the familiar configuration settings concerning ranges, limit lines and MSR can be defined in individual tabs. In addition, settings on the sub blocks themselves must be configured in the "Sub Blocks" tab of the "Spectrum Emission Mask" configuration dialog box (see Chapter 5.6.5.2, "Multi-SEM (Sub Block) Settings ", on page 222).

The following settings are available in individual tabs of the "Spectrum Emission Mask" configuration dialog box.

•	Sweep List	216
	Multi-SEM (Sub Block) Settings	
	Reference Range	
	Power Classes	
	MSR Settings	
	Standard Files	
	List Evaluation (Results Configuration)	

5.6.5.1 Sweep List


Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "Sweep List"

For SEM measurements, the input signal is split into several frequency ranges which are swept individually and for which different limitations apply. You configure the individual frequency ranges and mask limits in the "Sweep List".

If you edit the sweep list, always follow the rules and consider the limitations described in Chapter 5.6.4.1, "Ranges and Range Settings", on page 206.

Spectrum Emission Mask (SEM) Measurement

Range Start / Range Stop	217
Fast SEM	218
Filter Type	218
RBW	
VBW	218
Sweep Time Mode	218
Sweep Time	
Ref. Level	
RF Att. Mode	
RF Attenuator	
Preamp	
Transd. Factor	
Limit Check <n></n>	
Abs Limit Start/Stop <n></n>	220
Rel Limit Start/Stop <n></n>	220
Multi-Limit Calc <n></n>	
Minimum Sweep Points	221
Insert before/after Range	
Delete Range	
Symmetric Setup.	221

Range Start / Range Stop

Sets the start frequency/stop frequency of the selected range.

To change the start/stop frequency of the first or last range, respectively, select the appropriate span with the SPAN key. You can set a span that is smaller than the overall span of the ranges. In this case, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz. The first and last ranges are adapted to the given span as long as the minimum span of 20 Hz is not violated.

Spectrum Emission Mask (SEM) Measurement

Define frequency values for each range relative to the center frequency. Center the reference range on the center frequency. The current "TX Bandwidth" defines the minimum span of the reference range (see "Channel Power Settings" on page 224).

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>[:FREQuency]:STARt on page 780
[SENSe:]ESPectrum<sb>:RANGe<range>[:FREQuency]:STOP on page 781
```

Fast SEM

Activates "Fast SEM" mode for all ranges in the sweep list. For details, see Chapter 5.6.4.3, "Fast SEM Measurements", on page 210.

Note: If you deactivate "Fast SEM" mode while "Symmetrical Setup" mode is on, "Symmetrical Setup" mode is automatically also deactivated.

If you activate "Fast SEM" mode while "Symmetrical Setup" mode is on, not all range settings can be configured symmetrically automatically.

Remote command:

```
[SENSe:]ESPectrum<sb>:HighSPeed on page 778
```

Filter Type

Sets the filter type for this range.

For details on filter types, see Chapter 6.5.1.6, "Which Data May Pass: Filter Types", on page 417.

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:FILTer:TYPE on page 779
```

RBW

Sets the resolution bandwidth for this range.

For details on the RBW, see Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414.

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:BANDwidth[:RESolution] on page 778
```

VBW

Sets the video bandwidth for this range.

For details on the VBW, see Chapter 6.5.1.2, "Smoothing the Trace Using the Video Bandwidth", on page 414.

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:BANDwidth:VIDeo on page 778
```

Sweep Time Mode

Activates or deactivates the auto mode for the sweep time.

For details on the sweep time mode, see Chapter 6.5.1.7, "How Long the Data is Measured: Sweep Time", on page 418

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:SWEep:TIME:AUTO on page 791
```

Spectrum Emission Mask (SEM) Measurement

Sweep Time

Sets the sweep time value for the range.

For details on the sweep time, see Chapter 6.5.1.7, "How Long the Data is Measured: Sweep Time", on page 418

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:SWEep:TIME on page 790

Ref. Level

Sets the reference level for the range.

For details on the reference level, see Chapter 6.4.1.1, "Reference Level", on page 404.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:RLEVel on page 790

RF Att. Mode

Activates or deactivates the auto mode for RF attenuation.

For details on attenuation, see Chapter 6.4.1.2, "RF Attenuation", on page 405.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:ATTenuation:AUTO
on page 782

RF Attenuator

Sets the attenuation value for the range.

For details on attenuation, see Chapter 6.4.1.3, "Scaling", on page 406.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:ATTenuation on page 781

Preamp

Switches the preamplifier on or off.

For details on the preamplifier, see "Preamplifier" on page 410.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:GAIN:STATe on page 783

Transd. Factor

Sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

For details on transducers, see Chapter 9.2, "Basics on Transducer Factors", on page 591.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:TRANsducer on page 791

Spectrum Emission Mask (SEM) Measurement

Limit Check <n>

Sets the type of limit check for the n-th power class in the range. Up to four limits are possible.

For details on limit checks, see Chapter 5.6.4.2, "Limit Lines in SEM Measurements", on page 208.

The limit state affects the availability of all limit settings.

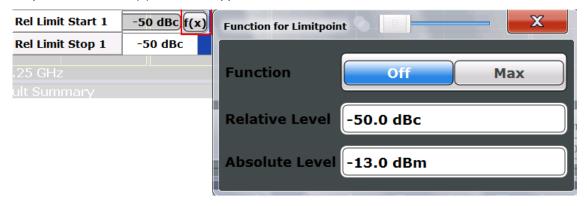
Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:STATe on page 788
CALCulate<n>:LIMit<k>:FAIL? on page 1059

Abs Limit Start/Stop <n>

Sets an absolute limit value for the n-th power class at the start or stop frequency of the range [dBm].

Remote command:


[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:ABSolute:STARt
on page 783

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:ABSolute:STOP
on page 784

Rel Limit Start/Stop <n>

Sets a relative limit value for the n-th power class at the start or stop frequency of the range [dBc].

By default, this value is a fixed relative limit, i.e. no function is defined. To define a function for the relative limit, select the input field for "Rel Limit Start" or "Rel Limit Stop" and then the "f(x)" icon that appears.

If the function is set to "MAX", you can define a relative *and* an absolute limit level. In this case, the maximum of the two values is used as the limit level.

For more information, see "Relative limit line functions" on page 209.

Remote command:

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt
on page 785

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP on page 786

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt:FUNCtion on page 786

Spectrum Emission Mask (SEM) Measurement

```
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP:
FUNCtion on page 788

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt:
ABS on page 785

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP:
ABSolute on page 787
```

Multi-Limit Calc <n>

Defines the function used to calculate the limit line for the n-th power class for overlapping ranges in Multi-SEM measurements. For details, see "Limit calculation for individual ranges" on page 213.

"NONE" (reference ranges only:) the limit of the reference range is used "SUM" Sum of the two limit lines (calculated for linear powers) is used

"MAX" Maximum of the two limit lines is used

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:MLCalc on page 789
```

Minimum Sweep Points

Defines the minimum number of sweep points for the range.

If necessary to fulfill all minimum sweep point requirements in all ranges, the global Sweep Points setting is increased. By default, each range is supplied with a minimum of one sweep point.

For details, see "Sweep points" on page 207

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:POINts:MIN[:VALue] on page 789
```

Insert before/after Range

Inserts a new range to the left (before) or to the right (after) of the range in which the cursor is currently displayed. The range numbers of the currently focused range and all higher ranges are increased accordingly. The maximum number of ranges is 30.

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:INSert on page 783
```

Delete Range

Deletes the currently focused range, if possible. (The reference range cannot be deleted. A minimum of three ranges is required.) The range numbers are updated accordingly.

Remote command:

```
[SENSe:]ESPectrum<sb>:RANGe<range>:DELete on page 779
```

Symmetric Setup

Any changes to the range settings in active "Symmetric Setup" mode lead to symmetrical changes in the other ranges (where possible). In particular, this means:

 Inserting ranges: a symmetrical range is inserted on the other side of the reference range

Spectrum Emission Mask (SEM) Measurement

 Deleting ranges: the symmetrical range on the other side of the reference range is also deleted

Editing range settings: the settings in the symmetrical range are adapted accordingly

Note: If "Fast SEM" mode is deactivated while "Symmetric Setup" mode is on, "Sym Setup" mode is automatically also deactivated.

If "Fast SEM" mode is activated while "Symmetric Setup" mode is on, not all range settings can be set automatically.

5.6.5.2 Multi-SEM (Sub Block) Settings

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "Sub Blocks"

In the Spectrum application only, spectrum emissions can be measured for multiple sub blocks of channels (see Chapter 5.6.4.5, "SEM with Multiple Sub Blocks ("Multi-SEM")", on page 212). Sub blocks are a set of multiple ranges around a defined center frequency (carrier).

By default, a single sub block is assumed. If more than one sub blocks are defined, additional tabs are inserted for each sub block in the individual tabs of the "Spectrum Emission Mask" configuration dialog box.

Sub Block Count	222
Sub Block Center Frequency	222
Standard / MSR Settings	223
Edit sweep list	223

Sub Block Count

Defines the number of sub blocks. By default, the familiar SEM measurement with just one single block of ranges is configured.

Remote command:

[SENSe:]ESPectrum<sb>:SCOunt on page 777

Sub Block Center Frequency

Defines the center frequency for an individual sub block. The center frequency determines the reference range used for each block.

Spectrum Emission Mask (SEM) Measurement

For measurements with only one sub block, this setting corresponds to the global setting in the "Frequency" settings (see Center frequency).

Remote command:

[SENSe:]ESPectrum<sb>:SCENter on page 776

Standard / MSR Settings

Defines the use of a standard settings file or a multi-standard radio configuration for a particular sub block. For details, see Chapter 5.6.5.6, "Standard Files", on page 229 and Chapter 5.6.5.5, "MSR Settings", on page 226.

Note that *either* a standard *or* an MSR setting can be selected; if one is selected, the other is disabled.

Remote command:

[SENSe:]ESPectrum<sb>:PRESet[:STANdard] on page 774 Chapter 11.5.6.3, "Configuring a Multi-SEM Measurement", on page 776

Edit sweep list

Switches to the "Sweep List" tab of the "Spectrum Emission Mask" dialog box to configure the individual frequency ranges and mask limits for the corresponding sub block. See Chapter 5.6.5.1, "Sweep List", on page 216.

5.6.5.3 Reference Range

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "Reference Range"

The range centered around the center frequency is defined as the reference range for all other ranges in the sweep list.

Power Reference Type	224
Channel Power Settings	
L Tx Bandwidth	
L RRC Filter State	
L Alpha	

Spectrum Emission Mask (SEM) Measurement

Power Reference Type

Defines how the reference power is calculated.

"Channel Power"

Measures the channel power within the reference range using the integration bandwidth method (see also "IBW method" on page 143). Additional settings can be configured for this method.

"Peak Power"

Determines the peak power within the reference range.

Remote command:

[SENSe:]ESPectrum<sb>:RTYPe on page 793

Channel Power Settings

If the Power Reference Type "Channel Power" was selected, additional parameters can be configured.

Tx Bandwidth ← Channel Power Settings

Defines the bandwidth used for measuring the channel power, with:

Minimum span ≤ Bandwidth ≤ of reference range

Remote command:

[SENSe:]ESPectrum<sb>:BWID on page 792

RRC Filter State ← Channel Power Settings

Activates or deactivates the use of an RRC filter.

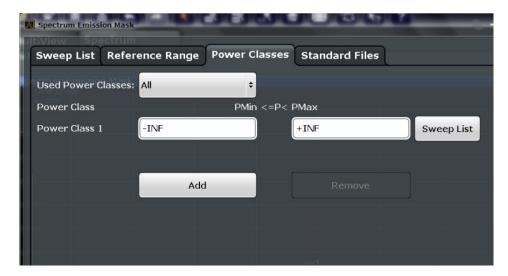
Remote command:

[SENSe:]ESPectrum<sb>:FILTer[:RRC][:STATe] on page 792

Alpha ← Channel Power Settings

Sets the alpha value of the RRC filter (if activated).

Remote command:


[SENSe:]ESPectrum<sb>:FILTer[:RRC]:ALPHa on page 792

5.6.5.4 Power Classes

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "Power Classes"

You can configure power classes which you can then assign to sweep list ranges. For details, see "Power classes" on page 207.

Spectrum Emission Mask (SEM) Measurement

Used Power Classes	225
PMin/PMax	
Sweep List	226
Adding or Removing a Power Class	226

Used Power Classes

Defines which power classes are considered for the SEM measurement. Limits can be defined only for used power classes. It is only possible to select either one specific power class or all the defined power classes.

If "All" is selected, the power class that corresponds to the currently measured power in the reference range is used for monitoring. The limits assigned to that power class are applied (see "Abs Limit Start/Stop <n>" on page 220 and "Rel Limit Start/Stop <n>" on page 220).

Remote command:

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>[:EXCLusive] on page 796

To define all limits in one step:

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:LIMit[:STATe] on page 796

PMin/PMax

Defines the power limits for each power class. The first range always starts at -200 dBm (-INF) and the last range always stops at 200 dBm (+INF). These fields cannot be modified. If more than one power class is defined, the value of "PMin" must be equal to the value of "PMax" of the previous power class and vice versa.

Note that the power level can be equal to the lower limit(s), but must be lower than the upper limit(s):

P_{min}≦P<P_{max}

Otherwise the ranges are corrected automatically.

Spectrum Emission Mask (SEM) Measurement

Remote command:

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MINimum
on page 798
CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MAXimum
on page 797

Sweep List

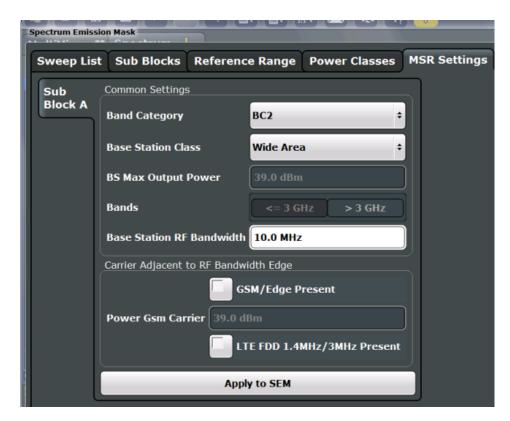
Switches to the "Sweep List" tab of the "Spectrum Emission Mask" dialog box and focuses the "Limit Check" setting for the corresponding power class (1-4) in the reference range (see "Limit Check <n>" on page 220).

Adding or Removing a Power Class

Adds a new power class at the end of the list or removes the last power class. After adding or removing, the last power class is adapted to end at "+INF". Note that a maximum of four power classes are available.

Remote command:

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass:COUNt on page 796


5.6.5.5 MSR Settings

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "MSR Settings"

Multi-standard radio (MSR) measurements allow you to perform SEM tests on multiple carriers using different digital standards.

For details, see Chapter 5.6.4.4, "Multi-Standard Radio (MSR) SEM Measurements", on page 212.

Spectrum Emission Mask (SEM) Measurement

Band Category	227
Base Station Class	227
Base Station Maximum Output Power	228
Bands	
Base Station RF Bandwidth	228
Carrier Adjacent to RF Bandwidth Edge	228
Power GSM Carrier	
Apply to SEM	229

Band Category

Defines the band category for MSR measurements, i.e. the combination of available carriers to measure.

"BC1" LTE FDD and W-CDMA

"BC2" LTE FDD, W-CDMA and GSM/EDGE

"BC3" LTE TDD and TD-SCDMA

Remote command:

[SENSe:]ESPectrum<sb>:MSR:BCATegory on page 799

Base Station Class

Defines the class of the base station according to its sending range.

This setting is required to calculate the SEM limits according to standard 3GPP 37.141 V12.2.0.

Remote command:

[SENSe:]ESPectrum<sb>:MSR:CLAS on page 800

Spectrum Emission Mask (SEM) Measurement

Base Station Maximum Output Power

Defines the maximum output power of the base station. Possible values are from 0 dBm to 100 dBm in 1 dB steps.

This setting is only available for base stations with a medium range Base Station Class.

This value is required to calculate the SEM limits according to standard 3GPP 37.141 V12.2.0.

Remote command:

```
[SENSe:]ESPectrum<sb>:MSR:MPOWer on page 803
```

Bands

Defines the frequency range of the bands used by the base station.

This setting is only available for Band Category 1 or 3.

This setting is required to calculate the SEM limits according to standard 3GPP 37.141 V12.2.0.

Remote command:

```
[SENSe:]ESPectrum<sb>:MSR:BAND on page 799
```

Base Station RF Bandwidth

Defines the relevant RF bandwidth (span) required to measure all available carriers in MSR SEM measurements.

Remote command:

```
[SENSe:]ESPectrum<sb>:MSR:RFBWidth on page 803
```

Carrier Adjacent to RF Bandwidth Edge

For particular measurement setups, the specification demands specific limits for the SEM ranges.

These settings are only available for Band Category 2.

"GSM/EDGE present"

A GSM/EDGE carrier is located at the edge of the RF band. In this case, the power of the GSM carrier must be specified (see "Power GSM Carrier" on page 228).

"LTE FDD 1.4 MHz / 3 MHz present"

An LTE FDD 1.4 MHz or 3 MHz carrier is located at the edge of the RF band.

Remote command:

```
[SENSe:]ESPectrum<sb>:MSR:GSM:CPResent on page 802
[SENSe:]ESPectrum<sb>:MSR:LTE:CPResent on page 802
```

Power GSM Carrier

Defines the power of the GSM carrier (if available, see "Carrier Adjacent to RF Bandwidth Edge" on page 228). Possible values are from 0 dBm to 100 dBm in 1 dB steps.

This setting is only available for Band Category2.

This setting is required to calculate the SEM limits according to standard 3GPP 37.141 V12.2.0.

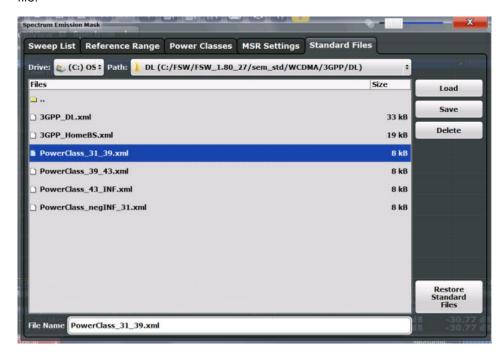
Spectrum Emission Mask (SEM) Measurement

Remote command:

[SENSe:]ESPectrum<sb>:MSR:GSM:CARR on page 801

Apply to SEM

Configures the SEM sweep list according to the specified MSR settings.


Remote command:

[SENSe:]ESPectrum<sb>:MSR:APPLy on page 798

5.6.5.6 Standard Files

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "Standard Files"

You can save the current measurement settings as a user-defined standard (XML file), or load stored measurement settings. Furthermore, you can delete an existing settings file.

For details, see Chapter 5.6.6.1, "How to Manage SEM Settings Files", on page 235.

Standard files for sub blocks (Multi-SEM measurements)

If more than one sub blocks are defined, the "Standard Files" tab and softkey are not available. To load a standard file for an individual sub block, use the Standard / MSR Settings setting in the "Sub Blocks" tab.

Selecting the Storage Location - Drive/ Path/ Files	230
File Name	
	230

Spectrum Emission Mask (SEM) Measurement

Save Standard	231
Delete Standard	231
Restore Standard Files	231

Selecting the Storage Location - Drive/ Path/ Files

Select the storage location of the settings file on the instrument or an external drive.

The "Drive" indicates the internal (C:) or any connected external drives (e.g. a USB storage device).

The "Path" contains the drive and the complete file path to the currently selected folder.

The "Files" list contains all subfolders and files of the currently selected path.

The default storage location for the SEM settings files is: $C:\R_s\in\L_s$

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

MMEMory: CATalog? on page 1064

File Name

Contains the name of the data file without the path or extension.

By default, the name of a settings file consists of a base name followed by an underscore. Multiple files with the same base name are extended by three numbers, e.g. limit lines 005.

For details on the file name and location, see Chapter 8.3.2.2, "Storage Location and File Name", on page 559.

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Load Standard

Loads the selected measurement settings file.

Remote command:

[SENSe:]ESPectrum<sb>:PRESet[:STANdard] on page 774

Spectrum Emission Mask (SEM) Measurement

Save Standard

Saves the current measurement settings for a specific standard as a file with the defined name.

Remote command:

[SENSe:]ESPectrum<sb>:PRESet:STORe on page 775

Delete Standard

Deletes the selected standard. Standards predefined by Rohde & Schwarz can also be deleted. A confirmation query is displayed to avoid unintentional deletion of the standard.

Note: Restoring predefined standard files. The standards predefined by Rohde & Schwarz available at the time of delivery can be restored using the "Restore Standards" function (see "Restore Standard Files" on page 231).

Restore Standard Files

Restores the standards predefined by Rohde & Schwarz available at the time of delivery.

The XML files from the C:\R_S\instr\sem_backup folder are copied to the C: \R S\instr\sem std folder.

Note that this function will overwrite customized standards that have the same name as predefined standards.

Remote command:

[SENSe:]ESPectrum<sb>:PRESet:RESTore on page 774

5.6.5.7 List Evaluation (Results Configuration)

Access: "Overview" > "Select Measurement" > "Spectrum Emission Mask" > "List Evaluation"

In the "List Evaluation" dialog box, you configure the contents and display of the SEM results.

Spectrum Emission Mask (SEM) Measurement

List Evaluation (Result Summary) State	232
Show Peaks	232
Margin	232
Saving the Result Summary (Evaluation List) to a File	232

List Evaluation (Result Summary) State

Activates or deactivates the Result Summary.

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:AUTO on page 804 TRACe<n>[:DATA] on page 980

Show Peaks

If activated, all peaks that have been detected during an active SEM measurement are marked with blue squares in the Spectrum diagram.

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:PSHow on page 805

Margin

Although a margin functionality is not available for the limit check, you can define a margin (or: *threshold*) for the peak values to be displayed in the result summary. Only peaks that exceed the margin value are displayed (also in the diagram, if activated).

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:MARGin on page 805

Saving the Result Summary (Evaluation List) to a File

Exports the Result Summary of the SEM measurement to an ASCII file for evaluation in an external application. If necessary, change the decimal separator for evaluation in other languages.

Define the file name and storage location in the file selection dialog box that is displayed when you select the "Save" function.

For details, see Chapter 5.6.8.2, "ASCII File Export Format (Spectrum Emission Mask)", on page 244.

Remote command:

```
MMEMory:STORe<n>:LIST on page 1091
FORMat:DEXPort:DSEParator on page 1064
```

5.6.6 How to Perform a Spectrum Emission Mask Measurement

SEM measurements can be performed according to a specific standard or freely configured. Configuration for signals with a regular channel definition can be configured quickly and easily. Selecting the SEM measurement is a prerequisite for all other tasks. For multi-standard radio SEM measurements, configuration for specified scenarios can be done automatically.

For signals with multiple carriers, also in non-contiguous ranges, an SEM measurement with multiple sub blocks can be configured.

The following tasks are described:

Spectrum Emission Mask (SEM) Measurement

- "To select an SEM measurement" on page 233
- "To perform an SEM measurement according to a standard" on page 233
- "To configure a user-defined SEM measurement" on page 233
- "To perform an MSR SEM measurement" on page 234
- "To perform a Multi-SEM measurement" on page 235

To select an SEM measurement

▶ Press the MEAS key, then select the "Spectrum Emission Mask" measurement.

To perform an SEM measurement according to a standard

Load the settings file as described in "How to load an SEM settings file" on page 236 and start a measurement.

To configure a user-defined SEM measurement

- 1. Define the span of the signal to be monitored in the general span settings.
- 2. Split the frequency span of the measurement into ranges for signal parts with similar characteristics.

Starting from the center frequency, determine which sections of the signal to the left and right can be swept and monitored using the same parameters. Criteria for such a range definition may be, for example:

- The signal power level
- The required resolution bandwidth or sweep time
- Transducer factors
- Permitted deviation from the defined signal level, i.e. the required limit values for monitoring

If the signal consists of a transmission channel and adjacent channels, the channel ranges can usually be used for the range definition.

- 3. If the signal power level to be monitored varies and the limits vary, define power classes. For each range of levels that can be monitored in the same way, define a power class.
 - a) Select the "Overview" softkey, then select the "SEM Setup" button and switch to the "Power Classes" tab.
 - b) Add a power class by selecting the "Add" button.
 - c) Enter the start and stop power levels to define the class.
 - d) Select the power classes to be used for the current measurement: either a specific class, or all classes, to have the required class selected automatically according to the input level measured in the reference range.
- 4. Select the "Sweep List" tab of the "Spectrum Emission Mask" dialog box.
- Insert the required ranges using the "Insert before Range" and "Insert after Range" buttons, which refer to the currently selected range (the reference range by default).

- If the signal trace is symmetric to the center frequency, activate the "Sym Setup" option to make setup easier and quicker.
- 6. Define the measurement parameters for each range as required. If symmetrical setup is activated, you only have to configure the ranges to one side of the center range.
 - In particular, define the limits for each range of the signal, i.e. the area in which the signal level can deviate without failing the limit check. If several power classes were defined (see step 3), define limits for each power class.
 - a) Define the type of limit check, i.e. whether absolute values or relative values are checked, or both. The type of limit check is identical for all power classes.
 - b) Define the limit start and stop values.
- 7. If the sweep list settings other than the limit and transducer values are identical for several adjacent ranges, activate "Fast SEM" mode to speed up the measurement. You only have to activate the mode for one range, the others are adapted automatically.
- 8. If necessary, change the settings for the reference power to which all SEM results refer in the "Reference Range" tab.
- 9. To indicate the determined peaks in the display during an SEM measurement, select "Overview" > "Analysis" > "Show Peaks".
- 10. To save the current SEM measurement settings to a file to re-use them later, save a settings file as described in "How to save a user-defined SEM settings file" on page 236.
- 11. Start a sweep.
 - The determined powers and limit deviations for each range are indicated in the Result Summary. If activated, the peak power levels for each range are also indicated in the Spectrum diagram.
- 12. To save the Result Summary, export the results to a file as described in Chapter 5.6.6.2, "How to Save SEM Result Files", on page 236.

To perform an MSR SEM measurement

- 1. Select the "MSR Config" softkey.
- Select the band category that determines the digital standards used in the measurement setup (see "Band Category" on page 227).
- 3. Define the bandwidth that contains all relevant carrier signals to be measured.
- For measurements with GSM/EDGE, LTE FDD and W-CDMA carriers (BC2), define whether a GSM/EDGE or an LTE FDD carrier, or both, are located at the edge of the bandwidth.
- 5. Select the "Apply to SEM" button.
 - The sweep list is configured according to the MSR specification, with the required number of ranges and defined limits.

6. Start a sweep.

The determined powers and limit deviations for each range are indicated in the Result Summary. If activated, the peak power levels for each range are also indicated in the Spectrum diagram.

7. To save the Result Summary, export the results to a file as described in Chapter 5.6.6.2, "How to Save SEM Result Files", on page 236.

To perform a Multi-SEM measurement

- 1. Define the span of the signal to be monitored in the general span settings.
- 2. Select the "Multi-SEM Config" softkey.
- 3. Define the number of sub blocks (up to 3) that contain the relevant carriers.
- 4. For each sub block, define the center frequency, that is, the frequency of the TX carrier or a frequency in the dedicated reference range.
- 5. For each sub block, do one of the following:
 - a) Select a standard settings file to be used.
 - b) Select the "MSR Settings" button and define the MSR configuration as described in "To perform an MSR SEM measurement" on page 234.
 - c) Select the "Edit" button and configure the sweep list manually as defined in "To configure a user-defined SEM measurement" on page 233. Be sure to select the correct vertical tab for the corresponding sub block within each subtab of the "Spectrum Emission Mask" configuration dialog.
 Define a function to be used for overlapping ranges in the "Multi-Limit Calc" field of the sweep list.
- Start a sweep.

The determined powers and limit deviations for each sub block, each gap, and each range are indicated in the Result Summary. If activated, the peak power levels for each range are also indicated in the Spectrum diagram.

7. To save the Result Summary, export the results to a file as described in Chapter 5.6.6.2, "How to Save SEM Result Files", on page 236.

5.6.6.1 How to Manage SEM Settings Files

SEM measurement settings can be saved to an XML file which can then be exported to another application or loaded on the R&S FSW again later. Some predefined XML files are provided that contain ranges and parameters according to the selected standard. All XML files are stored under C:\r_s\instr\sem_std.

For details on the file format of the SEM settings file, see Chapter 5.6.8.1, "Format Description of SEM XML Files", on page 238.

SEM settings or standard files are managed in the "Standards" tab of the "Spectrum Emission Mask" dialog box. To display this dialog box, select the "Overview" softkey and then the "SEM Setup" button.

Spectrum Emission Mask (SEM) Measurement

How to load an SEM settings file

- 1. From the file selection dialog box, select the settings file (with a .xml"" extension).
- 2. Select the "Load" button.

The settings from the selected file are restored to the R&S FSW and you can repeat the SEM measurement with the stored settings.

How to save a user-defined SEM settings file

- 1. Configure the SEM measurement as required (see Chapter 5.6.6, "How to Perform a Spectrum Emission Mask Measurement", on page 232).
- 2. In the "Standard Files" tab of the "Spectrum Emission Mask" dialog box, define a file name and storage location for the settings file.
- 3. Select the "Save" button.

The settings are stored to a file with the extension ".xml" as specified.

How to delete an SEM settings file

- In the "Standard Files" tab of the "Spectrum Emission Mask" dialog box, select the file you want to delete.
- 2. Select the "Delete" button.
- 3. Confirm the message.

The settings file is removed from the R&S FSW.

How to restore default SEM settings files

The R&S FSW is delivered with predefined settings files which can be edited and overwritten. However, you can restore the original files.

▶ In the "Standard Files" tab of the "Spectrum Emission Mask" dialog box, select the "Restore Standard Files" button.

The original predefined settings files are available for selection on the R&S FSW.

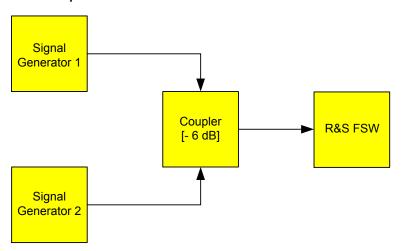
5.6.6.2 How to Save SEM Result Files

The Result Summary from an SEM measurement can be saved to a file, which can be exported to another application for further analysis, for example.

For details on the file format of the SEM export file, see Chapter 5.6.8.2, "ASCII File Export Format (Spectrum Emission Mask)", on page 244.

- Configure and perform an SEM measurement as described in Chapter 5.6.6, "How to Perform a Spectrum Emission Mask Measurement", on page 232.
- 2. In the "Overview", select the "Analysis" button.

Spectrum Emission Mask (SEM) Measurement


- 3. If necessary, change the "Decimal Separator" to "COMMA" for evaluation in other languages.
- 4. Select the "Save" button.
- 5. In the file selection dialog box, select a storage location and file name for the result file
- 6. Select the "Save" button.

The file with the specified name and the extension .dat is stored in the defined storage location.

5.6.7 Measurement Example: Multi-SEM Measurement

The following measurement example demonstrates an SEM measurement for a signal with multiple sub blocks.

Test setup:

Signal generator settings (e.g. R&S FSW SMW):

Device	Standard	Center Frequency	Level	Test Model
SigGen 1	3GPP/FDD	900 MHz	0 dBm	1-16
SigGen 2	EUTRA/LTE	906.5 MHz	0 dBm	1_1_5MHz

Setting up the measurement

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 903.25 MHz.
- 3. Set the reference level to 10 dBm with an offset of to 30 dB.
- 4. Press the MEAS key and select the "SEM" measurement function from the "Select Measurement" dialog box.

Spectrum Emission Mask (SEM) Measurement

- 5. Select the "Sub Blocks" softkey and define a sub block count of 2.
- 6. For sub block A, define the settings for the 3GPP/FDD signal:
 - a) Set the center frequency to 900 MHz
 - b) Select "MSR Settings".
 - c) Set the "Base Station RF Bandwidth" to 5 MHz.
 - d) Select "Apply to SEM".
- 7. For sub block B, define the settings for the EUTRA/LTE signal:
 - a) Set the center frequency to 906.5 MHz
 - b) Select "MSR Settings".
 - c) Set the "Base Station RF Bandwidth" to 5 MHz.
 - d) Select "Apply to SEM".
- 8. Select RUN SINGLE to perform a measurement with the new settings.

The results of the measurement for each sub block are displayed in the Result Summary. The summarized limit line is indicated in the Spectrum graph.

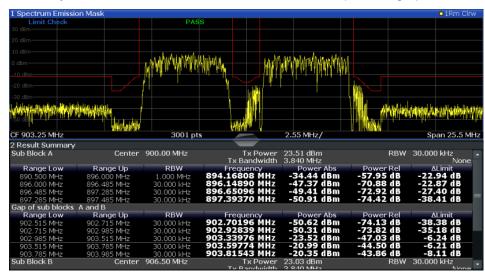


Figure 5-40: Multi-SEM measurement: results of the measurement for each sub block

5.6.8 Reference: SEM File Descriptions

This reference provides details on the format of the SEM settings and result files.

5.6.8.1 Format Description of SEM XML Files

The SEM XML files offer a quick way to change the measurement settings. A set of predefined XML files for different standards is already provided. You can also create and use your own XML files. Alternatively, edit the settings directly in the "Spectrum"

Spectrum Emission Mask (SEM) Measurement

Emission Mask" dialog box and save the XML file afterwards. This way, you do not have to modify the XML file itself.

In addition to saving the current settings to a file, settings files can also be created independently of the R&S FSW, in an external application. When creating your own XML files, be sure to comply with the following conventions because the R&S FSW can only interpret XML files of a known structure. For sample files, see the C:\r s\instr\sem std directory of the R&S FSW.

To load a settings file, use the "Load" function in the "Standard Files" tab of the "Spectrum Emission Mask" dialog box (see "How to load an SEM settings file" on page 236). All XML files are stored under C:\r_s\instr\sem_std.

The files for importing range settings obey the rules of the XML standard. The child nodes, attributes, and structure defined for the data import are described here.

Be sure to follow the structure exactly as shown below or else the R&S FSW is not able to interpret the XML file and error messages are shown on the screen. It is recommended that you make a copy of an existing file and edit the copy of the file.

Basically, the file consists of three elements that can be defined:

- The BaseFormat element
- The PowerClass element
- The Range element

The "BaseFormat" element

It carries information about basic settings. In this element, only the ReferencePower child node has any effects on the measurement itself. The other attributes and child nodes are used to display information about the Spectrum Emission Mask Standard on the measurement screen. The child nodes and attributes of this element are shown in Table 5-13.

Example:

In the sample file PowerClass_39_43.xml under
C:\r s\instr\sem std\WCDMA\3GPP, these attributes are defined as follows:

- Standard="W-CDMA 3GPP"
- LinkDirection="DL"
- PowerClass="(39,43)dBm"

The "PowerClass" element

It is embedded in the BaseFormat element and contains settings information about the power classes. Up to four different power classes can be defined. For details, refer to Chapter 5.6.5.4, "Power Classes", on page 224. The child nodes and attributes of this element are shown in Table 5-14.

Spectrum Emission Mask (SEM) Measurement

The "Range" element

This element is embedded in the PowerClass element. It contains the settings information of the range. There have to be at least three defined ranges: one reference range and at least one range to either side of the reference range. The maximum number of ranges is 30. Note that the R&S FSW uses the same ranges in each power class. Therefore, the contents of the ranges of each defined power class have to be identical to the first power class. The Start and Stop values of the two Limit nodes that are used to determine the power class are an exception. Note also that you must define two limit nodes: one that defines the limit in absolute values and one in relative values. Make sure units for the Start and Stop nodes are identical for each Limit node.

For details, refer to Chapter 5.6.5.1, "Sweep List", on page 216. The child nodes and attributes of this element are shown in Table 5-15.

The following tables show the child nodes and attributes of each element and show if a child node or attribute is mandatory for the R&S FSW to interpret the file or not. The hierarchy of the XML cannot be seen in the tables. View one of the predefined files already stored on the R&S FSW in the "C:\r_s\instr\sem_std" directory, or check the structure as shown below.

Below, a basic example of the structure of the file is shown, containing all mandatory attributes and child nodes. Note that the PowerClass element and the Range element are themselves elements of the BaseFormat element. They must be inserted where noted. They are separated here simply to provide a better overview. Also, no example values are given here to allow a quick reference to the tables above. Italic font shows the placeholders for the values.

- The "BaseFormat" element is structured as follows:
 - <RS_SEM_ACP_FileFormat Version="1.0.0.0">
 - <Name>"Standard"</Name>
 - <Instrument>
 - <Type>"Instrument Type"</Type>
 - Application <a
 - /Instrument>
 - <LinkDirection Name="Name">
 - <ReferencePower>
 - <Method>"Method"</Method>
 - </ReferencePower>
 - <PowerClass Index="n">
 - <!-- For contents of the PowerClass node, see Table 5-14 -->
 - <!-- Define up to four PowerClass nodes -->
 - </PowerClass>
 - </LinkDirection>
 - </RS SEM ACP File>
- The "PowerClass" element is structured as follows:
 - <PowerClass Index="n">
 - <StartPower Unit="dBm" InclusiveFlag="true" Value="StartPowerValue"/>
 - <StopPower Unit="dBm" InclusiveFlag="false" Value="StopPowerValue"/>
 - <DefaultLimitFailMode>"Limit Fail Mode"</DefaultLimitFailMode>

<Range Index="n">

Spectrum Emission Mask (SEM) Measurement

```
<!-- For contents of the Range node, see Table 5-15 -->
   <!-- Define up to twenty Range nodes -->
   </Range>
   </PowerClass>
The "Range" element is structured as follows:
   <Range Index="n">
   <Name="Name">
   <ChannelType>"Channel Type"
   <WeightingFilter>
   <Type>"FilterType"</Type>
   <RollOffFactor>"Factor"</RollOffFactor>
   <Bandwith>"Bandwidth"</Bandwidth>
   </WeightingFilter>
   <FrequencyRange>
   <Start>"RangeStart"</Start>
   <Stop>"RangeStop"</Stop>
   </FrequencyRange>
   <Limit>
   <Start Unit="Unit" Value="Value"/>
   <Stop Unit="Unit" Value="Value"/>
   </Limit>
   <Limit>
   <Start Unit="Unit" Value="Value"/>
   <Stop Unit="Unit" Value="Value"/>
   </Limit>
   <RBW Bandwidth="Bandwidth" Type="FilterType"/>
   <VBW Bandwidth="Bandwidth"/>
   <Detector>"Detector"</Detector>
   <Sweep Mode="SweepMode" Time="SweepTime"/>
   <Amplitude>
   <ReferenceLevel Unit="dBm" Value="Value"/>
   <RFAttenuation Mode="Auto" Unit="dB" Value="Value"/>
   <Pre><Pre>reamplifier State="State"/>
   </Amplitude>
   <MeasPointsMin>1</MeasPointsMin>
   <CalcRuleMulti>Sum</CalcRuleMulti>
   </Range>
```

Table 5-13: Attributes and child nodes of the BaseFormat element

Child Node	Attribute	Value	Parameter Description	Mand.
	FileFormatVersion	1.0.0.0		Yes
	Date	YYYY-MM-DD HH:MM:SS	Date in ISO 8601 format	No
Name		<string></string>	Name of the standard	Yes
Instrument	Туре	FSL	Name of the instrument	No

Spectrum Emission Mask (SEM) Measurement

Child Node	Attribute	Value	Parameter Description	Mand.
	Application	SA K72 K82	Name of the application	No
LinkDirection	Name	Downlink Uplink None		Yes
	ShortName	DL UL		No
Reference- Power				Yes
Method	TX Channel Power TX Channel Peak Power			Yes
Reference- Channel	<string></string>			No

Table 5-14: Attributes and child nodes of the PowerClass element

Child Node	Attribute	Value	Parameter Description	Mand.
StartPower	Value	<power dbm="" in=""></power>	The start power must be equal to the stop power of the previous power class. The Start-Power value of the first range is -200	Yes
	Unit	dBm		Yes
	InclusiveFlag	true		Yes
StopPower	Value	<power dbm="" in=""></power>	The stop power must be equal to the start power of the next power class. The StopPower value of the last range is 200	Yes
	Unit	dBm		
	InclusiveFlag	false		Yes
DefaultLimitFailMode		Absolute Relative Absolute and Rel- ative Absolute or Relative		Yes

Table 5-15: Attributes and child nodes of the Range element (normal ranges)

Child Node	Attribute	Value	Parameter Description	Mand.
	Index	019	Indices are continuous and have to start with 0	Yes
	Name	<string></string>	Name of the range	Only if ReferenceChannel contains a name and the range is the reference range
	Short- Name	<string></string>	Short name of the range	No
ChannelType		TX Adjacent		Yes

Spectrum Emission Mask (SEM) Measurement

Child Node	Attribute	Value	Parameter Description	Mand.
WeightingFilter				Only if Referen- cePower method is TX Channel Power and the range is the ref- erence range
Туре		RRC CFilter	Type of the weighting filter	Yes
Roll Off Factor		01	Excess bandwidth of the filter	Only if the filter type is RRC
Bandwidth		<bandwidth hz="" in=""></bandwidth>	Filter bandwidth	Only if the filter type is RRC
FrequencyRange				Yes
Start		<frequency hz="" in=""></frequency>	Start value of the range	Yes
Stop		<frequency hz="" in=""></frequency>	Stop value of the range	Yes
Limit		dBm/Hz dBm dBc dBr dB	A Range must contain exactly two limit nodes; one of the limit nodes has to have a relative unit (e.g. dBc), the other one must have an absolute unit (e.g. dBm)	Yes
Start	Value	<numeric_value></numeric_value>	Power limit at start frequency	Yes
	Unit	dBm/Hz dBm dBc dBr dB	Sets the unit of the start value	
Stop	Value	<numeric_value></numeric_value>	Power limit at stop frequency	
	Unit	dBm/Hz dBm dBc dBr dB	Sets the unit of the stop value	
LimitFailMode		Absolute Relative Absolute and Relative Absolute or Relative	If used, it has to be identical to DefaultLimitFailMode	No
RBW	Bandwidth	<bandwidth hz="" in=""></bandwidth>	"RBW" on page 218	Yes
	Туре	NORM PULS CFIL RRC		No
VBW	Bandwidth	<bandwidth hz="" in=""></bandwidth>	"VBW" on page 218	Yes
Detector		NEG POS SAMP RMS AVER QUAS	If used, it has to be identical in all ranges.	No
Sweep	Mode	Manual Auto	"Sweep Time Mode" on page 218	Yes
	Time	<time in="" sec=""></time>	"Sweep Time" on page 219	No
Amplitude				No

Spectrum Emission Mask (SEM) Measurement

Child Node	Attribute	Value	Parameter Description	Mand.
ReferenceLevel	Value	<power dbm="" in=""></power>	"Ref. Level" on page 219	Yes, if the ReferenceLevel child node is used
	Unit	dBm	Defines dBm as unit	Yes, if the ReferenceLevel node is used
RFAttenuation	Mode	Manual Auto	"RF Att. Mode" on page 219	Yes, if the ReferenceLevel child node is used
Preamplifier		ON OFF	"Preamp" on page 219	Yes

5.6.8.2 ASCII File Export Format (Spectrum Emission Mask)

When trace data from an SEM measurement is exported, the data is stored in ASCII format as described below. The first part of the file lists information about the signal analyzer and the general setup.

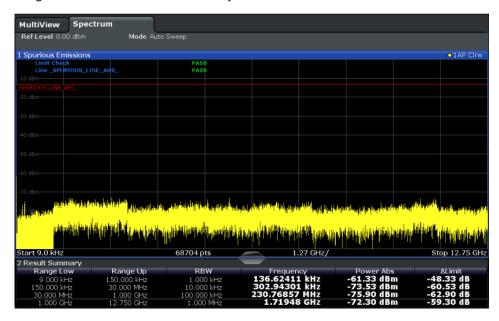
File contents	Explanation
File header	
Type;FSW-26;	Model
Version;1.00;	Firmware version
Date;31.Mar 11;	Storage date of data set
Mode;ANALYZER;SEM;	Operating mode and measurement function
Center Freq;13250000000.000000;Hz	X-axis settings
Freq Offset;0.000000;Hz	
Span;25500000.000000;Hz	
x-Axis;LIN;	
Start;13237250000.000000;Hz	
Stop;13262750000.000000;Hz	
Level Offset;0.000000;dB	Y-axis settings
Ref Position;100.000000;%	
y-Axis;LOG;	
Level Range;100.000000;dB	
Trace settings	
Trace Mode;CLR/WRITE;	
Detector;RMS;	
Sweep Count;0;	
Trace 1:;	

Spurious Emissions Measurement

File contents	Explanation
x-Unit;Hz;	
y-Unit;dBm;	
List evaluation settings	
Margin;200;	Peak List margin
Reference range settings	
RefType; CPOWER;	Reference power type
TxBandwidth;3840000;;Hz	Channel power settings
Filter State; ON;	
Alpha;0.22;	
PeaksPerRange;1;	Max. number of peaks per range to be detected
Values;2;	Number of detected peaks
File data section	
0;-12750000;-2515000;30000;13242367500;-43.844 722747802734;-0.33028793334960938;49.6697120 66650391;FAIL;	Measured peak values: <range number="">;</range>
2;2515000;12750000;30000;13257632500;-43.8447 22747802734;-0.33028793334960938;49.66971206 6650391;FAIL;	<pre><start frequency="">; <stop frequency="">; <resolution bandwidth="" of="" range="">; <frequency of="" peak="">; <absolute dbm="" in="" of="" peak="" power="">; <relative dbc="" in="" of="" peak="" power="">; (related to the channel power) <distance db="" in="" limit="" line="" the="" to="">; (positive value means above the limit) (pass = 0, fail = 1)>;</distance></relative></absolute></frequency></resolution></stop></start></pre>

5.7 Spurious Emissions Measurement

The R&S FSW supports Spurious Emissions measurements.


•	About the Measurement	245
	Spurious Emissions Measurement Results.	
	Spurious Emissions Basics.	
	Spurious Emissions Measurement Configuration	
	How to Perform a Spurious Emissions Measurement	
	Reference: ASCII Export File Format (Spurious)	

5.7.1 About the Measurement

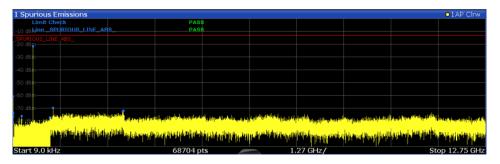
The Spurious Emissions measurement monitors unwanted RF products outside the assigned frequency band generated by an amplifier. The spurious emissions are usu-

Spurious Emissions Measurement

ally measured across a wide frequency range. The Spurious Emissions measurement allows a flexible definition of all parameters. A result table indicates the largest deviations of the absolute power from the limit line for each range, and the results can be checked against defined limits automatically.

5.7.2 Spurious Emissions Measurement Results

The measured signal, including any spurious emissions, and optionally the detected peaks are displayed in the Spurious Emissions measurement diagram. If defined, the limit lines and the limit check results are also indicated. In addition to the graphical results, a result table can be displayed to evaluate the measured powers and limit check results (see also Chapter 5.7.3.2, "Limit Lines in Spurious Measurements", on page 248). The details of the evaluation list can be configured.


The following information is provided in the evaluation list for each range:

Column	Description
Range Low	Frequency range start for the range the peak value belongs to
Range Up	Frequency range end for the range the peak value belongs to
RBW	RBW of the range
Frequency	Frequency at the peak value
Power Abs	Absolute power level at the peak value
ΔLimit	Deviation of the absolute power level from the defined limit for the peak value

Spurious Emissions Measurement

By default, one peak per range is displayed. However, you can change the settings to:

- Display all peaks
- Display a certain number of peaks per range
- Display only peaks that exceed a threshold ("Margin")
- Display detected peaks as blue squares in the diagram, as well as in the peak list

Furthermore, you can save the evaluation list to a file.

Retrieving Results via Remote Control

The measured spurious values of the displayed trace can be retrieved using the TRAC: DATA? SPUR command (see TRACe<n>[:DATA] on page 980).

5.7.3 Spurious Emissions Basics

Some background knowledge on basic terms and principles used in Spurious Emissions measurements is provided here for a better understanding of the required configuration settings.

5.7.3.1 Ranges and Range Settings

Conditions for ranges

The following rules apply to ranges:

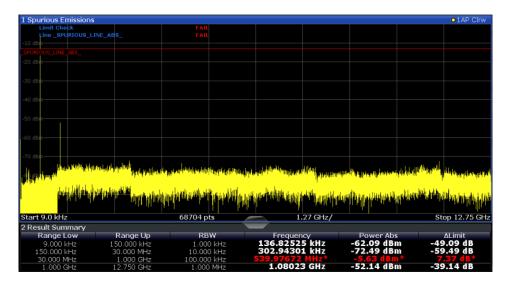
- The minimum span of a range is 20 Hz.
- The individual ranges must not overlap (but can have gaps).
- The maximum number of ranges is 30
- The maximum number of sweep points in all ranges is limited to 100001.

You can define a span that is smaller than the combined span of the ranges. In this case, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz.

Spurious Emissions Measurement

Defining ranges by remote control

In Spurious Emissions measurements, there are no remote commands to insert new ranges between existing ranges directly. However, you can delete or redefine the existing ranges to create the required order.


A remote command example for defining parameters and ranges in Spurious Emissions measurements is described in Chapter 11.5.7.6, "Programming Example: Spurious Emissions Measurement", on page 820.

5.7.3.2 Limit Lines in Spurious Measurements

Limit lines allow you to check the measured data against specified limit values. Generally, it is possible to define limit lines for any measurement in the Spectrum application using the LINES key. For Spurious measurements, however, a special limit line is available via the "Sweep List", and it is strongly recommended that you use only this limit line definition.

In the "Sweep List", you can define a limit line that varies its level according to the specified frequency ranges. A distinguished limit line is automatically defined according to the current "Sweep List" settings every time the settings change. This limit line is labeled "_SPURIOUS_LINE_ABS_<xxx>", where <xxx> is an index to distinguish limit lines between different measurement channels.

If a limit check is activated in the "Sweep List", the "_SPURIOUS_LINE_ABS" limit line is indicated by a red line in the display. The result of the limit check is indicated at the top of the diagram. Note that only "Pass" or "Fail" is indicated; a margin function as for general limit lines is not available. Also, only absolute limits can be checked, not relative ones.

As for general limit lines, the results of each limit line check are displayed (here: "_SPURIOUS_LINE_ABS"), as well as the combined result for all defined limit lines ("Limit Check").

Spurious Emissions Measurement

The limit check is considered to be "failed" if any signal level outside the absolute limits is measured.

If the limit check is activated, the limit line values for each range are displayed in the evaluation list. Furthermore, the largest deviations of the absolute power from the limit line for each range are displayed. Values that exceed the limit are indicated in red and by an asterisk (*).

Although a margin functionality is not available for the limit check, a margin (threshold) for the peak values to be displayed in the evaluation list can be defined. Furthermore, you can define how many peaks per range are listed. For details, see Chapter 5.7.4.3, "List Evaluation", on page 253.

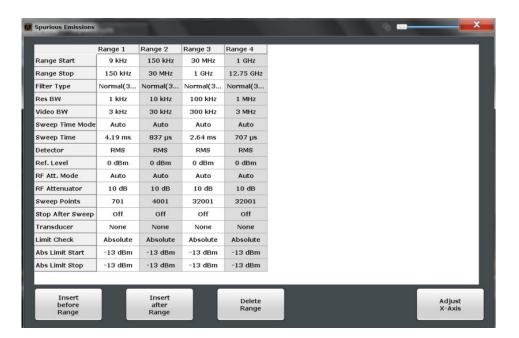
5.7.4 Spurious Emissions Measurement Configuration

Access: "Overview" > "Select Measurement" > "Spurious Emissions"

The spurious emissions measurement is started immediately with the default settings.

The remote commands required to perform these tasks are described in Chapter 11.5.7, "Measuring Spurious Emissions", on page 809.

5.7.4.1 Sweep List


Access: "Overview" > "Select Measurement" > "Spurious Emissions" > "Sweep List"

For Spurious Emissions measurements, the input signal is split into several frequency ranges which are swept individually and for which different limitations apply.

If you edit the sweep list, always follow the rules and consider the limitations described in Chapter 5.7.3.1, "Ranges and Range Settings", on page 247.

Spurious Emissions Measurement

Range Start / Range Stop	250
Filter Type	250
RBW	251
VBW	251
Sweep Time Mode	251
Sweep Time	251
Detector	251
Ref. Level	251
RF Att. Mode	252
RF Attenuator	252
Preamp	252
Sweep Points	252
Stop After Sweep	252
Transducer	252
Limit Check	253
Abs Limit Start/Stop	253
Insert before/after Range	
Delete Range	

Range Start / Range Stop

Sets the start frequency/stop frequency of the selected range.

You can define a span that is smaller than the overall span of the ranges. In this case, the measurement includes only the ranges that lie within the defined span and have a minimum span of 20 Hz.

Remote command:

```
[SENSe:]LIST:RANGe<range>[:FREQuency]:STARt on page 813
[SENSe:]LIST:RANGe<range>[:FREQuency]:STOP on page 813
```

Filter Type

Sets the filter type for this range.

Spurious Emissions Measurement

For details on filter types, see Chapter 6.5.1.6, "Which Data May Pass: Filter Types", on page 417.

Remote command:

```
[SENSe:]LIST:RANGe<range>:FILTer:TYPE on page 812
```

RBW

Sets the RBW value for this range.

For details on the RBW, see Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414.

Remote command:

```
[SENSe:]LIST:RANGe<range>:BANDwidth[:RESolution] on page 810
```

VBW

Sets the VBW value for this range.

For details on the VBW, see Chapter 6.5.1.2, "Smoothing the Trace Using the Video Bandwidth", on page 414.

Remote command:

```
[SENSe:]LIST:RANGe<range>:BANDwidth:VIDeo on page 811
```

Sweep Time Mode

Activates or deactivates the auto mode for the sweep time.

For details on the sweep time mode, see Chapter 6.5.1.7, "How Long the Data is Measured: Sweep Time", on page 418

Remote command:

```
[SENSe:]LIST:RANGe<range>:SWEep:TIME:AUTO on page 817
```

Sweep Time

Sets the sweep time value for the range.

For details on the sweep time, see Chapter 6.5.1.7, "How Long the Data is Measured: Sweep Time", on page 418

Remote command:

```
[SENSe:]LIST:RANGe<range>:SWEep:TIME on page 817
```

Detector

Sets the detector for the range.

For details, refer to Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464.

Remote command:

```
[SENSe:]LIST:RANGe<range>:DETector on page 812
```

Ref. Level

Sets the reference level for the range.

For details on the reference level, see Chapter 6.4.1.1, "Reference Level", on page 404.

Spurious Emissions Measurement

Remote command:

[SENSe:]LIST:RANGe<range>:RLEVel on page 816

RF Att. Mode

Activates or deactivates the auto mode for RF attenuation.

For details on attenuation, see Chapter 6.4.1.2, "RF Attenuation", on page 405.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation:AUTO on page 814

RF Attenuator

Sets the attenuation value for that range.

For details on attenuation, see Chapter 6.4.1.2, "RF Attenuation", on page 405.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation on page 814

Preamp

Switches the preamplifier on or off.

For details on the preamplifier, see "Preamplifier" on page 410.

Remote command:

[SENSe:]LIST:RANGe<range>:INPut:GAIN:STATe on page 815

Sweep Points

Sets the number of sweep points for the specified range.

For details on sweep points, see Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418.

Remote command:

[SENSe:]LIST:RANGe<range>:POINts[:VALue] on page 816

Stop After Sweep

This command configures the sweep behavior.

"ON" The R&S FSW stops after one range is swept and continues only if

you confirm (a message box is displayed).

"OFF" The R&S FSW sweeps all ranges in one go.

Remote command:

[SENSe:]LIST:RANGe<range>:BREak on page 811

Transducer

Sets a transducer for the specified range. You can only choose a transducer that fulfills the following conditions:

- The transducer overlaps or equals the span of the range.
- The x-axis is linear.
- The unit is dB.

For details on transducers, see Chapter 9.2, "Basics on Transducer Factors", on page 591.

Spurious Emissions Measurement

Remote command:

```
[SENSe:]LIST:RANGe<range>:TRANsducer on page 817
```

Limit Check

Activates or deactivates the limit check for all ranges.

For details on limit checks, see Chapter 5.7.3.2, "Limit Lines in Spurious Measurements", on page 248.

"Absolute" Signal is checked against absolute limit values

"None" No limit check is performed.

Remote command:

```
[SENSe:]LIST:RANGe<range>:LIMit:STATe on page 816
CALCulate<n>:LIMit<k>:FAIL? on page 1059
```

Abs Limit Start/Stop

Sets an absolute limit value at the start or stop frequency of the range [dBm].

Remote command:

```
[SENSe:]LIST:RANGe<range>:LIMit:STARt on page 815
[SENSe:]LIST:RANGe<range>:LIMit:STOP on page 816
```

Insert before/after Range

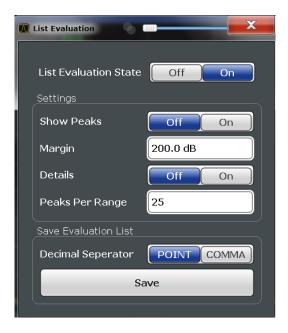
Inserts a new range to the left of the currently focused range (before) or to the right (after). The range numbers of the currently focused range and all higher ranges are increased accordingly. The maximum number of ranges is 30.

Delete Range

Deletes the currently focused range. The range numbers are updated accordingly.

5.7.4.2 Adjusting the X-Axis to the Range Definitions

Access: "Overview" > "Select Measurement" > "Spurious Emissions" > "Adjust x-Axis"


The frequency axis of the measurement diagram can be adjusted automatically so that the span of all sweep list ranges corresponds to the displayed span. Thus, the x-axis range is set from the start frequency of the first sweep range to the stop frequency of the last sweep range.

5.7.4.3 List Evaluation

Access: "Overview" > "Select Measurement" > "Spurious Emissions" > "List Evaluation"

Configure the contents and display of the result list.

Spurious Emissions Measurement

List Evaluation State	
Show Peaks	254
Margin	
Details	
Peaks per Range	255
Saving the Evaluation List	

List Evaluation State

Activates or deactivates the list evaluation.

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:AUTO on page 804 TRACe<n>[:DATA] on page 980

Show Peaks

If activated, all peaks that have been detected during an active list evaluation are marked with blue squares in the diagram.

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:PSHow on page 805

Margin

A margin functionality is not available for the limit check. However, you can define a margin (=threshold) for the peak values to be displayed in the evaluation list. Only peaks that exceed the margin value are displayed (also in the diagram, if activated).

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:MARGin on page 805

Details

Configures how detailed the list in the Result Summary is.

Spurious Emissions Measurement

On	Includes all detected peaks (up to a maximum defined by "Peaks per Range").
Off	Includes only one peak per range.

Remote command:

CALCulate<n>:ESPectrum:PEAKsearch:DETails on page 818

Peaks per Range

Defines the maximum number of peaks per range that are stored in the list. Once the selected number of peaks has been reached, the peak search is stopped in the current range and continued in the next range. The maximum value is 50.

Remote command:

CALCulate<n>: PEAKsearch: SUBRanges on page 820

Saving the Evaluation List

Exports the evaluation list of the Spurious Emissions measurement to an ASCII file for evaluation in an external application. If necessary, change the decimal separator for evaluation in other languages.

Define the file name and storage location in the file selection dialog box that is displayed when you select the "Save" function.

For details, see "How to Save the Spurious Emissions Evaluation List" on page 256.

Remote command:

MMEMory:STORe<n>:LIST on page 1091
FORMat:DEXPort:DSEParator on page 1064

5.7.5 How to Perform a Spurious Emissions Measurement

- 1. Press the MEAS key, then select the "Spurious Emissions" measurement.
- 2. Define the span of the signal to be monitored in the general span settings.
- 3. Select the "Overview" softkey, then select the "Spurious Setup" button.
 - The "Spurious Emissions" dialog box is displayed.
- 4. Split the frequency span of the measurement into ranges for signal parts with similar characteristics.
 - Define the required ranges in the "Sweep List" using the "Insert before Range" and "Insert after Range" buttons, which refer to the currently selected range.
- 5. Define the measurement parameters for each range as required.
- 6. Optionally, define a limit check.
 - a) Activate the limit check by setting "Limit Check" to "Absolute". The limit check is always activated or deactivated for all ranges simultaneously.
 - b) Define the limit line's start and stop values for each range of the signal. If a signal level higher than the defined limit is measured, the limit check fails, which may indicate a spurious emission.

Spurious Emissions Measurement

- 7. Configure the peak detection during a Spurious Emissions measurement: select the "Evaluations" button in the "Overview".
 - To indicate the determined peaks in the display, activate the "Show Peaks" option.
 - To restrict peak detection, define a "Margin". Only peaks that exceed this value are detected.
 - To allow for more peaks per range to be detected than the default 1, increase the "Peaks Per Range" value and set "Details" to "On".
- Start a sweep.

The determined powers and limit deviations for each range are indicated in the evaluation list. If activated, the peak power levels for each range are also indicated in the diagram.

9. To save the evaluation list, export the results to a file as described in "How to Save the Spurious Emissions Evaluation List" on page 256.

How to Save the Spurious Emissions Evaluation List

The evaluation list from a Spurious Emissions measurement can be saved to a file, which can be exported to another application for further analysis, for example.

- Configure and perform a Spurious Emissions measurement as described in Chapter 5.7.5, "How to Perform a Spurious Emissions Measurement", on page 255.
- Select the "Evaluations" button in the "Overview".
- 3. If necessary, change the "Decimal Separator" to "COMMA" for evaluation in other languages.
- 4. Select the "Save" button.
- 5. In the file selection dialog box, select a storage location and file name for the result
- 6. Select the "Save" button.

The file with the specified name and the extension .dat is stored in the defined storage location.

5.7.6 Reference: ASCII Export File Format (Spurious)

The file has a header containing important parameters for scaling, several data sections containing the sweep settings per range, and a data section containing the peak list.

The header data is made up of three columns, separated by ';', with the syntax:

Parameter name; numeric value; basic unit

Spurious Emissions Measurement

File contents	Explanation	
File header		
Type;FSW-26;	Model	
Version;1.00;	Firmware version	
Date;31.Mar 11;	Storage date of data set	
Mode;ANALYZER; SPURIOUS;	Operating mode and measurement function	
Center Freq;13250000000.000000;Hz	X-axis settings	
Freq Offset;0.000000;Hz		
Span;26499982000.000000;Hz		
x-Axis;LIN;		
Start;9000.000000;Hz Stop;8000000000.000000;Hz		
Level Offset;0.000000;dB	Y-axis settings	
Ref Position;100.000000;%		
y-Axis;LOG;		
Level Range;100.000000;dB		
Trace settings		
Trace Mode;CLR/WRITE;		
Sweep Count;1;		
TRACE 1:		
Trace Mode;CLR/WRITE;		
x-Unit;Hz;		
y-Unit;dBm;		
List evaluation settings		
Margin;6.000000;s	Peak List margin	
PeaksPerRange;25;	Max. number of peaks per range to be detected	
Values;3;	Number of detected peaks	

Statistical Measurements (APD, CCDF)

File contents	Explanation
File data section	
0;9000;150000;1000;79500;-25.006643295288086;-	Measured peak values:
12.006643295288086;PASS;	<range number="">;</range>
0;9000;150000;1000;101022.11126961483;-47.075 111389160156;-34.075111389160156;PASS;	<start frequency="">;</start>
0:9000:150000:1000:58380.171184022824:-47.079	<stop frequency="">;</stop>
341888427734;-34.079341888427734;PASS;	<resolution bandwidth="" of="" range="">;</resolution>
	<frequency of="" peak="">;</frequency>
	<absolute dbm="" in="" of="" peak="" power="">;</absolute>
	<pre><distance db="" in="" limit="" line="" the="" to="">; (positive value means above the limit)</distance></pre>
	limit fail (pass = 0, fail =1)>;

5.8 Statistical Measurements (APD, CCDF)

To measure the amplitude distribution, the R&S FSW has simple measurement functions to determine both the Amplitude Probability Distribution (APD) and the Complementary Cumulative Distribution Function (CCDF). Only one of the signal statistic functions can be switched on at a time.

About the Measurements	.258
Typical Applications	
APD and CCDF Results	
APD and CCDF Basics - Gated Triggering	
APD and CCDF Configuration	
How to Perform an APD or CCDF Measurement	
Examples	
Optimizing and Troubleshooting the Measurement	

5.8.1 About the Measurements

The probability of amplitude values can be measured with the Amplitude Probability Distribution function (APD). During a selectable measurement time all occurring amplitude values are assigned to an amplitude range. The number of amplitude values in the individual ranges is counted and the result is displayed as a histogram.

Alternatively, the Complementary Cumulative Distribution Function (CCDF) can be displayed. It shows the probability that the mean signal power amplitude will be exceeded in percent.

Only one of the signal statistic functions can be switched on at a time. When a statistic function is switched on, the R&S FSW is set into zero span mode automatically. The R&S FSW measures the statistics of the signal applied to the RF input with the defined analysis bandwidth. To avoid affecting the peak amplitudes the video bandwidth is automatically set to 10 times the analysis bandwidth. The sample detector is used for detecting the video voltage.

Statistical Measurements (APD, CCDF)

Statistic measurements on pulsed signals can be performed using a gated trigger. For details see Chapter 5.8.4, "APD and CCDF Basics - Gated Triggering", on page 262.

5.8.2 Typical Applications

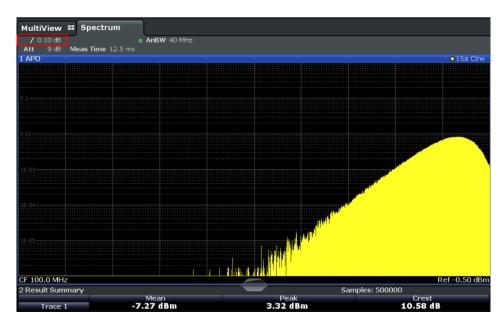
Digital modulated signals are similar to white noise within the transmit channel, but are different in their amplitude distribution. In order to transmit the modulated signal without distortion, all amplitudes of the signal have to be transmitted linearly from the output power amplifier. Most critical are the peak amplitude values. Degradation in transmit quality caused by a transmitter two port network is dependent on the amplitude of the peak values as well as on their probability.

If modulation types are used that do not have a constant envelope in zero span, the transmitter has to handle peak amplitudes that are greater than the average power. This includes all modulation types that involve amplitude modulation, QPSK for example. CDMA transmission modes in particular may have power peaks that are large compared to the average power.

For signals of this kind, the transmitter must provide large reserves for the peak power to prevent signal compression and thus an increase of the bit error rate at the receiver. The peak power or the crest factor of a signal is therefore an important transmitter design criterion. The crest factor is defined as the peak power to mean power ratio or, logarithmically, as the peak level minus the average level of the signal. To reduce power consumption and cut costs, transmitters are not designed for the largest power that could ever occur, but for a power that has a specified probability of being exceeded (e.g. 0.01 %).

The statistical functions provide information on such signal criteria.

5.8.3 APD and CCDF Results

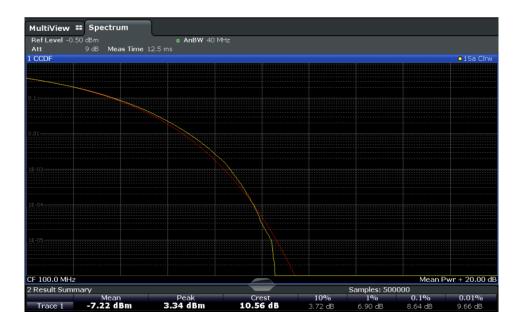

Amplitude Probability Distribution (APD)

As a result of the Amplitude Probability Distribution (APD) function, the probability of measured amplitude values is displayed. During a selectable measurement time all measured amplitude values are assigned to an amplitude range (*bin*). The number of amplitude values in the individual ranges is counted and the result is displayed as a histogram. Each bar of the histogram represents the percentage of measured amplitudes within the specific amplitude range. The x-axis represents the amplitude values and is scaled in absolute values (dBm).

The size of each amplitude range (bin) determines the resolution of the histogram and is indicated in the channel bar, for example / 0.10 dB. In this case, a single bar in the histogram represents an amplitude range of 0.10 dB.

Statistical Measurements (APD, CCDF)

In addition to the histogram, a result table is displayed containing the following information:


- Number of samples used for calculation
- For each displayed trace:
 - Mean amplitude
 - Peak amplitude
 - Crest factor

The crest factor is defined as the peak power to mean power ratio or, logarithmically, as the peak level minus the average level of the signal.

Complementary Cumulative Distribution Function (CCDF)

The Complementary Cumulative Distribution Function (CCDF) shows the probability that the mean signal power amplitude will be exceeded in percent. The level above the mean power is plotted along the x-axis of the graph. The origin of the axis corresponds to the mean power level. The probability that a level will be exceeded is plotted along the y-axis.

Statistical Measurements (APD, CCDF)

A red line indicates the ideal Gaussian distribution for the measured amplitude range.

The displayed amplitude range is indicated as "Mean Pwr + <x dB>"

In addition to the histogram, a result table is displayed containing the following information:

- Number of samples used for calculation
- For each displayed trace:

Mean	Mean power
Peak	Peak power
Crest	Crest factor (peak power – mean power)
10 %	Level values over 10 % above mean power
1 %	Level values over 1 % above mean power
0,1 %	Level values over 0,1 % above mean power
0,01 %	Level values over 0,01 % above mean power

Percent marker

In addition to the results for specific percentages in the table, a percent marker can be activated for a freely selectable percentage. This marker indicates how many level values are over <x> % above the mean power.

Statistical Measurements (APD, CCDF)

Percent marker

As all markers, the percent marker can be moved simply by selecting it with a finger or mouse cursor and dragging it to the desired position.

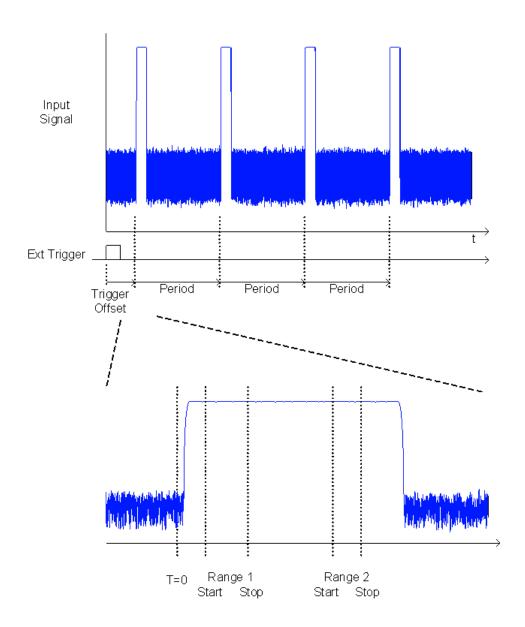
Diagram Scaling

The scaling for both the x-axis and y-axis of the statistics diagram can be configured. In particular, you can restrict the range of amplitudes to be evaluated and the probabilities to be displayed.

Remote commands:

```
CALCulate<n>:STATistics:CCDF:X<t>? on page 830
CALCulate<n>:STATistics:RESult<t>? on page 831
```

5.8.4 APD and CCDF Basics - Gated Triggering


Statistic measurements on pulsed signals can be performed using a gated trigger. An external frame trigger is required as a time (frame) reference.

The gate ranges define the part of the measured data taken into account for the statistics calculation. These ranges are defined relative to a reference point T=0. The gate interval is repeated for each period until the end of the capture buffer.

The reference point T=0 is defined by the external trigger event and the instrument's trigger offset.

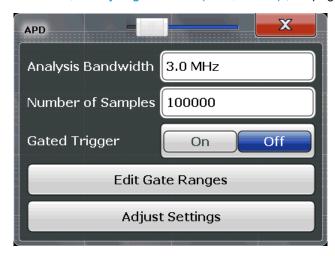
For each trace you can define up to 3 separate ranges of a single period to be traced.

Statistical Measurements (APD, CCDF)

5.8.5 APD and CCDF Configuration

Configuration consists of the following settings:

•	Basic Settings	263
	Gate Range Definition for APD and CCDF	
	Scaling for Statistics Diagrams	267


5.8.5.1 Basic Settings

APD measurements are selected via the "APD" button in the "Select Measurement" dialog box. CCDF measurements are selected via the "CCDF" button in the "Select Measurement" dialog box. The measurements are started immediately with the default settings. They can be configured via the MEAS CONFIG key or in the "APD/CCDF"

Statistical Measurements (APD, CCDF)

dialog boxes, which are displayed as a tab in the "Analysis" dialog box or when you select the "APD Config" softkey from the "APD" menu or the "CCDF Config" softkey from the "CCDF" menu.

The remote commands required to perform these tasks are described in Chapter 11.5.8, "Analyzing Statistics (APD, CCDF)", on page 823.

Both dialog boxes are identical except for the "Percent Marker" setting, which is only available for CCDF measurements.

Percent Marker (CCDF only)	264
Analysis Bandwidth	
Number of Samples	
Gated Trigger	
Edit Gate Ranges	
Adjust Settings	

Percent Marker (CCDF only)

Defines a probability value. Thus, the power which is exceeded with a given probability can be determined very easily. If marker 1 is deactivated, it is switched on automatically.

Remote command:

CALCulate<n>:MARKer<m>:Y:PERCent on page 824

Analysis Bandwidth

Defines the analysis bandwidth.

For correct measurement of the signal statistics, the analysis bandwidth has to be wider than the signal bandwidth in order to measure the peaks of the signal amplitude correctly. To avoid influencing the peak amplitudes, the video bandwidth is automatically set to 10 MHz. The sample detector is used for detecting the video voltage.

The calculated measurement time is displayed for reference only.

Remote command:

[SENSe:]BANDwidth[:RESolution] on page 887

Statistical Measurements (APD, CCDF)

Number of Samples

Defines the number of power measurements that are taken into account for the statistics.

For statistics measurements with the R&S FSW, the number of samples to be measured is defined instead of the sweep time. Since only statistically independent samples contribute to statistics, the sweep or measurement time is calculated automatically and displayed in the channel bar ("Meas Time"). The samples are statistically independent if the time difference is at least 1/RBW. The measurement time is, therefore, expressed as follows:

Meas Time = $N_{Samples}/RBW$

Remote command:

CALCulate<n>:STATistics:NSAMples on page 824

Gated Trigger

Activates and deactivates gating for statistics functions for the ACP and the CCDF measurements. If activated, the trigger source is changed to "External Trigger 1". The gate ranges are defined using the Edit Gate Ranges function.

Remote command:

[SENSe:]SWEep:EGATe:TRACe<t>[:STATe<range>] on page 826

Edit Gate Ranges

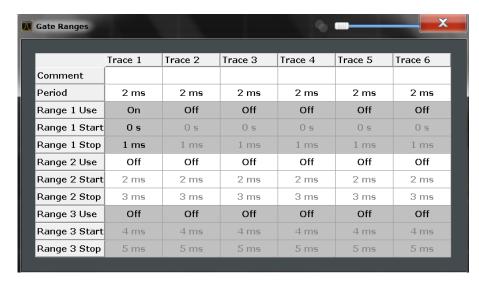
Opens a dialog box to configure up to 3 gate ranges for each trace. For details see Chapter 5.8.5.2, "Gate Range Definition for APD and CCDF", on page 265.

Adjust Settings

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal.

Remote command:

CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 828


5.8.5.2 Gate Range Definition for APD and CCDF

Gate ranges for gated triggering in statistical measurements can be configured in the "Gate Ranges" dialog box, which is displayed when you select the "Edit Gate Ranges" button in the "APD" or "CCDF" configuration dialog boxes.

For background information on defining gate ranges see Chapter 5.8.4, "APD and CCDF Basics - Gated Triggering", on page 262.

The remote commands required to perform these tasks are described in Chapter 11.5.8.3, "Using Gate Ranges for Statistical Measurements", on page 825.

Statistical Measurements (APD, CCDF)

Up to three ranges can be defined for each of the six available traces.

Comment	266
Period	
Range <x> Use</x>	266
Range <x> Start/Stop.</x>	

Comment

An optional comment can be defined for the gate range settings of each trace.

Remote command:

[SENSe:]SWEep:EGATe:TRACe<t>:COMMent on page 825

Period

Length of the period to be traced. The period is the same for all traces. If you change the period for one trace, it is automatically changed for all traces.

Make sure the defined period is not longer than the total measurement time of the current measurement. Keep in mind that the measurement time depends on the bandwidth and the number of samples (see "Number of Samples" on page 265). The current measurement time is indicated as "Meas Time" in the channel bar.

Remote command:

[SENSe:] SWEep:EGATe:TRACe:PERiod on page 825

Range <x> Use

Activates tracing of the defined range during a gated measurement.

Remote command:

[SENSe:]SWEep:EGATe:TRACe<t>[:STATe<range>] on page 826

Range <x> Start/Stop

Defines the start and stop points of the range within the tracing period. Make sure the value for the stopping time is smaller than the length of the period.

Note: You can define the time values with a greater numerical resolution than is displayed; the values are only rounded for display.

Statistical Measurements (APD, CCDF)

Remote command:

[SENSe:]SWEep:EGATe:TRACe<t>:STARt<range> on page 826
[SENSe:]SWEep:EGATe:TRACe<t>:STOP<range> on page 826

5.8.5.3 Scaling for Statistics Diagrams

The diagram scaling for statistical measurements can be configured in the "Scaling" dialog box, which is displayed when you select the AMPT key and then the "Scale Config" softkey.

The remote commands required to perform these tasks are described in Chapter 11.5.8.4, "Scaling the Diagram", on page 827.

In statistical diagrams, the x-axis displays the signal level values (= y-axis in standard display), while the y-axis displays the probability of the values.

X-Axis	267
L Range	
L Ref Level	268
L Shifting the Display (Offset)	
Y-Axis	
L Y-Unit.	268
L Y-Max / Y-Min	268
Default Settings	
Adjust Settings	

X-Axis

Defines the scaling settings for signal level values.

Statistical Measurements (APD, CCDF)

Range ← X-Axis

Defines the level range in dB to be evaluated by the statistics measurement.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RANGe on page 828

Ref Level ← X-Axis

Defines the reference level for the signal levels in the currently active unit (dBm, dB μ V, etc).

For the APD function this value corresponds to the right diagram border. For the CCDF function there is no direct representation of this value on the diagram as the x-axis is scaled relatively to the measured mean power.

Remote command:

CALCulate<n>:STATistics:SCALe:X:RLEVel on page 828

Shifting the Display (Offset) ← X-Axis

Defines an arithmetic level offset. This offset is added to the measured level irrespective of the selected unit. The scaling of the x-axis is changed accordingly. The setting range is ±200 dB in 0.1 dB steps.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet on page 897
```

Y-Axis

Defines the scaling settings for the probability distribution.

Y-Unit ← Y-Axis

Defines the scaling type of the y-axis as either percentage or absolute. The default value is absolute scaling.

Remote command:

CALCulate<n>:STATistics:SCALe:Y:UNIT on page 829

Y-Max / Y-Min ← Y-Axis

Defines the upper (max) and lower (min) limit of the displayed probability range. Values on the y-axis are normalized which means that the maximum value is 1.0. The minimum value must be in the range:

```
1E-9 < Y-Min < 0.1
```

The distance between Y-max and Y-min must be at least one decade.

Remote command:

```
CALCulate<n>:STATistics:SCALe:Y:UPPer on page 829
CALCulate<n>:STATistics:SCALe:Y:LOWer on page 829
```

Default Settings

Resets the x- and y-axis scalings to their preset values.

x-axis ref level:	-10 dBm
x-axis range APD:	100 dB
x-axis range CCDF:	20 dB

Statistical Measurements (APD, CCDF)

y-axis upper limit:	1.0
y-axis lower limit:	1E-6

Remote command:

CALCulate<n>:STATistics:PRESet on page 827

Adjust Settings

Adjusts the level settings according to the measured difference between peak and minimum power for APD measurement or peak and mean power for CCDF measurement in order to obtain maximum power resolution. Adjusts the reference level to the current input signal.

Remote command:

CALCulate<n>:STATistics:SCALe:AUTO ONCE on page 828

5.8.6 How to Perform an APD or CCDF Measurement

To start a basic statistic measurement

- 1. Press the MEAS key, then select the "APD" or "CCDF" measurement.
- 2. Start a sweep.

As soon as the defined number of samples have been measured, the statistical evaluation is displayed.

To perform a statistic measurement using gate ranges

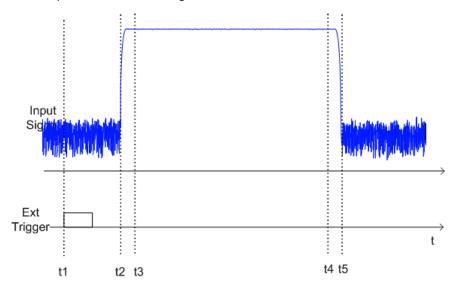
For pulsed signals, the transmission intervals should not be included in the statistical evaluation. Thus, you must define gate ranges to be included in the measurement.

 Press the MEAS CONFIG key, then select the "APD Config" or "CCDF Config" softkey.

The "APD" or "CCDF" dialog box is displayed.

- 2. Select the "Edit Gate Ranges" button.
- 3. Define the time period for which the input signal is to be analyzed, for example the duration of 3 signal pulses.
- 4. For each active trace, define up to three ranges within the time period to be measured. In the example covering 3 pulses, you could define one range for each pulse.
 - a) Assuming the external trigger determines T=0 as the start of the first pulse, define the start time of range 1 at 0 s.
 - b) Define the stop time of range 1 at the duration of the first pulse.
 - c) Activate range 1 by setting "Range 1 Use" to On.
 - d) Define the start time of range 2 as (duration of pulse 1 + duration of interval)
 - e) Define the stop time of range 2 as (start time of range 2 + duration of pulse 2)

Statistical Measurements (APD, CCDF)


- f) Activate range 2 by setting "Range 2 Use" to On.
- g) Define the third range in the same way.
- 5. Start a sweep.

As soon as the defined number of samples have been measured, the statistical evaluation is displayed. Only the signal levels within the pulse periods are considered.

5.8.7 Examples

5.8.7.1 Configuration Example: Gated Statistics

A statistics evaluation has to be done over the useful part of the signal between t3 and t4. The period of the GSM signal is 4.61536 ms.

- t1: External positive trigger slope
- t2: Begin of burst (after 25 μs)
- t3: Begin of useful part, to be used for statistics (after 40 µs)
- t4: End of useful part, to be used for statistics (after 578 μs)
- t5: End of burst (after 602 μs)

The instrument has to be configured as follows:

Trigger Offset	t2 – t1 = 25 μs	now the gate ranges are relative to t2
Range1 Start	t3 – t2 = 15 μs	start of range 1 relative to t2
Range1 End	t4 – t2 = 553 μs	end of range 1 relative to t2

Statistical Measurements (APD, CCDF)

5.8.7.2 Measurement Example – Measuring the APD and CCDF of White Noise Generated by the R&S FSW

Setting the RBW

When the amplitude distribution is measured, the analysis bandwidth must be set so that the complete spectrum of the signal to be measured falls within the bandwidth. This is the only way of ensuring that all the amplitudes will pass through the IF filter without being distorted. If the selected bandwidth is too small for a digitally modulated signal, the amplitude distribution at the output of the IF filter becomes a Gaussian distribution according to the central limit theorem and thus corresponds to a white noise signal. The true amplitude distribution of the signal therefore cannot be determined.

- Preset the R&S FSW.
- Set the reference level to -60 dBm.
 The R&S FSW's intrinsic noise is displayed at the top of the screen.
- Select the "APD" measurement function from the "Select Measurement" dialog box.

The R&S FSW sets the frequency span to 0 Hz and measures the amplitude probability distribution (APD). The number of uncorrelated level measurements used for the measurement is 100000. The mean power and the peak power are displayed in dBm. The crest factor (peak power – mean power) is output as well.

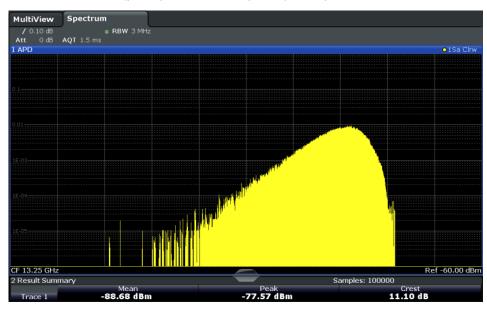


Figure 5-41: Amplitude probability distribution of white noise

Now select the "CCDF" measurement function from the "Select Measurement" dialog box.

Time Domain Power Measurement

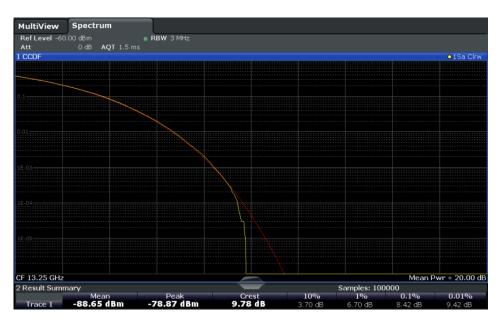


Figure 5-42: CCDF of white noise

The CCDF trace indicates the probability that a level will exceed the mean power. The level above the mean power is plotted along the x-axis of the graph. The origin of the axis corresponds to the mean power level. The probability that a level will be exceeded is plotted along the y-axis.

5.8.8 Optimizing and Troubleshooting the Measurement

If the results do not meet your expectations, try the following methods to optimize the measurement:

- Make sure the defined bandwidth is wide enough for the signal bandwidth of the device under test to be fully analyzed (see "Analysis Bandwidth" on page 264).
- If the complete signal is be measured, increase the number of samples so that the resulting measurement time is longer than one period of a bursted signal.
- If only parts of the signal are to be examined, define a trigger source and a gate.

5.9 Time Domain Power Measurement

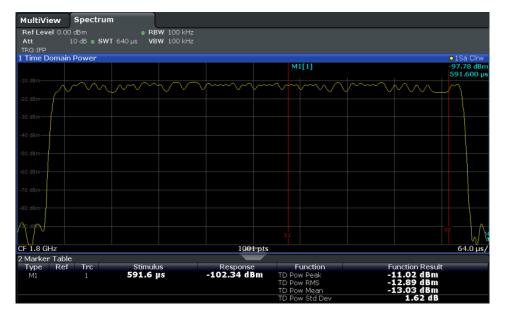
The R&S FSW can determine the power of a signal in the time domain using the Time Domain Power measurement function.

•	About the Measurement	273
	Time Domain Power Results	
	Time Domain Power Basics - Range Definition Using Limit Lines	
	Time Domain Power Configuration	
	How to Measure Powers in the Time Domain	
•	Measurement Example	276

Time Domain Power Measurement

5.9.1 About the Measurement

Using the Time Domain Power measurement function, the R&S FSW determines the power of the signal in zero span by summing up the power at the individual measurement points and dividing the result by the number of measurement points. Thus it is possible to measure the power of TDMA signals during transmission, for example, or during the muting phase. Both the mean power and the RMS power can be measured.


For this measurement, the sample detector is activated.

5.9.2 Time Domain Power Results

Several different power results can be determined simultaneously:

Mode	Description
Peak	Peak value from the points of the displayed trace or a segment thereof.
RMS	RMS value from the points of the displayed trace or a segment thereof.
Mean	Mean value from the points of the displayed trace or a segment thereof. The linear mean value of the equivalent voltages is calculated. For example to measure the mean power during a GSM burst
Std Dev	The standard deviation of the measurement points from the mean value.

The result is displayed in the marker results, indicated by "Power" and the selected power mode, e.g. "RMS". The measured values are updated after each sweep or averaged over a user-defined number of sweeps (trace averaging).

Time Domain Power Measurement

The results can also be queried using the remote commands described in Chapter 11.5.9, "Measuring the Time Domain Power", on page 833.

5.9.3 Time Domain Power Basics - Range Definition Using Limit Lines

The range of the measured signal to be evaluated for the power measurement can be restricted using limit lines. The left and right limit lines (S1, S2) define the evaluation range and are indicated by vertical red lines in the diagram. If activated, the power results are only calculated from the levels within the limit lines.

For example, if both the on and off phase of a burst signal are displayed, the measurement range can be limited to the transmission or to the muting phase. The ratio between signal and noise power of a TDMA signal for instance can be measured by using a measurement as a reference value and then varying the measurement range.

In order to get stable measurement results for a limited evaluation range, usually a trigger is required.

5.9.4 Time Domain Power Configuration

Time Domain Power measurements are selected via the "Time Domain Power" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "Time Domain Power" dialog box, which is displayed as a tab in the "Analysis" dialog box or when you select the "Time Dom Power Config" softkey from the "Time Dom Pwr" menu.

The remote commands required to perform these tasks are described in Chapter 11.5.9, "Measuring the Time Domain Power", on page 833.

Results	274
Limit State	275
Left Limit / Right Limit	

Results

Activates the power results to be evaluated from the displayed trace or a limited area of the trace.

"Peak" Peak power over several measurements (uses trace averaging, Max

Hold

"RMS" RMS value from the points of the displayed trace or a segment

thereof

"Mean" Mean value from the points of the displayed trace or a segment

thereof. The linear mean value of the equivalent voltages is calcula-

ted.

Time Domain Power Measurement

"Std Dev"

The standard deviation of the measurement points from the mean value.

The measurement of the mean power is automatically switched on at the same time.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe] on page 839 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult? on page 839 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe] on page 836 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult? on page 840 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe] on page 835 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe] on page 838 CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult? on page 838
```

Limit State

Switches the limitation of the evaluation range on or off. Default setting is off.

If deactivated, the entire sweep time is evaluated. If switched on, the evaluation range is defined by the left and right limit. If only one limit is set, it corresponds to the left limit and the right limit is defined by the stop frequency. If the second limit is also set, it defines the right limit.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
```

Left Limit / Right Limit

Defines a power level limit for line S1 (left) or S2 (right).

Remote command:

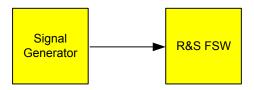
```
CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 995
CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 995
```

5.9.5 How to Measure Powers in the Time Domain

To measure the power in the time domain

- 1. Select the "Time Domain Power" measurement function from the "Select Measurement" dialog box.
- 2. Select the type of power measurement results to be determined by selecting the corresponding softkeys.
- 3. To restrict the power evaluation range, define limits:
 - a) Select the "Time Dom Power Config" softkey to display the "Time Domain Power" configuration dialog box.
 - b) Switch on the limits by setting the "Limit State" to "On".The limit lines S1 and S2 are displayed.
 - c) Define the left limit (limit line S1), the right limit (S2), or both.

Time Domain Power Measurement


4. Start a sweep.

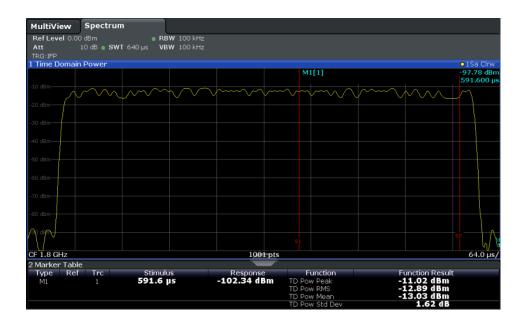
The measured powers are displayed in the marker results.

5.9.6 Measurement Example

This measurement example demonstrates the time domain power calculation for a GSM burst.

Test setup:

Signal generator settings (e.g. R&S FSW SMW):


Frequency:	1.8 GHz
Level:	-10 dBm
Modulation:	GSM/EDGE

Procedure:

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 1.8 GHz.
- 3. Set the RBW to 100 kHz.
- 4. Set the sweep time to 640 μ s.
- 5. Set the trigger source to "IF Power".
- 6. Define a trigger offset of -50 μ s.
- 7. Select the "Time Domain Power" measurement function from the "Select Measurement" dialog box.
- 8. In the Time Domain Power configuration dialog box, set all four results to "ON".
- 9. Set the "Limit State" to "ON".
- 10. Define the left limit at 326 μ s and the right limit at 538 μ s. This range corresponds to the useful part of the GSM burst.

The mean power of the useful part of the GSM burst is calculated to be -13 dBm.

Harmonic Distortion Measurement

5.10 Harmonic Distortion Measurement

The harmonics and their distortion can be measured using the "Harmonic Distortion" function.

•	About the Measurement	277
•	Harmonic Distortion Basics	278
•	Harmonic Distortion Results	280
•	Harmonic Distortion Configuration	281
	How to Determine the Harmonic Distortion	

5.10.1 About the Measurement

With this measurement it is possible to measure the harmonics easily, for example from a VCO. In addition, the total harmonic distortion (THD) is calculated.

For measurements in the frequency domain, the Harmonic Distortion measurement starts with an automatic search for the first harmonic (= peak) within the set frequency range. The center frequency is set to this frequency and the reference level is adjusted accordingly.

For measurements in zero span, the center frequency remains unchanged.

The Harmonic Distortion measurement then performs zero span sweeps at the center frequency and at each harmonic, i.e. at frequencies that are a multiple of the center frequency.

As a result, the zero span sweeps on all harmonics are shown, as well as the RMS values and the total harmonic distortion (THD).

Harmonic Distortion Measurement

5.10.2 Harmonic Distortion Basics

Measuring the harmonics of a signal is a frequent problem which can be solved best using a signal analyzer. In general, every signal contains harmonics. Harmonics are generated by nonlinear characteristics, which add frequencies to a pure sinewave. They can often be reduced by low pass filters. Since the signal analyzer itself has a nonlinear characteristic, for example in its first mixer, measures must be taken to ensure that harmonics produced in the signal analyzer do not cause spurious results. If necessary, the fundamental wave must be attenuated selectively with respect to the other harmonics with a high pass filter. Harmonics are particularly critical regarding high-power transmitters such as transceivers because large harmonics can interfere with other radio services.

Harmonic distortion can be determined as the level of the individual components, or as the root mean square of all components together, the total harmonic distortion (THD). The THD is set in relation to the power of the fundamental frequency (= center frequency).

Obtainable dynamic range

When harmonics are being measured, the obtainable dynamic range depends on the second harmonic intercept of the signal analyzer. The second harmonic intercept is the virtual input level at the RF input mixer at which the level of the 2nd harmonic becomes equal to the level of the fundamental wave. In practice, however, applying a level of this magnitude would damage the mixer. Nevertheless the available dynamic range for measuring the harmonic distance of a DUT can be calculated relatively easily using the second harmonic intercept.

As shown in Figure 5-43, the level of the 2nd harmonic drops by 20 dB if the level of the fundamental wave is reduced by 10 dB.

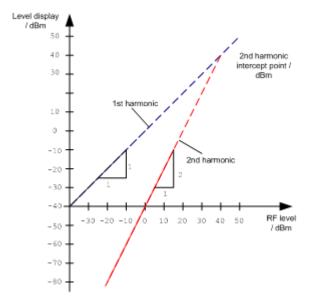


Figure 5-43: Extrapolation of the 1st and 2nd harmonics to the 2nd harmonic intercept at 40 dBm

Harmonic Distortion Measurement

The following formula for the obtainable harmonic distortion d_2 in dB is derived from the straight-line equations and the given intercept point:

$$d_2 = S.H.I - P_1(1)$$

where:

d_2	=	harmonic distortion
S.H.I.	=	second harmonic intercept
Pı	=	mixer level/dBm

The mixer level is the RF level applied to the RF input minus the set RF attenuation.

The formula for the internally generated level P₁ at the 2nd harmonic in dBm is:

$$P_1 = 2 * P_1 - S.H.I. (2)$$

The lower measurement limit for the harmonic is the noise floor of the signal analyzer. The harmonic of the measured DUT should – if sufficiently averaged by means of a video filter – be at least 4 dB above the noise floor so that the measurement error due to the input noise is less than 1 dB.

Rules for measuring high harmonic ratios

The following rules for measuring high harmonic ratios can be derived:

- Select the smallest possible IF bandwidth for a minimal noise floor.
- Select an RF attenuation which is high enough to measure the harmonic ratio only.

The maximum harmonic distortion is obtained if the level of the harmonic equals the intrinsic noise level of the receiver. The level applied to the mixer, according to (2), is:

$$P_I = \frac{P_{noise} / dBm + IP2}{2}$$

At a resolution bandwidth of 10 Hz (noise level -143 dBm, S.H.I. = 40 dBm), the optimum mixer level is -51.5 dBm. According to (1) a maximum measurable harmonic distortion of 91.5 dB minus a minimum S/N ratio of 4 dB is obtained.

Detecting the origin of harmonics

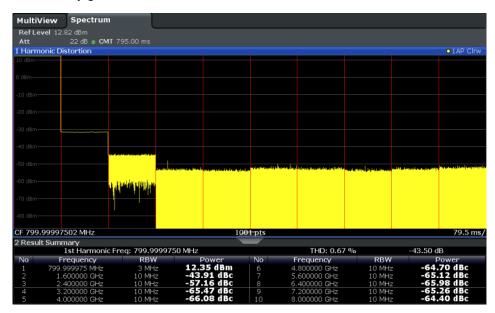
If the harmonic emerges from noise sufficiently (approx. >15 dB), it is easy to check (by changing the RF attenuation) whether the harmonics originate from the DUT or are generated internally by the signal analyzer. If a harmonic originates from the DUT, its level remains constant if the RF attenuation is increased by 10 dB. Only the displayed noise is increased by 10 dB due to the additional attenuation. If the harmonic is exclusively generated by the signal analyzer, the level of the harmonic is reduced by 20 dB or is lost in noise. If both – the DUT and the signal analyzer – contribute to the harmonic, the reduction in the harmonic level is correspondingly smaller.

Harmonic Distortion Measurement

High-sensitivity harmonics measurements

If harmonics have very small levels, the resolution bandwidth required to measure them must be reduced considerably. The sweep time is, therefore, also increased considerably. In this case, the measurement of individual harmonics is carried out with the R&S FSW set to a small span. Only the frequency range around the harmonics will then be measured with a small resolution bandwidth.

Required measurement time


During the harmonics measurement, zero span sweeps are performed at the center frequency and at each harmonic. The duration of each sweep ("Harmonic Sweep Time", **SWT**) and the "Number of Harmonics" (n) are defined in the "Harmonic Distortion" configuration dialog box. Thus, the required measurement time for the harmonic distortion measurement (*Cumulated Measurement Time*, **CMT**) is:

CMT = n*SWT

The required measurement time is indicated as "CMT" in the channel bar.

5.10.3 Harmonic Distortion Results

As a result of the harmonics distortion measurement, the zero span sweeps of all detected harmonics are shown in the diagram, separated by red display lines. This provides a very good overview of the measurement.

In addition, a result table is displayed providing the following information:

- First harmonic frequency
- THD (total harmonic distortion), relative and absolute values
- For each detected harmonic:
 - Frequency
 - RBW

Harmonic Distortion Measurement

Power

Remote commands

The results can also be queried using remote commands.

The first harmonic frequency can be read out via the general center frequency command [SENSe:] FREQuency: CENTer on page 882.

THD: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?
on page 845

List of harmonics: CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST?
on page 845

5.10.4 Harmonic Distortion Configuration

Harmonic Distortion measurements are selected via the "Harmonic Distortion" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "Harmonic Distortion" dialog box, which is displayed as a tab in the "Analysis" dialog box or when you select the "Harmonic Distortion Config" softkey from the "Harm Dist" menu.

The remote commands required to perform these tasks are described in Chapter 11.5.10, "Measuring the Harmonic Distortion", on page 843.

No. of Harmonics	281
Harmonic Sweep Time	281
Harmonic RBW Auto	282
Adjust Settings	282

No. of Harmonics

Defines the number of harmonics to be measured. The range is from 1 to 26. Default is 10

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics on page 844

Harmonic Sweep Time

Defines the sweep time for the zero span measurement on each harmonic frequency. This setting is identical to the normal sweep time for zero span, see also "Sweep Time" on page 421.

Harmonic Distortion Measurement

Remote command:

[SENSe:] SWEep:TIME:AUTO on page 894

Harmonic RBW Auto

Enables/disables the automatic adjustment of the resolution bandwidth for Normal (3dB) (Gaussian) and 5-Pole filter types. The automatic adjustment is carried out according to:

"RBW_n = RBW₁ * n"

If RBW_n is not available, the next higher value is used.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO
on page 844

Adjust Settings

If harmonic measurement was performed in the frequency domain, a new peak search is started in the frequency range that was set before starting the harmonic measurement. The center frequency is set to this frequency and the reference level is adjusted accordingly.

If harmonic measurement was performed in the time domain, this function adjusts the reference level only.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:PRESet on page 844

5.10.5 How to Determine the Harmonic Distortion

In Chapter 7.4.5, "Measurement Example: Measuring Harmonics Using Marker Functions", on page 535, measuring harmonics was described using marker functions. This task can be performed much simpler using the Harmonic Distortion measurement, as described in the following procedure.

- 1. Select the "Harmonic Distortion" measurement function from the "Select Measurement" dialog box.
- 2. Define the number of harmonics to be determined using the "No. of Harmonics" softkey.
- 3. Perform a sweep.
 - The trace for the determined harmonics are displayed in the diagram, separated by red display lines. The measured power for each harmonic in relation to the fundamental is indicated in the result table.
- 4. If the signal changes significantly during or after the harmonics measurement, use the "Adjust Settings" function to adjust the settings automatically and restart the measurement.

Third Order Intercept (TOI) Measurement

5.11 Third Order Intercept (TOI) Measurement

The third order intercept point of the R&S FSW can be determined if a two-tone signal with equal carrier levels is applied to the input.

•	About the TOI Measurement	283
	TOI Basics	
•	TOI Results.	287
•	TOI Configuration	288
	How to Determine the Third Order Intercept	
	Measurement Example – Measuring the R&S FSW's Intrinsic Intermodulation	

5.11.1 About the TOI Measurement

If several signals are applied to a transmission two-port device with nonlinear characteristic, intermodulation products appear at its output at the sums and differences of the signals. The nonlinear characteristic produces harmonics of the useful signals which intermodulate at the characteristic. The intermodulation products of lower order have a special effect since their level is largest and they are near the useful signals. The intermodulation product of third order causes the highest interference. It is the intermodulation product generated from one of the useful signals and the 2nd harmonic of the second useful signal in case of two-tone modulation.

In order to measure the third order intercept point (TOI), a two-tone signal with equal carrier levels is expected at the R&S FSW input. Marker 1 and marker 2 (both normal markers) are set to the maximum of the two signals. Marker 3 and marker 4 are placed on the intermodulation products.

The R&S FSW calculates the third order intercept point from the level difference between the first 2 markers and the markers 3 and 4 and displays it in the marker field.

5.11.2 TOI Basics

If several signals are applied to a transmission two-port device with nonlinear characteristic, intermodulation products appear at its output at the sums and differences of the signals. The nonlinear characteristic produces harmonics of the useful signals which intermodulate at the characteristic.

The frequencies of the intermodulation products are above and below the useful signals. The Figure 5-44 shows intermodulation products P_{S1} and P_{S2} generated by the two useful signals P_{U1} and P_{U2} .

Third Order Intercept (TOI) Measurement

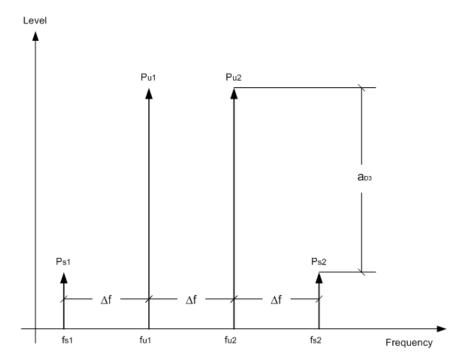


Figure 5-44: Intermodulation products Ps1 and Ps2

The intermodulation product at f_{i2} is generated by mixing the 2nd harmonic of useful signal P_{U2} and signal P_{U1} .

Tthe intermodulation product at f_{i1} is generated by mixing the 2nd harmonic of useful signal P_{U1} and signal P_{U2} .

$$f_{i1} = 2 \times f_{u1} - f_{u2} (1)$$

$$f_{i2} = 2 \times f_{u2} - f_{u1} (2)$$

Dependency on level of useful signals

The level of the intermodulation products depends on the level of the useful signals. If the two useful signals are increased by 1 dB, the level of the intermodulation products increases by 3 dB, which means that the spacing a_{D3} between intermodulation signals and useful signals is reduced by 2 dB. This is illustrated in Figure 5-45.

Third Order Intercept (TOI) Measurement

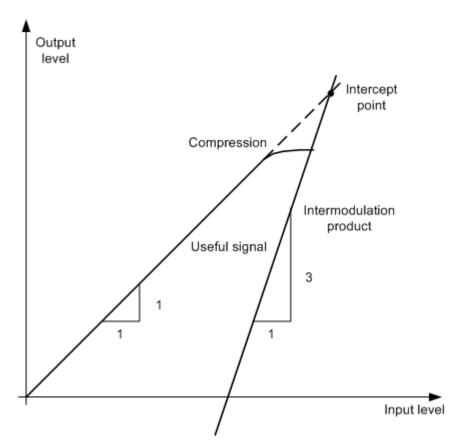


Figure 5-45: Dependency of intermodulation products on level of useful signals

The useful signals at the two-port output increase proportionally with the input level as long as the two-port is in the linear range. A level change of 1 dB at the input causes a level change of 1 dB at the output. Beyond a certain input level, the two-port goes into compression and the output level stops increasing. The intermodulation products of the third order increase three times as quickly as the useful signals. The intercept point is the fictitious level where the two lines intersect. It cannot be measured directly since the useful level is previously limited by the maximum two-port output power.

Calculation method

However, the intercept point can be calculated from the known line slopes and the measured spacing a_{D3} at a given level according to the following formula:

$$IP3 = \frac{a_{D3}}{2} + P_N$$

The third order intercept point (TOI), for example, is calculated for an intermodulation of 60 dB and an input level P_U of -20 dBm according to the following formula:

$$IP3 = \frac{60}{2} + (-20dBm) = 10dBm$$

Third Order Intercept (TOI) Measurement

Intermodulation-free dynamic range

The "Intermodulation-free dynamic range", i.e. the level range in which no internal intermodulation products are generated if two-tone signals are measured, is determined by the third order intercept point, the phase noise and the thermal noise of the signal analyzer. At high signal levels, the range is determined by intermodulation products. At low signal levels, intermodulation products disappear below the noise floor, i.e. the noise floor and the phase noise of the signal analyzer determine the range. The noise floor and the phase noise depend on the resolution bandwidth that has been selected. At the smallest resolution bandwidth, the noise floor and phase noise are at a minimum and so the maximum range is obtained. However, a large increase in sweep time is required for small resolution bandwidths. It is therefore best to select the largest resolution bandwidth possible to obtain the range that is required. Since phase noise decreases as the carrier-offset increases, its influence decreases with increasing frequency offset from the useful signals.

The following diagrams illustrate the intermodulation-free dynamic range as a function of the selected bandwidth and of the level at the input mixer (= signal level – set RF attenuation) at different useful signal offsets.

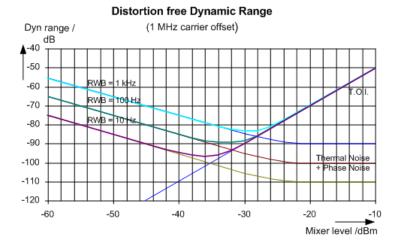


Figure 5-46: Intermodulation-free range as a function of level at the input mixer and the set resolution bandwidth

(Useful signal offset = 1 MHz, DANL = -145 dBm/Hz, TOI = 15 dBm; typical values at 2 GHz)

The optimum mixer level, i.e. the level at which the intermodulation distance is at its maximum, depends on the bandwidth. At a resolution bandwidth of 10 Hz, it is approx. -35 dBm and at 1 kHz increases to approx. -30 dBm.

Phase noise has a considerable influence on the intermodulation-free range at carrier offsets between 10 and 100 kHz (see Figure 5-47). At greater bandwidths, the influence of the phase noise is greater than it would be with small bandwidths. The optimum mixer level at the bandwidths under consideration becomes almost independent of bandwidth and is approx. -40 dBm.

Third Order Intercept (TOI) Measurement

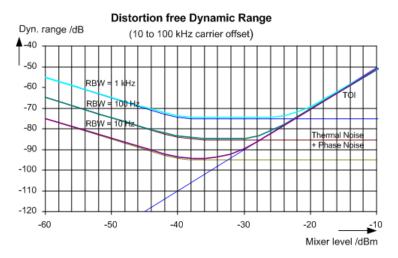
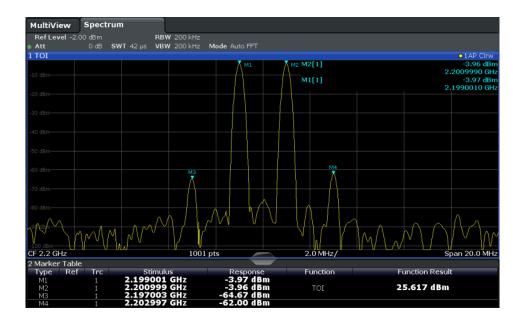


Figure 5-47: Intermodulation-free dynamic range as a function of level at the input mixer and of the selected resolution bandwidth

(Useful signal offset = 10 to 100 kHz, DANL = -145 dBm/Hz, TOI = 15 dBm; typical values at 2 GHz).


If the intermodulation products of a DUT with a very high dynamic range are to be measured and the resolution bandwidth to be used is therefore very small, it is best to measure the levels of the useful signals and those of the intermodulation products separately using a small span. The measurement time will be reduced, in particular if the offset of the useful signals is large. To find signals reliably when frequency span is small, it is best to synchronize the signal sources and the R&S FSW.

5.11.3 TOI Results

As a result of the TOI measurement, the following values are displayed in the marker area of the diagram:

Label	Description	
TOI	Third-order intercept point	
M1	Maximum of first useful signal	
M2	Maximum of second useful signal	
M3	First intermodulation product	
M4	Second intermodulation product	

Third Order Intercept (TOI) Measurement

Remote command

The TOI can also be queried using the remote command CALCulate<n>: MARKer<m>: FUNCtion: TOI: RESult? on page 848.

5.11.4 TOI Configuration

Third Order Intercept (TOI) measurements are selected via the "Third Order Intercept" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "Third Order Intercept" dialog box, which is displayed as a tab in the "Analysis" dialog box, or when you select the "TOI Config" softkey from the "TOI" menu.

Third Order Intercept (TOI) Measurement

The remote commands required to perform these tasks are described in Chapter 11.5.11, "Measuring the Third Order Intercept Point", on page 847.

Marker	1/2/3/4	289
Search	Signals	289

Marker 1/2/3/4

Indicates the detected characteristic values as determined by the TOI measurement (see Chapter 5.11.3, "TOI Results", on page 287).

The marker positions can be edited; the TOI is then recalculated according to the new marker values.

To reset all marker positions automatically, use the Search Signals function.

Remote command:

```
CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:DELTamarker<m>:X on page 989
CALCulate<n>:DELTamarker<m>:X:RELative? on page 1004
```

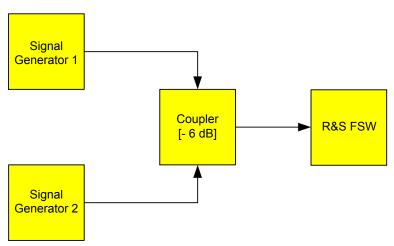
Search Signals

Performs a new search on the input signals and recalculates the TOI according to the measured values.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE on page 848

5.11.5 How to Determine the Third Order Intercept


The precise TOI for the R&S FSW in relation to the input signals is provided in the data sheet.

- 1. Apply a two-tone signal with equal carrier levels to the R&S FSW input.
- 2. On the R&S FSW, press the MEAS key.
- Select the "Third Order Intercept" measurement function from the "Select Measurement" dialog box.
 - The calculated TOI is indicated in the marker information. The markers required for calculation are displayed in the marker table.
- 4. If the signal changes significantly during or after the TOI measurement, use the "Search Signals" function to start a new signal search automatically and restart the calculation of the TOI.

Third Order Intercept (TOI) Measurement

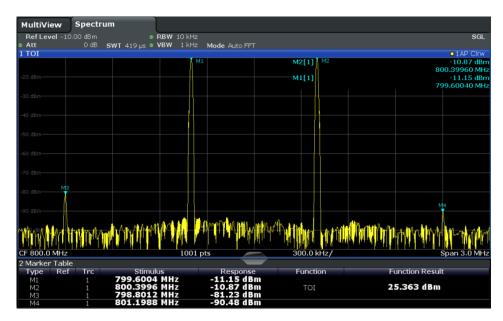
5.11.6 Measurement Example – Measuring the R&S FSW's Intrinsic Intermodulation

Test setup:

Signal generator settings (e.g. R&S FSW SMW):

Device	Level	Frequency
Signal generator 1	-4 dBm	799.6 MHz
Signal generator 2	-4 dBm	800.4 MHz

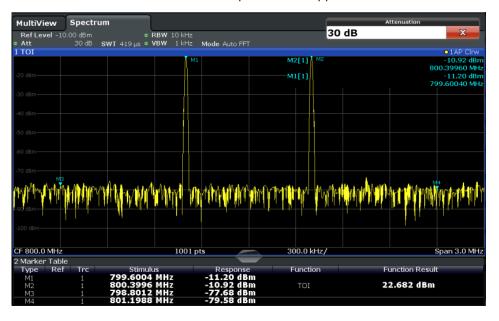
Setting up the measurement


- 1. Preset the R&S FSW.
- 2. Set the center frequency to 800 MHz and the frequency span to 3 MHz.
- 3. Set the reference level to -10 dBm and RF attenuation to 0 dB.
- Set the resolution bandwidth to 10 kHz.
 The noise is reduced, the trace is smoothed further and the intermodulation products can be seen clearly.
- 5. Set the VBW to "1 kHz".

Measuring intermodulation using the Third Order Intercept (TOI) measurement function

1. Press the MEAS key and select the "Third Order Intercept" measurement function from the "Select Measurement" dialog box.

The R&S FSW activates four markers to measure the intermodulation distance. Two markers are positioned on the useful signals and two on the intermodulation products. The TOI is calculated from the level difference between the useful signals and the intermodulation products. It is then displayed on the screen:


Third Order Intercept (TOI) Measurement

The third order intercept (TOI) is displayed in the marker information.

2. The level of a signal analyzer's intrinsic intermodulation products depends on the RF level of the useful signals at the input mixer. When the RF attenuation is added, the mixer level is reduced and the intermodulation distance is increased. With an additional RF attenuation of 10 dB, the levels of the intermodulation products are reduced by 20 dB. The noise level is, however, increased by 10 dB. Increase the RF attenuation to 20 dB to reduce intermodulation products.

The R&S FSW's intrinsic intermodulation products disappear below the noise floor.

AM Modulation Depth Measurement

5.12 AM Modulation Depth Measurement

Using the R&S FSW you can measure the AM modulation depth of a modulated signal.

•	About the Measurement	292
•	AM Modulation Depth Results	292
	AM Modulation Depth Configuration	
	Optimizing and Troubleshooting the Measurement	
	How to Determine the AM Modulation Depth	

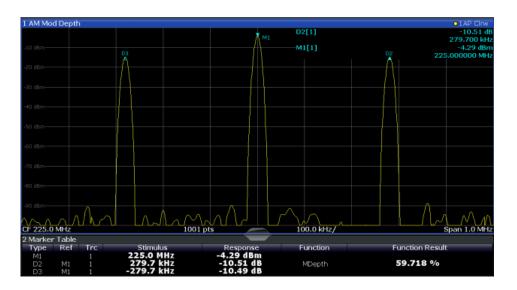
5.12.1 About the Measurement

The AM modulation depth, also known as a modulation index, indicates how much the modulated signal varies around the carrier amplitude. It is defined as:

M_{Depth} = peak signal amplitude / unmodulated carrier amplitude

So for M_{Depth} = 0.5, for example, the carrier amplitude varies by 50% above and below its unmodulated level, and for M_{Depth} = 1.0 it varies by 100%.

When this measurement is activated, marker 1 is set to the peak level, which is considered to be the carrier level. Delta markers 2 and 3 are automatically set symmetrically to the carrier on the adjacent peak values of the trace. The markers can be adjusted manually, if necessary.


The R&S FSW calculates the power at the marker positions from the measured levels. The AM modulation depth is calculated as the ratio between the power values at the reference marker and at the delta markers. If the powers of the two AM side bands are unequal, the mean value of the two power values is used for AM modulation depth calculation.

5.12.2 AM Modulation Depth Results

As a result of the AM Modulation Depth measurement, the following values are displayed in the marker area of the diagram:

Label Description	
MDepth AM modulation depth in percent	
M1 Maximum of the signal (= carrier level)	
D2	Offset of next peak to the right of the carrier
D3	Offset of the next peak to the left of the carrier

AM Modulation Depth Measurement



Remote command:

The AM modulation depth can also be queried using the remote command CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult? on page 850.

5.12.3 AM Modulation Depth Configuration

AM Modulation Depth measurements are selected via the "AM Modulation Depth" button in the "Select Measurement" dialog box. The measurement is started immediately with the default settings. It can be configured via the MEAS CONFIG key or in the "AM Modulation Depth" dialog box, which is displayed as a tab in the "Analysis" dialog box or when you select the "AM Mod Depth Config" softkey from the "AM Mod Depth" menu.

The remote commands required to perform these tasks are described in Chapter 11.5.12, "Measuring the AM Modulation Depth", on page 849.

Marker	1/2/3	294
Search	Signals	294

AM Modulation Depth Measurement

Marker 1/2/3

Indicates the detected characteristic values as determined by the AM Modulation Depth measurement:

Marker	Description	
M1 Maximum of the signal (= carrier level)		
D2 Offset of next peak to the right of the carrier		
D3	Offset of the next peak to the left of the carrier	

The marker positions can be edited; the modulation depth is then recalculated according to the new marker values.

To reset all marker positions automatically, use the Search Signals function.

Note: Moving the marker positions manually. When the position of delta marker 2 is changed, delta marker 3 is moved symmetrically with respect to the reference marker 1.

Delta marker 3, on the other hand, can be moved for fine adjustment independently of marker 2.

Marker 1 can also be moved manually for re-adjustment without affecting the position of the delta markers.

Remote command:

```
CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:DELTamarker<m>:X on page 989
CALCulate<n>:DELTamarker<m>:X:RELative? on page 1004
```

Search Signals

Performs a new search on the input signal and recalculates the AM Modulation Depth according to the measured values.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE
on page 850
```

5.12.4 Optimizing and Troubleshooting the Measurement

If the results do not meet your expectations, try the following methods to optimize the measurement:

- Set the center frequency to the frequency of the device under test.
- Adjust the span so the peaks to the left and right of the carrier, produced by the AM modulated signal, are clearly visible.

If the span is too wide, these signals may fall together with the carrier and the measurement can not be performed.

If the span is too narrow, theses signals are outside of the measured span and the delta markers can not find these peaks.

The rule of thumb is to set the span to three times the value of the AM modulation frequency.

Electromagnetic Interference (EMI) Measurement

5.12.5 How to Determine the AM Modulation Depth

- 1. Apply a modulated carrier signal to the R&S FSW input.
- 2. On the R&S FSW, press the MEAS key.
- Select the "AM Modulation Depth" measurement function from the "Select Measurement" dialog box.
 - The calculated AM Modulation Depth is indicated in the marker information. The markers required for calculation are displayed in the marker table.
- 4. If the signal changes significantly during or after the AM Modulation Depth measurement, use the "Search Signals" function to start a new peak search automatically and restart the calculation of the AM Modulation Depth.

5.13 Electromagnetic Interference (EMI) Measurement

The optional electromagnetic interference (EMI) measurement (R&S FSW-K54) is suitable for measurements according to commercial and military electromagnetic compatibility (EMC) standards. The functionality of the measurement is particularly useful in research and development.

The EMI measurement features:

- EMI marker functionality
- Marker demodulation
- Measurement bandwidths and detectors for EMI measurements
- Logarithmic scaling of the frequency axis
- Additional predefined limit lines for EMC standards
- Predefined transducer factors
- LISN control

5.13.1 About the EMI Measurement

EMI measurements can be very time-consuming, especially if weighting detectors are required for the measurement. In addition, EMC testing often requires various procedures to locate local EMI maxima. Such procedures are, for example, movements of an absorbing clamp, variations in the height of the test antenna or the rotation of the DUT.

Covering all test setups with one of the (slow) EMI weighting detectors over the required frequency range would lead to very high measurement times.

Splitting the measurement procedure into several stages, however, can eliminate this problem.

Electromagnetic Interference (EMI) Measurement

The first stage, or peak search, is used to get a rough idea about the location of peak levels that may indicate interference over the required frequency range. You can use a detector that allows for a fast sweep time, e.g. the peak detector.

During the second stage, or final test, the R&S FSW performs the actual EMC test, a refined measurement with detectors designed for and required by EMC standards. To keep measurement times brief, the R&S FSW performs a final measurement only on frequencies you have marked with a marker or delta marker. You can assign a different detector to every marker and thus test a particular frequency easily for compliance.

Optionally, you can activate continuous demodulation of the signal during the initial measurement and at the peak marker positions during the final test.

After the final measurement, you can check the signal levels against specified limits.

5.13.2 EMI Measurement Results

As the result of an R&S FSW EMI measurement, the measured signal levels and active markers are displayed in a Spectrum diagram.

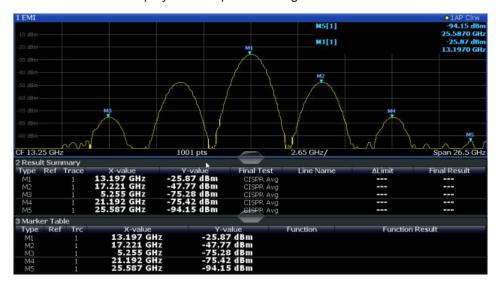


Figure 5-48: EMI measurement results

Initial peak search results - Marker Table

As a result of the initial peak search, the active markers are set to the positive peaks of the measured signal.

If **Auto peak search** *and* **limit lines** are active, the active markers are set to the peak *delta* values between the measured signal and the limit lines.

The active marker levels and positions are displayed in the **Marker Table**.

(Note: the marker results are also displayed in the Result Summary; in addition, the Marker Table contains the marker results for those markers for which no final EMI test is performed.)

Electromagnetic Interference (EMI) Measurement

Final test results - Result Summary

The results of the final EMI tests at the active marker frequencies are displayed in the **Result Summary**.

The Result Summary provides the following information:

Label	Description
Туре	Marker name
Ref	Reference marker for delta markers
Trace	Assigned trace
X-value	Marker x-value (frequency for final test)
Y-value	Marker y-value (level during inital measurement)
Final Test	Detector used for final EMI test
Line name	Line activated for limit check
Δ Limit	Delta between measured level and limit line (if active) The value is colored to indicate the following states: • green: does not exceed limit • yellow: within margin • red: exceeds limit
Final Result	Value measured during final EMI test using specified detector at marker frequency

5.13.3 EMI Measurement Basics

Some background knowledge on basic terms and principles used in EMI measurements is provided here for a better understanding of the required configuration settings.

	Resolution Bandwidth and Filter Types	297
•	Detectors and Dwell Time.	.298
	Frequency Resolution - Sweep Points and Scaling	
	Controlling V-Networks (LISN)	
•	Using Transducer Factors	303
•	Initial Measurement - Peak Search	.303
•	Final Measurement at the Marker Position	. 304
•	Limit Checks	305

5.13.3.1 Resolution Bandwidth and Filter Types

EMI testing requires resolution filters with a 6 dB bandwidth. The R&S FSW EMI measurement adds the following bandwidths that comply to commercial and military standards to those already available with the base unit:

Commercial (CISPR, FFC etc.)

- 200 Hz
- 9 kHz

Electromagnetic Interference (EMI) Measurement

- 120 kHz
- 1 MHz (not with Quasipeak detector, see "Quasipeak detector (CISPR filter only)" on page 299)

Military (MIL Std)

- 10 Hz
- 100 Hz
- 1 kHz
- 10 kHz
- 100 kHz
- 1 MHz

For the Quasipeak, CISPR Average, or Average RMS detector, the bandwidth is fixed depending on the frequency. For more information see Chapter 5.13.3.2, "Detectors and Dwell Time", on page 298.

5.13.3.2 Detectors and Dwell Time

The EMI measurement adds new detectors to those already available with the base unit. The additional detectors are especially designed for and required by EMI applications.

The additional detectors are available only if the EMI (R&S FSW-K54) measurement option is installed and the filter type "CISPR" or "MIL" is selected (see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297). However, the EMI measurement need not be active.

The detector to be used for the initial peak search is configured in the trace settings (see Chapter 7.3.2.1, "Trace Settings", on page 478), while the detector for the final test is configured in the EMI marker settings, see Chapter 5.13.4.1, "EMI Marker Configuration", on page 306.

Dwell time

EMC tests often require a specific *dwell time* for an EMI measurement. The dwell time defines how long the R&S FSW measures the signal at the individual frequencies. Each detector needs a different period of time to fully charge and discharge; the individual requirements on the dwell time are described for each detector. For details on defining the dwell time for an R&S FSW EMI measurement see "Defining a Dwell Time for the Final Measurement" on page 305.

Positive and negative peak detector

The maximum and minimum peak detectors display the maximum and minimum signal level that was detected during the specified dwell time.

The minimum and maximum peak detectors are already available with the base unit.

Consider the following when defining the dwell time:

Unmodulated signals: minimum time required by the detector

Electromagnetic Interference (EMI) Measurement

 Pulsed signals: the time must be long enough to capture at least one complete pulse

Average detector

The average detector displays the average signal level of the samples that were collected during the specified dwell time.

The average detector is already available with the base unit.

Consider the following when defining the dwell time:

- Unmodulated signals: minimum time required by the detector
- Pulsed signals: the time must be long enough to capture several complete pulses (at least 10)
- The time is determined by the lowest modulation frequency to be averaged

RMS detector

The RMS detector displays the root mean square (RMS) value over the specified dwell time. The integration time is the specified dwell time.

The RMS detector is already available with the base unit.

The same considerations apply to the dwell time as for the average detector.

Sample detector

The sample detector displays the last value from the samples allocated to a pixel.

The sample detector is used for noise or phase noise marker calculation. However, it is unreliable if the displayed span is much greater then the resolution bandwidth or if the tuning steps of the local oscillator are too large. The sample detector is not recommended for EMI tests.

Quasipeak detector (CISPR filter only)

The quasipeak detector displays the maximum signal level weighted to CISPR 16-1-1 that was detected during the dwell time.

The quasipeak detector is only available for the CISPR filter, and not for an RBW of 1 MHz.

The filter bandwidth and time parameters of the detector depend on the measured frequency. The time lag of the simulated pointer instrument reflects the weighting factor of the signal depending on its form, modulation, etc.

Table 5-16: Required parameters depending on frequency for CISPR quasipeak detector

	Band A	Band B	Band C/D
Frequency range	< 150 kHz	150 kHz to 30 MHz	> 30 MHz
Resolution bandwidth	200 Hz	9 kHz	120 kHz
Charge time	45 ms	1 ms	1 ms

Electromagnetic Interference (EMI) Measurement

	Band A	Band B	Band C/D
Discharge time	500 ms	160 ms	550 ms
Time lag of the simulated pointer instrument	160 ms	160 ms	100 ms

Consider the following when defining the dwell time:

- Unknown signals: select a dwell time of at least 1 second to ensure that pulses down to a frequency of 5 Hz are weighted correctly
- Known signals: shorter dwell time possible, as the signal level does not change during the final measurement

When you change the frequency or the attenuation, the R&S FSW waits until the lowpass filter has settled before starting the measurement.

CISPR Average detector (CISPR filter only)

The CISPR Average detector displays a weighted average signal level according to CISPR 16-1-1.

The average value according to CISPR 16-1-1 is the maximum value detected while calculating the linear average value during the specified dwell time.

The CISPR Average detector is only available for the CISPR filter.

The CISPR Average detector is applied to measure pulsed sinusoidal signals with a low pulse frequency, for example. It is calibrated with the RMS value of an unmodulated sinusoidal signal. The average value is determined by lowpass filters of the 2nd order (simulating a mechanical pointer instrument).

The filter bandwidth and time lag of the detector depend on the measured frequency. The time lag of the simulated pointer instrument reflects the weighting factor of the signal depending on its form, modulation, etc.

Table 5-17: Required parameters depending on frequency for CISPR Average detector

	Band A	Band B	Band C/D	Band E
Frequency range	<150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	>1 GHz
IF bandwidth	200 Hz	9 kHz	120 kHz	1 MHz
Time lag of the simulated pointer instrument	160 ms	160 ms	100 ms	100 ms

Consider the following when defining the dwell time:

- Unknown signals: select a dwell time of at least 1 second to ensure that pulses down to a frequency of 5 Hz are weighted correctly
- Pulsed signals or signals that fluctuate slowly: the dwell time must cover at least the time until the first signal peak is measured; can require long dwell time
- unmodulated signals or signals with a high modulation frequency: the dwell time must cover at least the time until the first signal peak is measured; usually shorter than for pulsed signals

Electromagnetic Interference (EMI) Measurement

When you change the frequency or the attenuation, the R&S FSW waits until the low-pass filter has settled before starting the measurement. In this case, the measurement time depends on the resolution bandwidth and the characteristics of the signal.

RMS Average detector (CISPR filter only)

The RMS Average detector is a combination of the RMS detector (for pulse repetition frequencies above a corner frequency) and the Average detector (for pulse repetition frequencies below the corner frequency). It thus achieves a pulse response curve with the following characteristics:

- 10 dB/decade above the corner frequency
- 20 dB/decade below the corner frequency

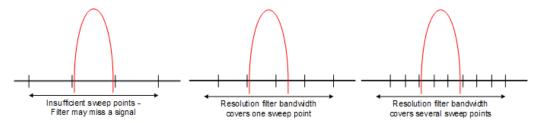
The average value is determined by lowpass filters of the 2nd order (simulation of a mechanical pointer instrument).

The RMS Average detector is only available for the CISPR filter.

The detector is used, for example, to measure broadband emissions and may replace the quasipeak detector in the future.

The detector parameters depend on the measured frequency. The time lag of the simulated pointer instrument reflects the weighting factor of the signal depending on its form, modulation, etc.

	Band A	Band B	Band C/D	Band E
Frequency range	<150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	>1 GHz
IF bandwidth	200 Hz	9 kHz	120 kHz	1 MHz
Time lag of simula- ted pointer instru- ment	160 ms	160 ms	100 ms	100 ms
Corner frequency	10 Hz	100 Hz	100 Hz	1 kHz


The same considerations apply to the dwell time as for the CISPR average detector.

5.13.3.3 Frequency Resolution - Sweep Points and Scaling

The number of sweep points defines the number of measurement values collected during one sweep. Thus, increasing the sweep points also increases the accuracy of the results regarding the frequency resolution.

Because EMI measurements often cover a large frequency range you should define an adequate number of sweep points, especially when performing the measurement on a logarithmic axis. As on a linear axis, the distance from one sweep point to the next is calculated graphically on a logarithmic axis, and is not based on the frequency itself. Thus, the frequency resolution between two sweep points deteriorates with higher frequencies.

Electromagnetic Interference (EMI) Measurement

The resolution bandwidth should cover at least one sweep point (more is better). If this condition is not met, signals or interferences could be missed during refined measurement of narrowband interferers. If the distance between two sweep points is larger than RBW/3, a warning is displayed in the status bar ("Increase sweep points").

Example:

With a linear axis, the distance between the sweep points is equal, e.g. 200 kHz. Logarithmic axis:

With a logarithmic axis, the distance between sweep points is variable. In the spectrum from 10 Hz to 100 Hz, the distance is a few Hz. Between 100 MHz and 1 GHz, the distance is several MHz.

The R&S FSW EMI measurement supports a maximum of 200000 sweep points. This number is based on typical bands measured with a single resolution bandwidth. There are sufficient sweep points to make sure that a signal is found during the refined measurement, even when covering 30 MHz to 1 GHz with logarithmic scaling and 120 kHz RBW.

5.13.3.4 Controlling V-Networks (LISN)

For measurements on power lines, the R&S FSW EMI measurement adds functionality to control a line impedance stabilization network (LISN) directly. Thus you can determine the interference caused by power supplies and cables.

You can connect the LISN to the user port of the R&S FSW. Control cables for the various LISNs are available as accessories. The R&S FSW then controls which phase of the LISN is to be tested and outputs the information to the user port.

The R&S FSW EMI measurement supports several V-networks. For each type of network, you can define the phase you want to test for interferences. The R&S FSW EMI measurement allows you to test one phase at a time.

Electromagnetic Interference (EMI) Measurement

Table 5-19: Supported networks and phases

Network type	Phases
Two-line V-networks	
ESH3-Z5	N, L1
ENV216	N, L1
Four-line V-networks	
ESH2-Z5	N, L1. L2, L3
ENV4200	N, L1. L2, L3

For the ENV216 network, a 150 kHz high pass filter is available to protect the input of the R&S FSW.

5.13.3.5 Using Transducer Factors

The R&S FSW EMI measurement provides functionality to include transducer factors in the test setup. Transducers are devices like antennas, probes or current probes that are connected to the R&S FSW to measure interferences or useful signals. The transducer converts the measured value such as field strength, current or RFI voltage into a voltage across 50 Ω . During the measurement, the transducer is considered a part of the instrument.

A transducer usually has a frequency-dependent transducer factor that includes the frequency response of the corresponding device. During level measurement, the transducer factor automatically converts the results into the correct unit and magnitude. A transducer factor consists of a maximum of 1001 reference values. Each reference value includes frequency, unit and level.

The R&S FSW EMI measurement adds several predefined transducer factors. In addition you can also create new and edit existing transducer factors.

For more information see Chapter 9.2, "Basics on Transducer Factors", on page 591.

5.13.3.6 Initial Measurement - Peak Search

The purpose of an initial peak search is to find signals with a high interference level quickly. Usually the peak search is performed with a fast detector like the peak or average detector. The initial peak search is the basis for a possible refined measurement of interferences with the detectors specific to EMI measurements.

The results of the initial peak search are shown in the Marker Table (see Chapter 5.13.2, "EMI Measurement Results", on page 296).

Peak searches can be performed automatically or manually.

Automatic peak search

If enabled, the automatic peak search starts as soon as you select the EMI measurement and one or more markers are active. During automatic peak search, the

Electromagnetic Interference (EMI) Measurement

R&S FSW looks for the strongest peaks in the frequency range you are measuring and positions a marker on those peaks after each sweep. If a **limit line** is assigned to the trace, the peak search is based on the level difference between the trace and the limit line. For each active marker a peak is searched. You can use up to 16 markers simultaneously.

The largest peak is always assigned to the active marker with the lowest number; subsequent peaks are assigned to the active markers in ascending order.

The R&S FSW allows you to distribute markers among several traces. If you do so, the marker with the lowest number assigned to a particular trace is positioned on the largest peak of the corresponding trace.

Manual peak search

If automatic peak search is off, you can set the markers to any frequency you need more information about manually. You can change the marker position with the rotary knob or the cursor keys, or position it to a particular frequency with the number keys.

Setting markers is the same as setting markers in other Spectrum measurements. For more information see Chapter 7.4, "Marker Usage", on page 496.

Searching for peaks over several traces

You can search for peaks on six traces simultaneously with a different weighting detector for each trace.

In this case, the R&S FSW searches for peaks on all traces separately, provided that you have assigned at least one marker to each trace.

A typical selection for EMI measurement is to use the peak and the average detector. After initial measurement, search for peaks on the peak trace and the average trace separately so that the distribution of narrowband and wideband sources of interference can be taken into account.

Example:

- In the initial measurement, determine the peak on one trace using the average detector by assigning a marker to that trace. For the marker frequency, perform a refined measurement using the CISPR or RMS average detector.
- In the initial measurement, determine the peak on another trace using the peak
 detector by assigning another marker to that trace. For this marker frequency, perform a refined measurement using the quasipeak detector.

5.13.3.7 Final Measurement at the Marker Position

Finding peaks with the help of an initial marker peak search reduces data to be evaluated and thus measurement time. A final measurement with a special EMI detector can then refine the initial results.

The R&S FSW EMI measurement performs the final measurement automatically as soon as a detector for the final test is defined for an EMI marker and the marker is activated. The final measurement starts immediately after the marker has been set. The

Electromagnetic Interference (EMI) Measurement

advantage of an immediate final measurement is that it eliminates the risk of measurement errors based on frequency drifts of the disturbance signal.

The final measurement at the marker frequency may have a different detector than during the initial peak search. Thus, the final measurement consumes much less time because detectors with a long measurement time are needed only at the critical frequency.

The R&S FSW EMI measurement also allows you to use multiple detectors for the final measurement. The advantage of multiple detection is that you only need one test run to see if the results comply with the limits specified in a standard. The detectors for the final EMI tests are defined in the marker configuration (as opposed to the *trace* detector which is used for the initial peak search).

The results of the final measurement are shown in the Result Summary (see Chapter 5.13.2, "EMI Measurement Results", on page 296).

Defining a Dwell Time for the Final Measurement

EMC tests often require a specific *dwell time* for an EMI measurement. The dwell time defines how long the R&S FSW measures the signal at the frequencies of the marker positions. The dwell time is identical for all EMI final measurements and is thus defined in the EMI measurement configuration. Select a dwell time according to the characteristics of the measured signal. See also Chapter 5.13.3.2, "Detectors and Dwell Time", on page 298.

5.13.3.8 Limit Checks

General limit line functionality is provided by the R&S FSW base unit. The base unit also provides various predefined limit lines that you can use for various applications. The R&S FSW EMI measurement adds further predefined limit lines designed in compliance with several EMC standards.

When using limit lines in combination with EMI measurements, the marker levels from the initial measurement are compared to the limit line values. The result of the limit line check is displayed in the diagram as usual.

In the EMI Result Summary, the limit check is based on the results of the final test. Since the marker may be determined using a different detector than the final test results, the two limit check results may differ. The difference between the limit line and the measured value is colored to indicate the following states:

green: does not exceed limit

• yellow: within margin

red: exceeds limit

For more information on using limit lines see Chapter 7.5.2, "Basics on Limit Lines", on page 537.

Electromagnetic Interference (EMI) Measurement

5.13.4 EMI Measurement Configuration

On the R&S FSW, EMI measurement configuration consists of the following settings, most of which are accessible from the main EMI menu. This menu is displayed when you select the EMI measurement and then press the MEAS CONFIG key.

In addition, some common settings are also relevant for EMI measurements:

- Chapter 9.3.2, "Transducer Settings", on page 597
- Chapter 7.5.3.2, "Limit Line Settings and Functions", on page 542

•	EMI Marker Configuration	306
•	EMI Final Measurement Configuration	.309
•	LISN Control Settings.	.311

5.13.4.1 EMI Marker Configuration

The inital peak search for the R&S FSW EMI measurement is defined by the marker configuration.

To configure EMI markers select the EMI measurement, then press the MEAS CONFIG or MKR key and select "Marker Config".

Selected Marker	306
Marker State	306
Marker Position (X-value)	306
Marker Type	
Reference Marker	
Linking to Another Marker	307
Assigning the Marker to a Trace	308
Final Test Detector	
Select Marker	308

Selected Marker

Marker name. The marker which is currently selected for editing is highlighted orange.

Remote command:

Marker selected via suffix <m> in remote commands.

Marker State

Activates or deactivates the marker in the diagram.

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989
```

Marker Position (X-value)

Defines the position (x-value) of the marker in the diagram. For normal markers, the absolute position is indicated. For delta markers, the position relative to the reference marker is provided.

Electromagnetic Interference (EMI) Measurement

Remote command:

CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:DELTamarker<m>:X on page 989

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

"Normal" A normal marker indicates the absolute value at the defined position

in the diagram.

"Delta" A delta marker defines the value of the marker relative to the speci-

fied reference marker (marker 1 by default).

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989
```

Reference Marker

Defines a marker as the reference marker which is used to determine relative analysis results (delta marker values).

If the reference marker is deactivated, the delta marker referring to it is also deactivated

If a fixed reference point is configured (see "Defining a Fixed Reference" on page 513), the reference point ("FXD") can also be selected instead of another marker.

Remote command:

```
CALCulate<n>:DELTamarker<m>:MREF on page 988
```

Linking to Another Marker

Links the current marker to the marker selected from the list of active markers. If the x-axis value of the initial marker is changed, the linked marker follows to the same position on the x-axis. Linking is off by default.

Using this function you can set two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

Remote command:

```
CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> on page 990

CALCulate<n>:DELTamarker<m>:LINK:TO:MARKer<m> on page 987

CALCulate<n>:DELTamarker<m>:LINK on page 987
```

Electromagnetic Interference (EMI) Measurement

Assigning the Marker to a Trace

The "Trace" setting assigns the selected marker to an active trace. The trace determines which value the marker shows at the marker position. If the marker was previously assigned to a different trace, the marker remains on the previous frequency or time, but indicates the value of the new trace.

If a trace is turned off, the assigned markers and marker functions are also deactivated.

Remote command:

CALCulate<n>:MARKer<m>:TRACe on page 991

Final Test Detector

Defines the detector to be used for the final EMI test at the marker frequency.

This setting is only available if the EMI (R&S FSW-K54) measurement option is installed.

For details, see Chapter 5.13.3.2, "Detectors and Dwell Time", on page 298.

Note: The trace detector configured in the trace settings is used for the initial peak search only, see Chapter 7.3.2.1, "Trace Settings", on page 478.

"Off" No final test is performed.

"Positive peak" Determines the maximum signal level that was detected during the

specified dwell time.

"Average" Determines the average signal level of the samples that were collec-

ted during the specified dwell time.

"Quasipeak" Determines the maximum signal level weighted to CISPR 16-1-1 that

was detected during the dwell time.

The "Quasipeak" detector is only available for the CISPR filter, and

not for an RBW of 1 MHz.

"CISPR Aver- Determines a weighted average signal level according to CISPR

age" 16-1-

The average value according to CISPR 16-1-1 is the maximum value detected while calculating the linear average value during the speci-

fied dwell time.

The "CISPR Average" detector is only available for the CISPR filter.

"RMS Average"

A combination of the RMS detector (for pulse repetition frequencies above a corner frequency) and the Average detector (for pulse repeti-

tion frequencies below the corner frequency).

Lowpass filters of the second order determine the average value

(simulation of a mechanical pointer instrument).

The "RMS Average" detector is only available for the CISPR filter.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:DETector on page 853
CALCulate<n>:DELTamarker<m>:FUNCtion:FMEasurement:DETector
on page 853

Select Marker

The "Select Marker" function opens a dialog box to select and activate or deactivate one or more markers quickly.

Electromagnetic Interference (EMI) Measurement

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989

5.13.4.2 EMI Final Measurement Configuration

The final EMI measurement can be performed with different settings than the initial peak search. These settings are described here.

The detector to be used for the final EMI test can be defined differently for each frequency, thus the detector is configured in the EMI marker settings, see "Final Test Detector" on page 308.

Filter Type	309
RBW	
Automatic Peak Search	
Dwell Time	310
Frequency Axis Scaling	311
Res BW CISPR	311
Res BW MII	311

Filter Type

Defines the filter type.

The following filter types are available:

- Normal (3dB)
- Channel
- RRC
- 5-Pole (not available for sweep type "FFT")
- CISPR (6 dB) requires EMI (R&S FSW-K54) option
- MIL Std (6 dB) requires EMI (R&S FSW-K54) option

Electromagnetic Interference (EMI) Measurement

For more information see Chapter 6.5.1.6, "Which Data May Pass: Filter Types", on page 417.

Note: The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

The RBW filter configured in the bandwidth settings is identical to the filter configured in the EMI configuration.

Remote command:

```
[SENSe:]BANDwidth[:RESolution]:TYPE on page 888
```

RBW

Defines the resolution bandwidth. The available resolution bandwidths are specified in the data sheet. Numeric input is always rounded to the nearest possible bandwidth.

If "AUTO" is selected, the resolution bandwidth is coupled to the selected span (for span > 0). If the span is changed, the resolution bandwidth is automatically adjusted.

If the resolution bandwidth is defined manually, a green bullet is displayed next to the "RBW" display in the channel bar.

For more information see Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414.

For measurements on I/Q data in the frequency domain, the maximum RBW is 1 MHz.

For EMI measurements using the quasipeak detector, the 1 MHz RBW filter is not available (see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297).

Remote command:

```
[SENSe:]BANDwidth[:RESolution] on page 887
[SENSe:]BANDwidth[:RESolution]:AUTO on page 888
```

Automatic Peak Search

If activated, a peak search is performed automatically for all active markers after each sweep.

If Auto peak search *and* limit lines are active, the active markers are set to the peak *delta* values between the measured signal and the limit lines.

Note: The general search functions Auto Max / Min Peak Search are not available for EMI measurements.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO on page 854
```

Dwell Time

Sets the dwell time for the EMI marker measurement.

For more information see Chapter 5.13.3.2, "Detectors and Dwell Time", on page 298. Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:DWELl on page 855
```

Electromagnetic Interference (EMI) Measurement

Frequency Axis Scaling

Switches between linear and logarithmic scaling for the frequency axis.

By default, the frequency axis has linear scaling. Logarithmic scaling of the frequency axis, however, is common for measurements over large frequency ranges as it enhances the resolution of the lower frequencies. On the other hand, high frequencies get more crowded and become harder to distinguish.

For more information see Chapter 6.3.1.4, "Coping with Large Frequency Ranges - Logarithmic Scaling", on page 396.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe:X:SPACing on page 881
```

Res BW CISPR

Defines the measurement bandwidth for commercial EMC standards according to CISPR.

For more information see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

Remote command:

Filter type:

```
[SENSe:]BANDwidth[:RESolution]:TYPE on page 888
```

Filter bandwidth:

```
[SENSe:]BANDwidth[:RESolution] on page 887
```

Res BW MIL

Defines the measurement bandwidth for military EMC standards.

For more information see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

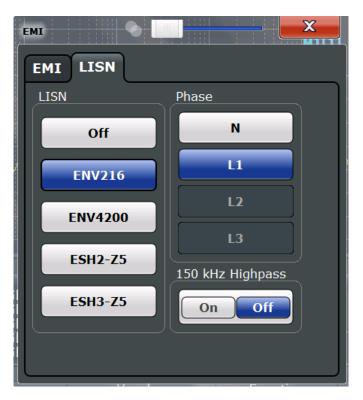
Remote command:

Filter type:

```
[SENSe:]BANDwidth[:RESolution]:TYPE on page 888
```

Filter bandwidth:

```
[SENSe:]BANDwidth[:RESolution] on page 887
```


5.13.4.3 LISN Control Settings

For measurements with power lines, the following settings are available for the R&S FSW to control which phase of the LISN is to be tested (e.g. for EMI measurements). LISN control requires the EMI measurement (R&S FSW-K54) option.

The LISN control settings are available when you do one of the following:

- If the EMI measurement is selected, press the MEAS CONFIG key, then select "LISN Config".
- Press the INPUT/OUTPUT key, then select "LISN Config".
- In the "Overview", select "Output", then select "LISN Config".

Electromagnetic Interference (EMI) Measurement

For more information see Chapter 5.13.3.4, "Controlling V-Networks (LISN)", on page 302.

LISN Type	312
Phase	312
150 kHz Highpass Filter	312

LISN Type

Selects the network type and activates output to the network via the user port of the R&S FSW. The network type determines the supported phases (see Table 5-19).

"Off" disables LISN control and output.

Remote command:

INPut:LISN:TYPE on page 856

Phase

Selects the phase to be measured. Phase N and L1 are included in all four LISN. Phase L2 and L3 are only included in four-line networks.

You can select one phase only for each measurement.

Remote command:

INPut:LISN:PHASe on page 855

150 kHz Highpass Filter

Enables or disables the use of an additional 150 kHz highpass filter to protect the R&S FSW LISN from excessive input.

The filter is available for the ENV 216 network only.

Electromagnetic Interference (EMI) Measurement

Remote command:

INPut:LISN:FILTer:HPASs[:STATe] on page 855

5.13.5 EMI Result Analysis

The R&S FSW EMI measurement provides functionality to analyze the results.

Marker Demodulation

The R&S FSW is able to demodulate AM and FM signals for acoustic tests and monitoring purposes. When the demodulator function is active, the R&S FSW EMI measurement demodulates the signal continuously (regardless of the "Continuous Demodulation" setting in the marker function configuration). The demodulation begins as soon as a marker is activated. During the initial measurement, demodulation is performed for the entire measurement span; during the final measurement only the detected peak marker positions are demodulated (for the defined dwell time). You can listen to the results during the measurement with headphones or with the internal speaker.

For more information see Chapter 7.4.3.7, "Marker Demodulation", on page 529.

Limit Lines

General limit line functionality is provided by the R&S FSW base unit. The base unit also provides various predefined limit lines that you can use for various applications. The R&S FSW EMI measurement adds further predefined limit lines designed in compliance with several EMC standards.

Limit line configuration is described in Chapter 7.5.3.2, "Limit Line Settings and Functions", on page 542.

5.13.6 How to Perform EMI Measurements

The following step-by-step instructions demonstrate how to perform an EMI measurement with the R&S FSW EMI measurement option.

- 1. Press the MODE key on the front panel and select the "Spectrum" application.
- 2. Define the frequency range of the EMI measurement.
 - a) Press the FREQ key and then the "Frequency Config" softkey.
 - b) Define the start and stop frequency.
- 3. Configure the traces for the intial EMI measurement.
 - a) Press the TRACE key.
 - b) Select the "Trace Config" softkey to configure as many traces as required.
 - c) Define the detectors to use for the initial measurement, for example the peak detector and the average detector.
- Press the MEAS key on the front panel and select the "EMI" measurement.
 The EMI main menu is displayed.

- 5. Select the "EMI Config" softkey and define the resolution bandwidth and filter type to be used for the measurement.
 - By default, the R&S FSW uses a filter with a 3 db bandwidth. EMI measurements usually require a filter with a 6 dB bandwidth.
- 6. Define the dwell time for which each marker position is measured during the final measurement.
- 7. To obtain an overview of peak values in the input signal during the initial measurement, activate the "Auto Peak Search".
 - As soon as a sweep is started, the R&S FSW looks for the strongest peaks in the frequency range you are measuring and positions one of the active markers on those peaks. The number of active markers determines the number of detected peaks; no additional markers are activated.
- 8. Define the type of scaling for the frequency axis according to the definition of the limit lines in the standard.
- 9. Optionally, select the "LISN Config" softkey to configure a LISN control.
- 10. Configure the EMI measurement markers.
 - Select the "Marker Config" softkey and activate the number of markers or delta markers you want to analyze.
 - b) For each active marker, select a detector to be used for the "Final Test", i.e. the subsequent EMI measurement at the marker position.
 - If you already know which frequencies cause irregular values, set the markers to those positions. (Otherwise perform an initial peak search to obtain an overview, see step 7).
- 11. Optionally, select the "Marker Demod Config" softkey to configure continuous marker demodulation.
 - Demodulation begins immediately with the next measurement. During the initial measurement, demodulation is performed for the entire measurement span; during the final measurement only the detected peak marker positions are demodulated (for the defined dwell time).
- 12. Increase the number of sweep points for the EMI measurement.
 - a) Press the SWEEP key on the front panel.
 - b) Select the "Sweep Config" softkey.
 - c) Set the number of "Sweep Points" (up to 200001) so that the distance between two sweep points is smaller than RBW/3.
- Optionally, select or configure limit lines against which the marker results are checked.
 - a) Press the LINES key and then the "Lines Config" softkey, then select the "Lines Config" tab.

Electromagnetic Interference (EMI) Measurement

b) In the "Line Config" dialog box, select the "View filter" option: "Show compatible".

All stored limit lines with the file extension .LIN in the limits subfolder of the main installation folder of the instrument that are compatible to the current EMI measurement settings are displayed in the overview.

- c) Select the "Check Traces" setting for a limit line in the overview and select the trace numbers to be included in the limit check. One limit line can be assigned to several traces.
- 14. Define a suitable unit for the measured values, as the default unit dBm is not suitable for EMI measurements, or select a transducer.

To change the unit:

Press the AMPT key, then select the "Amplitude Config" softkey and, in the "Amplitude" dialog box, select the required unit.

To select a transducer:

- a) Press the SETUP key.
- b) Select the "Transducer" softkey.
- c) In the "Transducer" dialog box, set the "View Filter" to "Show compatible" to determine the available transducers for the current EMI measurement setup.
- d) Select a transducer line in the overview and select the "Active" setting for it.
- 15. Press the RUN SINGLE key to start a new EMI measurement.

If activated, a peak search is performed. For each active marker, a final measurement is performed using the specified detector for the specified dwell time. If activated, the signal is demodulated at the active marker positions.

The specified traces to be checked are compared with the active limit lines. The status of the limit check for the final measurement is indicated in the Result Summary.

5.13.7 Measurement Example: Measuring Radio Frequency Interference

A common measurement task that you can do with the R&S FSW EMI measurement is to detect radio frequency interference (RFI) or electromagnetic interferences (EMI).

The measurement shows signal levels over a particular frequency range. A typical frequency range for EMI measurements is 150 kHz to 1 GHz. As the captured signal characteristics will most likely be unknown, the best way to start the measurement is to preset the R&S FSW and perform a peak search to obtain a general overview.

If you perform measurements according to a particular EMI standard, a preset also eliminates the risk of wrong settings inherited from previous measurements. Note that EMI measurements are possible in the Spectrum application only.

Preparing the measurement

1. Press the PRESET key.

The R&S FSW restores the default settings.

Electromagnetic Interference (EMI) Measurement

- 2. Define the frequency range of the measurement.
 - a) Press the FREQ key.
 - b) Press the "Start Frequency" softkey and enter a frequency of 150 kHz.
 - c) Press the "Stop Frequency" softkey and enter a frequency of 1 GHz.

The R&S FSW scales the horizontal axis accordingly.

- 3. Press the MEAS key on the front panel and select the "EMI" measurement.
 - The EMI main menu is displayed.
- 4. Select the "EMI Config" softkey and define the resolution bandwidth and filter type to be used for the measurement.
 - By default, the R&S FSW uses a filter with a 3 db bandwidth. EMI measurements usually require a filter with a 6R&S FSWdB bandwidth.
- 5. Define the dwell time for which each marker position is measured during the final measurement.
- 6. To obtain an overview of exceptional values in the input signal during the initial measurement, activate the "Auto Peak Search".
- 7. Select the measurement bandwidth.
 - a) Select the "Res BW CISPR" softkey.
 A CISPR (6 dB) filter is configured.
 - b) Set the bandwidth to 1 MHz.

The R&S FSW shows the currently selected resolution bandwidth in the diagram header.

- 8. Configure the traces for the initial EMI measurement.
 - a) Press the TRACE key.
 - b) Press the "Trace Config" softkey to configure two traces.
 - c) Define the detectors to use for the initial measurement. Select the peak detector for trace 1 and the average detector for trace 2.
 - The peak detector ensures that the detected peak levels in the frequency range covered by one pixel are displayed.

The R&S FSW now displays two traces. Trace 1 shows the peak values, trace 2 shows the average values.

- 9. Increase the number of sweep points for the EMI measurement.
 - a) Press the SWEEP key on the front panel.
 - b) Select the "Sweep Config" softkey.
 - c) Set the number of "Sweep Points" to 200000.
- 10. Press the AMPT key, then select the "Amplitude Config" softkey and, in the "Amplitude" dialog box, select *V* as the "Unit".

Performing the measurement

1. Configure the EMI measurement markers. In this example we will use 6 markers.

- a) Select the "Marker Config" softkey and activate six normal markers.
- b) Set markers 1 to 3 on trace 1. Set markers 4 to 6 on trace 2.
- c) For each of these markers, select the "CISPR AV" detector to be used for the "Final Test", i.e. the subsequent EMI measurement at the marker positions.
- 2. Select a limit line against which the marker results are checked.
 - a) Press the LINES key and then the "Lines Config" softkey, then select the "Lines Config" tab.
 - b) In the "Line Config" dialog box, select the "View filter" option: "Show compatible".
 - All stored limit lines with the file extension .LIN in the limits subfolder of the main installation folder of the instrument that are compatible to the current EMI measurement settings are displayed in the overview.
 - c) In the overview, click the "Check Traces" setting for the EN55011A limit line and select trace 1 to be included in the limit check. (Trace 2, which is defined as the average, will always be lower than trace 1, which contains peak values.)
- 3. Press the RUN SINGLE key to start a new EMI measurement.

If activated, a peak search is performed. For each active marker, a final measurement is performed using the specified detector for the specified dwell time. If activated, the signal is demodulated. During the initial measurement, demodulation is performed for the entire measurement span; during the final measurement only the detected peak marker positions are demodulated (for the defined dwell time).

The specified traces to be checked are compared with the active limit line. The status of the limit check for the final measurement is indicated in the Result Summary.

Evaluating the measurement

Check the Result Summary to detect exceeded limit values.

Zoom into the diagram at the conspicuous frequency for more details.

If necessary, decrease the span to the area in which irregular values occurred and repeat the measurement.

5.13.8 Optimizing and Troubleshooting EMI Measurements

If the results do not meet your expectations, try the following methods to optimize the measurement:

Number of sweep points

The resolution bandwidth should cover at least one sweep point (more is better). If this condition is not met, signals or interferences could be missed during refined measurement of narrowband interferers. See Chapter 5.13.3.3, "Frequency Resolution - Sweep Points and Scaling", on page 301.

If the distance between two sweep points is larger than RBW/3, a warning is displayed in the status bar ("Increase sweep points or RBW").

Electromagnetic Interference (EMI) Measurement

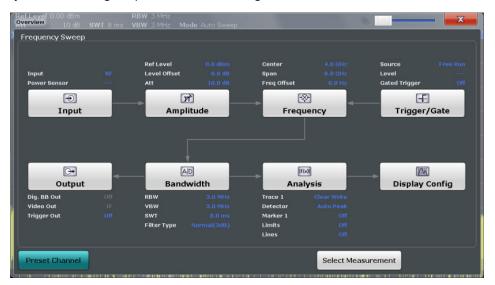
Dwell time

Consider the following when defining the dwell time:

- Unknown signals: select a dwell time of at least 1 second to ensure that pulses down to a frequency of 5 Hz are weighted correctly
- Pulsed signals or signals that fluctuate slowly: the dwell time must cover at least the time until the first signal peak is measured; can require long dwell time
- unmodulated signals or signals with a high modulation frequency: the dwell time must cover at least the time until the first signal peak is measured; usually shorter than for pulsed signals

6 Common Measurement Settings

Basic measurement settings that are common to many measurement tasks, regardless of the application or operating mode, are described here. If you are performing a specific measurement task, using an operating mode other than Signal and Spectrum Analyzer mode, or an application other than the Spectrum application, be sure to check the specific application or mode description for settings that may deviate from these common settings.


Configuration Overview	319
Data Input and Output	
Frequency and Span Configuration	
Amplitude and Vertical Axis Configuration	
Bandwidth, Filter and Sweep Configuration	
Trigger and Gate Configuration	
Adjusting Settings Automatically	

6.1 Configuration Overview

Access: all menus

Throughout the measurement channel configuration, an overview of the most important currently defined settings is provided in the configuration "Overview".

In addition to the main measurement settings, the "Overview" provides quick access to the main settings dialog boxes. Thus, you can easily configure an entire measurement channel from input over processing to output and analysis by stepping through the dialog boxes as indicated in the "Overview".

In particular, the "Overview" provides quick access to the following configuration dialog boxes (listed in the recommended order of processing):

Configuration Overview

"Select Measurement"
 See Chapter 5.1, "Available Measurement Functions", on page 114

2. Input

See Chapter 6.2.2, "Input Source Settings", on page 326

3. Amplitude

See Chapter 6.4, "Amplitude and Vertical Axis Configuration", on page 403

4. Frequency

See Chapter 6.3, "Frequency and Span Configuration", on page 395

(Optionally:) Trigger/Gate
 See Chapter 6.6, "Trigger and Gate Configuration", on page 429

6. Bandwidth

See Chapter 6.5.2, "Bandwidth, Filter and Sweep Settings", on page 419 (For SEM measurements: SEM Setup, see Chapter 5.6.5, "SEM Configuration", on page 216)

(For Spurious measurements: Spurious Setup, see Chapter 5.7.4, "Spurious Emissions Measurement Configuration", on page 249)

(Optionally:) Outputs
 See Chapter 6.2.6, "Output Settings", on page 391

8. Analysis

See Chapter 7, "Common Analysis and Display Functions", on page 451

9. Display

See Chapter 7.1, "Result Display Configuration", on page 451

To configure settings

Select any button to open the corresponding dialog box.
Select a setting in the channel bar (at the top of the measurement channel tab) to change a specific setting.

Preset Channel

Select the "Preset Channel" button in the lower lefthand corner of the "Overview" to restore all measurement settings in the current channel to their default values.

Note that the PRESET key restores the entire instrument to its default values and thus closes **all measurement channels** on the R&S FSW (except for the default Spectrum application channel)!

Remote command:

SYSTem: PRESet: CHANnel [: EXECute] on page 1078

The R&S FSW can analyze signals from different input sources and provide various types of output (such as video or trigger signals).

•	Receiving Data Input and Providing Data Output	321
•	Input Source Settings	326
•	Power Sensors	330
•	Optional External Generator Control	339
•	Optional External Mixers	367
•	Output Settings	391

6.2.1 Receiving Data Input and Providing Data Output

The R&S FSW can analyze signals from different input sources and provide various types of output (such as noise or trigger signals).

6.2.1.1 RF Input Protection

The RF input connector of the R&S FSW must be protected against signal levels that exceed the ranges specified in the data sheet. Therefore, the R&S FSW is equipped with an overload protection mechanism. This mechanism becomes active as soon as the power at the input mixer exceeds the specified limit. It ensures that the connection between RF input and input mixer is cut off.

When the overload protection is activated, an error message is displayed in the status bar ("INPUT OVLD"), and a message box informs you that the RF Input was disconnected. Furthermore, a status bit (bit 3) in the STAT:QUES:POW status register is set. In this case you must decrease the level at the RF input connector and then close the message box. Then measurement is possible again. Reactivating the RF input is also possible via the remote command INPut:ATTenuation:PROTection:RESet.

6.2.1.2 RF Input from the Analog Baseband Connector

RF input can not only be taken from the RF INPUT connector on the R&S FSW. If the optional Analog Baseband Interface is installed and active for input, an RF signal can be input at the BASEBAND INPUT I connector and redirected from there to the RF input path. A transducer is activated to compensate for the additional path of the redirected signal. The signal is then processed as usual in the frequency and time domain as for any other RF input.

This is useful, for example, to perform frequency sweep measurements with (single-ended or differential) active probes, which can also be connected to the BASEBAND INPUT I connector.

Frequency sweep measurements on probe input

You can perform RF measurements (measurements in the time or frequency domain) by connecting a probe to the BASEBAND INPUT I connector and switching the input

source to this connector in the RF input configuration (see "Input Connector" on page 328).

The probe's attenuation is compensated automatically by the R&S FSW using a transducer named "Probe on Baseband Input I". (The probe can only be connected on I, as only input at the I connector can be redirected to the RF path). A comment is assigned that includes the type, name and serial number of the detected probe. The transducer is deleted as soon as the probe is disconnected.

For details on transducers see Chapter 9.2, "Basics on Transducer Factors", on page 591.

For information on using probes for input see Chapter 6.2.1.3, "Using Probes", on page 322.

6.2.1.3 Using Probes

As an alternative means of input to the R&S FSW, active probes from Rohde&Schwarz can be connected to the optional BASEBAND INPUT connectors, if the Analog Baseband Interface (option R&S FSW-B71) is installed. These probes allow you to perform voltage measurements very flexibly and precisely on all sorts of devices to be tested, without interfering with the signal.

Connecting probes

Probes are automatically detected when you plug them into the upper BASEBAND INPUT connectors on the front panel of the R&S FSW. The detected information on the probe is displayed in the "Probes" tab of the "Input" dialog box, individually for each connector.

Availability of probe input

Analog baseband input from connected probes can only be analyzed in applications that support I/Q data processing and the Analog Baseband Interface (R&S FSW-B71), such as the I/Q Analyzer, the Analog Demodulation application, or one of the optional applications.

Frequency sweep measurements with probes

Probes can also be used as an alternative method of providing RF input to the R&S FSW. In this case, the probe must be connected to the BASEBAND INPUT I connector, and the input is redirected to the RF input path (see Chapter 6.2.1.2, "RF Input from the Analog Baseband Connector", on page 321). As opposed to common RF input processing, a transducer is activated before the common process to compensate for the additional path of the redirected signal. Probe signals that are redirected to the RF input path can also be analyzed in the Spectrum application of the R&S FSW base unit. Then you can perform RF measurements (measurements in the time or frequency domain) on the input from a probe.

Microbutton action

You can define an action to be performed by the R&S FSW when the probe's microbutton (if available) is pressed. Currently, a single data acquisition via the probe can be performed simply by pressing the microbutton.

Impedance and attenuation

The measured signal from the probe is attenuated internally by the probe's specific attenuation. For probe signals that are redirected to the RF path, the attenuation is compensated using a transducer (see "Frequency sweep measurements on probe input" on page 321). The reference level is adjusted automatically.

For analog baseband input, the attenuation is compensated without a transducer. In this case, higher levels are available for the full scale level.

A fixed impedance of 50 Ω is used for all probes to convert voltage values to power levels.

6.2.1.4 Input from Noise Sources

The R&S FSW provides a connector (NOISE SOURCE CONTROL) with a voltage supply for an external noise source. By switching the supply voltage for an external noise source on or off in the firmware, you can activate or deactive the device as required.

External noise sources are useful when you are measuring power levels that fall below the noise floor of the R&S FSW itself, for example when measuring the noise level of an amplifier.

In this case, you can first connect an external noise source (whose noise power level is known in advance) to the R&S FSW and measure the total noise power. From this value you can determine the noise power of the R&S FSW. Then when you measure the power level of the actual DUT, you can deduct the known noise level from the total power to obtain the power level of the DUT.

The noise source is controlled in the "Output" settings, see "Noise Source" on page 393

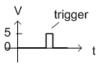
6.2.1.5 Receiving and Providing Trigger Signals

Using one of the TRIGGER INPUT / OUTPUT connectors of the R&S FSW, the R&S FSW can use a signal from an external device as a trigger to capture data. Alternatively, the internal trigger signal used by the R&S FSW can be output for use by other connected devices. Using the same trigger on several devices is useful to synchronize the transmitted and received signals within a measurement.

For details on the connectors see the R&S FSW "Getting Started" manual.

External trigger as input

If the trigger signal for the R&S FSW is provided by an external device, the trigger signal source must be connected to the R&S FSW and the trigger source must be defined as "External" for the R&S FSW.


Trigger output

The R&S FSW can provide output to another device either to pass on the internal trigger signal, or to indicate that the R&S FSW itself is ready to trigger.

The trigger signal can be output by the R&S FSW automatically, or manually by the user. If it is provided automatically, a high signal is output when the R&S FSW has triggered due to a sweep start ("Device Triggered"), or when the R&S FSW is ready to receive a trigger signal after a sweep start ("Trigger Armed").

Manual triggering

If the trigger output signal is initiated manually, the length and level (high/low) of the trigger pulse is also user-definable. Note, however, that the trigger pulse level is always opposite to the constant signal level defined by the output "Level" setting, e.g. for "Level = High", a constant high signal is output to the connector until the "Send Trigger" button is selected. Then, a low pulse is provided.

V trigger 5 0 trigger

low-level constant, high-level trigger

high-level constant, low-level trigger

6.2.1.6 IF and Video Signal Output

The measured IF signal or displayed video signal (i.e. the filtered and detected IF signal) can be provided at the IF/VIDEO/DEMOD or IF OUT 2 GHZ output connector.

The **video output** is a signal of 1 V. It can be used, for example, to control demodulated audio frequencies.

The **IF output** is a signal of the measured level at a specified frequency.

The IF OUT 2 GHZ output is a signal with a bandwidth of 2 GHz at the frequency 2 GHz. This output is only available if the IF OUT 2 GHZ output connector is installed (see Prerequisites below).

If the optional 2 GHz bandwidth extension (R&S FSW-B2000) is installed and active, this is the *only* setting available for IF output.

Restrictions

Note the following restrictions for IF output:

- IF and video output is only available in the time domain (zero span).
- For I/Q data, only IF output is available.
- IF output is not available if any of the following conditions apply:
 - The optional Digital Baseband Interface is active (for input or output)
 - MSRA operating mode is active
 - MSRT operating mode is active

- A wideband extension is used (hardware options R&S FSW-B160/-B320/-B500/-B512; used automatically for bandwidths > 80 MHz; in this case use the IF WIDE OUTPUT connector)
- The sample rate is larger than 200 MHz (upsampling)

IF WIDE OUTPUT

If a hardware option R&S FSW-B160/-B320/-B500/-B512 for **bandwidth extension** is installed and activated (i.e. for bandwidths > 80 MHz), the IF output is not available at the IF/VIDEO/DEMOD output connector, but rather at the additional **IF WIDE OUTPUT** connector provided by the option.

In this case, the IF output frequency cannot be defined manually, but is determined automatically depending on the center frequency. For details on the used frequencies see the data sheet. The currently used output frequency is indicated in the field otherwise used to define the frequency manually (in the "Output" settings dialog box, see "IF (Wide) Out Frequency" on page 393).

IF 2 GHz Output

For instrument models R&S FSW26/43/50/67/85, the IF output can also be provided at the alternative IF OUT 2 GHZ output connector at a frequency of 2 GHz and with a bandwidth of 2 GHz. The IF output can then be analyzed by a different instrument, for example an R&S®RTO oscilloscope.

If IF OUT 2 GHZ output is activated, the measured values are no longer available on the display; thus, the trace data currently displayed on the R&S FSW becomes invalid. A message in the status bar indicates this situation. The message also indicates whether the sidebands of the IF spectrum output are in normal or inverted order compared to the RF signal, which depends on the used center frequency.

2 GHz bandwidth extension option (R&S FSW-B2000)

To analyze IF data with a bandwidth of 2 GHz using an R&S®RTO oscilloscope, it is recommended that you use the fully integrated solution including alignment with the **2 GHz bandwidth extension option(R&S FSW-B2000)**, rather than the basic IF OUT 2 GHZ output solution.

If the B2000 option is activated, the basic IF OUT 2 GHZ output is automatically deactivated. It is not reactivated when the B2000 option is switched off.

For details see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

Prerequisites

Note the following prerequisites for output to the IF OUT 2 GHZ connector:

- Instrument model R&S FSW26/43/50/67/85; external mixers can be used
- Zero span mode, I/Q Analyzer, or VSA (R&S FSW-K70) application
- Center frequency ≥ 8 GHz
- optional 2 GHz bandwidth extension (R&S FSW-B2000) is not active

6.2.2 Input Source Settings

Access: "Overview" > "Input" > "Input Source"

The input source determines which data the R&S FSW will analyze.

The default input source for the R&S FSW is "Radio Frequency", i.e. the signal at the RF INPUT connector of the R&S FSW. If no additional options are installed, this is the only available input source.

The Digital I/Q and the Analog Baseband input sources are only available in applications that support I/Q data processing and are described in detail in the R&S FSW I/Q Analyzer User Manual.

External mixers are not supported in MSRA/MSRT mode.

- Probe Settings......328

6.2.2.1 Radio Frequency Input

Access: "Overview" > "Input/Frontend" > "Input Source" > "Radio Frequency"

Radio Frequency State	7
Input Coupling	7
Impedance	
Direct Path	
High-Pass Filter 13 GHz	
YIG-Preselector32	8
Input Connector32	8

Radio Frequency State

Activates input from the RF INPUT connector.

Remote command:

INPut: SELect on page 920

Input Coupling

The RF input of the R&S FSW can be coupled by alternating current (AC) or direct current (DC).

AC coupling blocks any DC voltage from the input signal. This is the default setting to prevent damage to the instrument. Very low frequencies in the input signal may be distorted.

However, some specifications require DC coupling. In this case, you must protect the instrument from damaging DC input voltages manually. For details, refer to the data sheet

Remote command:

INPut: COUPling on page 918

Impedance

For some measurements, the reference impedance for the measured levels of the R&S FSW can be set to 50 Ω or 75 Ω .

Select 75 Ω if the 50 Ω input impedance is transformed to a higher impedance using a 75 Ω adapter of the RAZ type. (That corresponds to 25 Ω in series to the input impedance of the instrument.) The correction value in this case is 1.76 dB = 10 log (75 Ω / 50 Ω).

This value also affects the unit conversion (see "Reference Level" on page 407).

Remote command:

INPut: IMPedance on page 919

Direct Path

Enables or disables the use of the direct path for small frequencies.

In spectrum analyzers, passive analog mixers are used for the first conversion of the input signal. In such mixers, the LO signal is coupled into the IF path due to its limited isolation. The coupled LO signal becomes visible at the RF frequency 0 Hz. This effect is referred to as LO feedthrough.

To avoid the LO feedthrough the spectrum analyzer provides an alternative signal path to the A/D converter, referred to as the *direct path*. By default, the direct path is selected automatically for RF frequencies close to zero. However, this behavior can be deactivated. If "Direct Path" is set to "Off", the spectrum analyzer always uses the analog mixer path.

"Auto" (Default) The direct path is used automatically for frequencies close

to zero.

"Off" The analog mixer path is always used.

Remote command:

INPut: DPATh on page 918

High-Pass Filter 1...3 GHz

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the analyzer to measure the harmonics for a DUT, for example.

This function requires an additional hardware option.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG-preselector, if available.)

Remote command:

INPut:FILTer:HPASs[:STATe] on page 919

YIG-Preselector

Activates or deactivates the YIG-preselector, if available on the R&S FSW.

An internal YIG-preselector at the input of the R&S FSW ensures that image frequencies are rejected. However, this is only possible for a restricted bandwidth. To use the maximum bandwidth for signal analysis you can deactivate the YIG-preselector at the input of the R&S FSW, which can lead to image-frequency display.

Note that the YIG-preselector is active only on frequencies greater than 8 GHz. Therefore, switching the YIG-preselector on or off has no effect if the frequency is below that value.

Note:

For the following measurements, the YIG-Preselector is off by default (if available).

- I/Q Analyzer (and thus in all slave applications in MSRA operating mode)
- Real-Time (and thus in all slave applications in MSRT operating mode)
- Multi-Carrier Group Delay
- GSM
- VSA

Remote command:

INPut:FILTer:YIG[:STATe] on page 919

Input Connector

Determines whether the RF input data is taken from the RF INPUT connector (default) or the optional BASEBAND INPUT I connector. This setting is only available if the optional Analog Baseband Interface is installed and active for input. It is not available for the R&S FSW67 or R&S FSW85.

Remote command:

INPut:CONNector on page 917

6.2.2.2 Probe Settings

Probes are configured in a separate tab on the "Input" dialog box which is displayed when you select the INPUT/OUTPUT key and then "Input Source Config".

For each possible probe connector (Baseband Input I, Baseband Input Q), the detected type of probe, if any, is displayed. The following information is provided for each connected probe:

- Probe name
- Serial number
- R&S part number
- Type of probe ("Differential", "Single Ended")

For more information on using probes with an R&S FSW, see Chapter 6.2.1.3, "Using Probes", on page 322.

For general information on the R&S®RTO probes, see the device manuals.

Common Mode Offset	329
Microbutton Action.	329

Common Mode Offset

Sets the common mode offset. The setting is only available if a differential probe is connected to the R&S FSW.

If the probe is disconnected, the common mode offset of the probe is reset to 0.0 V.

For details, see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

Remote command:

[SENSe:]PROBe:SETup:CMOFfset on page 935

Microbutton Action

Active R&S probes (except for RT-ZS10E) have a configurable microbutton on the probe head. By pressing this button, you can perform an action on the instrument directly from the probe.

Select the action that you want to start from the probe:

"Run single" Starts one data acquisition.

"No action" Prevents unwanted actions due to unintended usage of the microbut-

ton.

Remote command:

[SENSe:]PROBe:SETup:MODE on page 936

6.2.3 Power Sensors

The R&S FSW can also analyze data from a connected power sensor.

•	Basics on Power Sensors	330
•	Power Sensor Settings	332
	How to Work With a Power Sensor	

6.2.3.1 Basics on Power Sensors

For precise power measurement up to 4 power sensors can be connected to the instrument via the power sensor interface (on the front panel). Both manual operation and remote control are supported.

Currently, only R&S NRP-Zxy power sensors are supported. For a detailed list of supported sensors see the data sheet.

Power sensors can also be used to trigger a measurement at a specified power level, e.g. from a signal generator (see "Using a Power Sensor as an External Power Trigger" on page 331).

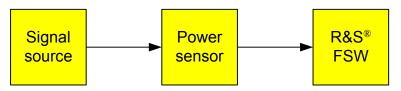
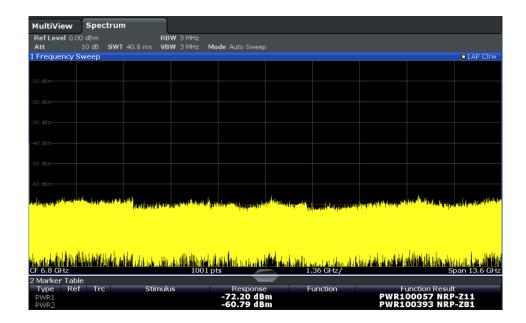


Figure 6-1: Power sensor support – standard test setup



Using the power sensor with several applications

The power sensor cannot be used from the R&S FSW firmware and the R&S Power Viewer Plus (virtual power meter for displaying results of the R&S NRP power sensors) simultaneously.

Result display

The results of the power sensor measurements are displayed in the marker table. For each power sensor, a row is inserted. The sensor index is indicated in the "Type" column.

Using a Power Sensor as an External Power Trigger

Power sensors can be used to trigger a measurement at a specified power level, e.g. from a signal generator.

Currently, only the following power sensors are supported as power triggers:

- R&S NRP-Z81
- R&S NRP-Z85
- R&S NRP-Z86
- R&S NRP8S, R&S NRP18S, R&S NRP33S
- R&S NRP8SN, R&S NRP18SN, R&S NRP33SN

With the R&S FSW, the power sensors can be connected to the "Power Sensor" interface directly, and no further cables are required. They can then be configured as an external power sensor trigger.

Figure 6-2: Connecting a power sensor using the POWER SENSOR interface

The R&S FSW receives an external trigger signal when the defined trigger level is measured by the power sensor. Power measurement results are provided as usual.


The "Gate Mode" *Level* is not supported for R&S power sensors. The signal sent by these sensors merely reflects the instant the level is first exceeded, rather than a time period. However, only time periods can be used for gating in level mode. Thus, the trigger impulse from the sensors is not long enough for a fully gated measurement; the measurement cannot be completed. For details on gating see Chapter 6.6.1.2, "Gated Measurements", on page 433.

For details see "How to Configure a Power Sensor as an External (PSE) Trigger" on page 338.

6.2.3.2 Power Sensor Settings

Access: "Overview" > "Input" > "Power Sensor" tab

Each sensor is configured on a separate tab.

State	333
Continuous Value Update	333
Select	333
Zeroing Power Sensor	334
Frequency Manual	334
Frequency Coupling	334
Unit/Scale	334
Meas Time/Average	334
Setting the Reference Level from the Measurement (Meas->Ref)	335
Reference Value	335
Use Ref Lev Offset.	335

Average Count (Number of Readings)	335
Duty Cycle	
Using the power sensor as an external trigger	
L External Trigger Level	
L Hysteresis	
L Trigger Holdoff	
L Drop-Out Time	
L Slope	336

State

Switches the power measurement for all power sensors on or off. Note that in addition to this general setting, each power sensor can be activated or deactivated individually by the Select setting on each tab. However, the general setting overrides the individual settings.

Remote command:

[SENSe:]PMETer[:STATe] on page 955

Continuous Value Update

If activated, the power sensor data is updated continuously during a sweep with a long sweep time, and even after a single sweep has completed.

This function cannot be activated for individual sensors.

If the power sensor is being used as a trigger (see "Using the power sensor as an external trigger" on page 335), continuous update is not possible; this setting is ignored.

Remote command:

```
[SENSe:]PMETer:UPDate[:STATe] on page 955
```

Select

Selects the individual power sensor for usage if power measurement is generally activated (State function).

The detected **serial numbers** of the power sensors connected to the instrument are provided in a selection list. For each of the four available power sensor indexes ("Power Sensor 1"..."Power Sensor 4"), which correspond to the tabs in the configuration dialog, one of the detected serial numbers can be assigned. The physical sensor is thus assigned to the configuration setting for the selected power sensor index.

By default, serial numbers not yet assigned are automatically assigned to the next free power sensor index for which "Auto Assignment" is selected.

Alternatively, you can assign the sensors manually by deactivating the "Auto" option and selecting a serial number from the list.

Remote command:

```
[SENSe:]PMETer[:STATe] on page 955
SYSTem:COMMunicate:RDEVice:PMETer:DEFine on page 949
SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]
on page 948
SYSTem:COMMunicate:RDEVice:PMETer:COUNt? on page 948
```

Zeroing Power Sensor

Starts zeroing of the power sensor.

For details on the zeroing process refer to "How to Zero the Power Sensor" on page 338.

Remote command:

CALibration:PMETer:ZERO:AUTO ONCE on page 950

Frequency Manual

Defines the frequency of the signal to be measured. The power sensor has a memory with frequency-dependent correction factors. This allows extreme accuracy for signals of a known frequency.

Remote command:

```
[SENSe:] PMETer: FREQuency on page 952
```

Frequency Coupling

Selects the coupling option. The frequency can be coupled automatically to the center frequency of the instrument or to the frequency of marker 1.

Remote command:

```
[SENSe:] PMETer:FREQuency:LINK on page 953
```

Unit/Scale

Selects the unit with which the measured power is to be displayed. Available units are dBm, dB, W and %.

If dB or % is selected, the display is relative to the reference value that is defined with either the "Meas -> Ref" setting or the "Reference Value" setting.

Remote command:

```
UNIT<n>:PMETer:POWer on page 955
UNIT<n>:PMETer:POWer:RATio on page 956
```

Meas Time/Average

Selects the measurement time or switches to manual averaging mode. In general, results are more precise with longer measurement times. The following settings are recommended for different signal types to obtain stable and precise results:

"Short" Stationary signals with high power (> -40dBm), because they require

only a short measurement time and short measurement time provides

the highest repetition rates.

"Normal" Signals with lower power or modulated signals

"Long" Signals at the lower end of the measurement range (<-50 dBm) or

Signals with lower power to minimize the influence of noise

"Manual" Manual averaging mode. The average count is set with the Average

Count (Number of Readings) setting.

Remote command:

```
[SENSe:]PMETer:MTIMe on page 953
[SENSe:]PMETer:MTIMe:AVERage[:STATe] on page 954
```

Setting the Reference Level from the Measurement (Meas->Ref)

Sets the currently measured power as a reference value for the relative display. The reference value can also be set manually via the Reference Value setting.

Remote command:

```
CALCulate<n>: PMETer: RELative[:MAGNitude]: AUTO ONCE on page 951
```

Reference Value

Defines the reference value for relative measurements in the unit dBm.

Remote command:

```
CALCulate<n>:PMETer:RELative[:MAGNitude] on page 950
```

Use Ref Lev Offset

If activated, takes the reference level offset defined for the analyzer into account for the measured power (see "Shifting the Display (Offset)" on page 408).

If deactivated, takes no offset into account.

Remote command:

```
[SENSe:]PMETer:ROFFset[:STATe] on page 954
```

Average Count (Number of Readings)

Defines the number of readings (averages) to be performed after a single sweep has been started. This setting is only available if manual averaging is selected (Meas Time/Average setting).

The values for the average count range from 0 to 256 in binary steps (1, 2, 4, 8, ...). For average count = 0 or 1, one reading is performed. The general averaging and sweep count for the trace are independent from this setting.

Results become more stable with extended average, particularly if signals with low power are measured. This setting can be used to minimize the influence of noise in the power sensor measurement.

Remote command:

```
[SENSe:]PMETer:MTIMe:AVERage:COUNt on page 954
```

Duty Cycle

Sets the duty cycle to a percent value for the correction of pulse-modulated signals and activates the duty cycle correction. With the correction activated, the sensor calculates the signal pulse power from this value and the mean power.

Remote command:

```
[SENSe:]PMETer:DCYCle[:STATe] on page 952
[SENSe:]PMETer:DCYCle:VALue on page 952
```

Using the power sensor as an external trigger

If activated, the power sensor creates a trigger signal when a power higher than the defined "External Trigger Level" is measured. This trigger signal can be used as an external power trigger by the R&S FSW.

This setting is only available in conjunction with a compatible power sensor.

For details on using a power sensor as an external trigger, see "Using a Power Sensor as an External Power Trigger" on page 331.

Remote command:

```
[SENSe:]PMETer:TRIGger[:STATe] on page 958
TRIG:SOUR PSE, see TRIGger[:SEQuence]:SOURce on page 907
```

External Trigger Level \leftarrow Using the power sensor as an external trigger

Defines the trigger level for the power sensor trigger.

For details on supported trigger levels, see the data sheet.

Remote command:

```
[SENSe:]PMETer:TRIGger:LEVel on page 957
```

Hysteresis ← Using the power sensor as an external trigger

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Setting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

Remote command:

```
[SENSe:]PMETer:TRIGger:HYSTeresis on page 957
```

Trigger Holdoff ← **Using the power sensor as an external trigger**

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored.

Remote command:

```
[SENSe:] PMETer:TRIGger:HOLDoff on page 957
```

Drop-Out Time ← Using the power sensor as an external trigger

Defines the time the input signal must stay below the trigger level before triggering again.

Slope ← Using the power sensor as an external trigger

Defines whether triggering occurs when the signal rises to the trigger level or falls down to it.

Remote command:

```
[SENSe:]PMETer:TRIGger:SLOPe on page 958
```

6.2.3.3 How to Work With a Power Sensor

The following step-by-step instructions demonstrate how to set up a power sensor. For details on individual functions and settings see Chapter 6.2.3.2, "Power Sensor Settings", on page 332.

The remote commands required to perform these tasks are described in Chapter 11.7.6.5, "Working with Power Sensors", on page 948.

Power sensors can also be used to trigger a measurement at a specified power level, e.g. from a signal generator.

This is described in "How to Configure a Power Sensor as an External (PSE) Trigger" on page 338.

How to Set Up a Power Sensor

Up to 4 external power sensors can be configured separately and used for precise power measurement. All power sensors can be activated and deactivated individually.

The following procedure describes in detail how to configure and activate power sensors.

- 1. To display the "Power Sensor" tab of the "Input" dialog box, do one of the following:
 - Select "Input" from the "Overview".
 - Select the INPUT/OUTPUT key and then the "Power Sensor Config" softkey.
- 2. Select the tab for the power sensor index you want to configure, e.g. "Sensor 1".
- 3. Press "Select" to analyze the power sensor data according to the current configuration when power measurement is activated.
- 4. From the selection list with serial numbers of connected power sensors, select the sensor you want to configure.
 - To have newly connected power sensors assigned to a tab automatically (default), select "Auto".
- 5. Define the frequency of the signal whose power you want to measure.
 - a) To define the frequency manually, select "Frequency Manual" and enter a frequency.
 - b) To determine the frequency automatically, select "Frequency Coupling" and then either "Center", to use the center frequency, or "Marker", to use the frequency defined by marker 1.
- 6. Select the unit for the power result display.
- Select the measurement time for which the average is calculated, or define the number of readings to average. To define the number of readings to be taken into account manually, select "Manual" and enter the number in the "Number of Readings" field.
- 8. To activate the duty cycle correction, select "DutyCycle" and enter a percentage as the correction value.
- 9. If you selected "dB" or "%" as units (relative display), define a reference value:
 - To set the currently measured power as a reference value, press the "Meas -> Ref" button.
 - b) Alternatively, enter a value manually in the "Reference Value" field.
 - c) Optionally, select the "Use Ref Level Offset" option to take the reference level offset set for the analyzer into account for the measured power.
- To use the power sensor as an external power trigger, select the "External Power Trigger" option and define the trigger settings.
 - For details see "How to Configure a Power Sensor as an External (PSE) Trigger" on page 338.
- 11. If necessary, repeat steps 3-10 for another power sensor.

12. Set the "Power Sensor State" at the top of the "Power Sensor" tab to "On" to activate power measurement for the selected power sensors.

The results of the power measurement are displayed in the marker table (Function: "Sensor<1...4>").

How to Zero the Power Sensor

- 1. To display the "Power Sensor" tab of the "Input" dialog box, do one of the following:
 - Select "Input" from the "Overview".
 - Select the INPUT/OUTPUT key and then the "Power Sensor Config" softkey.
- 2. Select the tab that is assigned to the power sensor you want to zero.
- Press the "Zeroing Power Sensor" button.
 A dialog box is displayed that prompts you to disconnect all signals from the input of the power sensor.
- 4. Disconnect all signals sending input to the power sensor and press ENTER to continue.
- Wait until zeroing is complete.A corresponding message is displayed.

How to Configure a Power Sensor as an External (PSE) Trigger

The following step-by-step instructions demonstrate how to configure a power sensor to be used as an external power sensor trigger.

To configure a power sensor as an external power sensor (PSE) trigger

- Connect a compatible power sensor to the "Power Sensor" interface on the front panel of the R&S FSW. (For details on supported sensors see "Using a Power Sensor as an External Power Trigger" on page 331).
- Set up the power sensor as described in "How to Set Up a Power Sensor" on page 337.
- 3. In the "Power Sensor" tab of the "Input" dialog box, select the "External Power Trigger" option.
- 4. Enter the power level at which a trigger signal is to be generated ("External Trigger Level") and the other trigger settings for the power sensor trigger.
- 5. Press the TRIG key and then select "Trigger /Gate Config".
- 6. In the "Trigger and Gate" dialog box, select "Signal Source" = "PSE".
 - The R&S FSW is configured to trigger when the defined conditions for the power sensor occur. Power measurement results are provided as usual.

6.2.4 Optional External Generator Control

If the R&S FSW optional External Generator Control is installed, you can operate various commercially available generators as an external generator with the R&S FSW. Thus, scalar network analysis with the R&S FSW is possible.

•	About External Generator Control	339
•	Basics on External Generator Control	339
•	External Generator Control Settings	351
	How to Work With External Generator Control	
•	Measurement Example: Calibration with an External Generator	361

6.2.4.1 About External Generator Control

A common measurement setup includes a signal generator, a device under test (DUT), and a signal and spectrum analyzer, for example the R&S FSW. In this setup, the signal analyzer can control which signal the generator is to send, which is in turn measured by the analyzer. This process is referred to as external generator control. The generator in this setup is referred to as a tracking generator.

A measurement with a tracking generator is useful to measure any effects on the power level caused by the cables and connectors from the signal generator and the signal analyzer in advance. The known effects can then be removed from the measurement results in order to obtain accurate information on the DUT.

6.2.4.2 Basics on External Generator Control

Some background knowledge on basic terms and principles used for external generator control is provided here for a better understanding of the required configuration settings.

External generator control is only available in the Spectrum, I/Q Analyzer, Analog Demodulation and Noise Figure applications.

•	External Generator Connections	.339
	Overview of Supported Generators	
	Generator Setup Files	
	Calibration Mechanism.	
	Normalization.	
	Reference Trace, Reference Line and Reference Level	
	Coupling the Frequencies.	
	Displayed Information and Errors.	

External Generator Connections

The external generator is controlled either via a LAN connection or via the EXT. GEN. CONTROL GPIB interface of the R&S FSW supplied with the option.

For more information on configuring interfaces see Chapter 10.1.1, "Remote Control Interfaces and Protocols", on page 635.

TTL synchronization

In addition, TTL synchronization can be used with some Rohde & Schwarz generators connected via GPIB. The TTL interface is included in the AUX CONTROL connector of the External Generator Control option.

Using the TTL interface allows for considerably higher measurement rates than pure GPIB control, because the frequency stepping of the R&S FSW is directly coupled with the frequency stepping of the generator. For details see "Coupling the Frequencies" on page 347.

In Figure 6-3 the TTL connection is illustrated using an R&S SMU generator, for example.

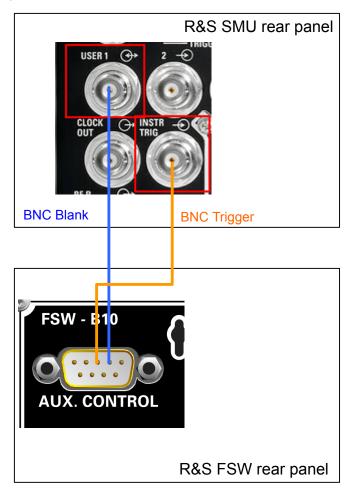


Figure 6-3: TTL connection for an R&S SMU generator

In Figure 6-4, the connection for an R&S SMW is shown.

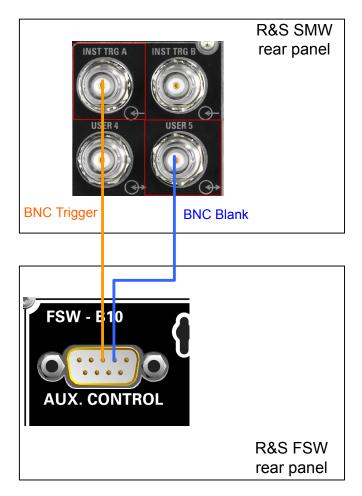


Figure 6-4: TTL connection for an R&S SMW generator

The external generator can be used to calibrate the data source by performing either transmission or reflection measurements.

Transmission Measurement

This measurement yields the transmission characteristics of a two-port network. The external generator is used as a signal source. It is connected to the input connector of the DUT. The input of the R&S FSW is fed from the output of the DUT. A calibration can be carried out to compensate for the effects of the test setup (e.g. frequency response of connecting cables).

Figure 6-5: Test setup for transmission measurement

Reflection Measurement

Scalar reflection measurements can be carried out using a reflection-coefficient measurement bridge.

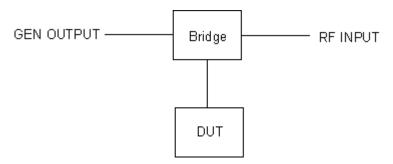


Figure 6-6: Test setup for reflection measurement

Generated signal input

In order to use the functions of the external generator, an appropriate generator must be connected and configured correctly. In particular, the generator output must be connected to the RF input of the R&S FSW.

External reference frequency

In order to enhance measurement accuracy, a common reference frequency should be used for both the R&S FSW and the generator. If no independent 10 MHz reference frequency is available, it is recommended that you connect the reference output of the generator with the reference input of the R&S FSW and that you enable usage of the external reference on the R&S FSW via "SETUP" > "Reference" > "External Reference".

For more information on external references see "Reference Frequency Input" on page 594.

Connection errors

If no external generator is connected, if the connection address is not correct, or the generator is not ready for operation, an error message is displayed (e.g. "Ext. Generator TCPIP Handshake Error!", see "Displayed Information and Errors" on page 350).

Overview of Supported Generators

Generator type	TTL support	Generator type	TTL support
SGS100A6	-	SMP02	X
SGS100A12	-	SMP03	X
SGT100A3	-	SMP04	Х
SGT100A6	-	SMP22	Х
SMA01A 1)	Х	SMR20	-

- 1) Requires firmware version V2.10.x or higher on the signal generator
- 2) Requires firmware version V1.10.x or higher on the signal generator
- 3) Requires the option SMR-B11 on the signal generator
- 4) Requires firmware version V3.20.200 or higher on the signal generator

Generator type	TTL support	Generator type	TTL support
SMA100A3	Х	SMR20B11 3)	Х
SMA100A6	X	SMR27	Х
SMB100A1	X	SMR27B11 3)	Х
SMB100A12	X	SMR30	Х
SMB100A2	Х	SMR30B11 3)	Х
SMB100A20	Х	SMR40	Х
SMB100A3	Х	SMR40B11 3)	Х
SMB100A40	X	SMR50	Х
SMBV100A3	Х	SMR50B11 3)	Х
SMBV100A6	X	SMR60	Х
SMC100A1	-	SMR60B11 3)	Х
SMC100A3	-	SMT02	-
SME02	X	SMT03	-
SME03	Х	SMT06	-
SME06	Х	SMU02	Х
SMF100A	Х	SMU02B31 ²⁾	Х
SMF22	Х	SMU03 ²⁾	Х
SMF22B2	X	SMU03B31 ²⁾	Х
SMF43	X	SMU04 ²⁾	Х
SMF43B2	X	SMU04B31 ²⁾	Х
SMG	-	SMU06 ²⁾	Х
SMGL	-	SMU06B31 ²⁾	Х
SMGU	-	SMV03	-
SMH	-	SMW03	X ⁴⁾
SMHU	-	SMW06	X ⁴⁾
SMIQ02	X	SMW20	X ⁴⁾
SMIQ02B	Х	SMW40	X ⁴⁾
SMIQ02E	-	SMX	-
SMIQ03	Х	SMY01	-

¹⁾ Requires firmware version V2.10.x or higher on the signal generator

²⁾ Requires firmware version V1.10.x or higher on the signal generator

³⁾ Requires the option SMR-B11 on the signal generator

⁴⁾ Requires firmware version V3.20.200 or higher on the signal generator

Generator type	TTL support	Generator type	TTL support
SMIQ03B	Х	SMY02	-
SMIQ03E	-	HP8254A	-
SMIQ04B	Х	HP8257D	-
SMIQ06B	Х	HP8340A	-
SMJ03	Х	HP8648	-
SMJ06	x	HP ESG-A Series 1000A, 2000A, 3000A, 4000A	-
SML01	-	HP ESG B Series	-
SML02	-		
SML03	-		

- 1) Requires firmware version V2.10.x or higher on the signal generator
- 2) Requires firmware version V1.10.x or higher on the signal generator
- 3) Requires the option SMR-B11 on the signal generator
- 4) Requires firmware version V3.20.200 or higher on the signal generator

Generator Setup Files

For each signal generator type to be controlled by the R&S FSW a generator setup file must be configured and stored on the R&S FSW. The setup file defines the frequency and power ranges supported by the generator, as well as information required for communication. For the signal generators listed in "Overview of Supported Generators" on page 342, default setup files are provided. If necessary, these files can be edited or duplicated for varying measurement setups or other instruments.

The existing setup files can be displayed in an editor in read-only mode directly from the "External Generator" configuration dialog box. From there, they can be edited and stored under a different name, and are then available on the R&S FSW.

(For details see "To define a new generator setup file" on page 360).

Calibration Mechanism

A common measurement setup includes a signal generator, a device under test (DUT), and a signal and spectrum analyzer. Therefore, it is useful to measure the attenuation or gain caused by the cables and connectors from the signal generator and the signal analyzer in advance. The known level offsets can then be removed from the measurement results in order to obtain accurate information on the DUT.

Calculating the difference between the currently measured power and a reference trace is referred to as *calibration*. Thus, the measurement results from the controlled external generator - including the inherent distortions - can be used as a reference trace to calibrate the measurement setup.

The inherent frequency and power level distortions can be determined by connecting the R&S FSW to the signal generator. The R&S FSW sends a predefined list of frequencies to the signal generator (see also "Coupling the Frequencies" on page 347). The signal generator then sends a signal with the specified level at each frequency in

the predefined list. The R&S FSW measures the signal and determines the level offsets to the expected values.

Saving calibration results

A reference dataset for the calibration results is stored internally as a table of value pairs (frequency/level), one for each sweep point. The measured offsets can then be used as calibration factors for subsequent measurement results.

The calibration can be performed using either transmission or reflection measurements. The selected type of measurement used to determine the reference trace is included in the reference dataset.

Normalization

Once the measurement setup has been calibrated and the reference trace is available, subsequent measurement results can be corrected according to the calibration factors, if necessary. This is done by subtracting the reference trace from the measurement results. This process is referred to as *normalization* and can be activated or deactivated as required. If normalization is activated, "NOR" is displayed in the channel bar, next to the indication that an external generator is being used ("Ext.Gen"). The normalized trace from the calibration sweep is a constant 0 dB line, as <calibration trace> - < reference trace> = 0.

As long as the same settings are used for measurement as for calibration, the normalized measurement results should not contain any inherent frequency or power distortions. Thus, the measured DUT values are very accurate.

Approximate normalization

As soon as any of the calibration measurement settings are changed, the stored reference trace will no longer be identical to the new measurement results. However, if the measurement settings do not deviate too much, the measurement results can still be normalized *approximately* using the stored reference trace. This is indicated by the "APX" label in the channel bar (instead of "NOR").

This is the case if one or more of the following values deviate from the calibration settings:

- coupling (RBW, VBW, SWT)
- reference level, RF attenuation
- start or stop frequency
- output level of external generator
- detector (max. peak, min. peak, sample, etc.)
- frequency deviation at a maximum of 1001 points within the set sweep limits (corresponds to a doubling of the span)

Differences in level settings between the reference trace and the current instrument settings are taken into account automatically. If the span is reduced, a linear interpolation of the intermediate values is applied. If the span increases, the values at the left or right border of the reference dataset are extrapolated to the current start or stop frequency, i.e. the reference dataset is extended by constant values.

Thus, the instrument settings can be changed in a wide area without giving up normalization. This reduces the necessity to carry out a new normalization to a minimum.

If approximation becomes too poor, however, normalization is aborted and an error message is displayed (see "Displayed Information and Errors" on page 350).

The normalized trace in the display

The normalized reference trace is also displayed in the spectrum diagram, by default at the top of the diagram (= 100% of the window height). It is indicated by a red line labeled "NOR", followed by the current reference value. However, it can be shifted vertically to reflect an attenuation or gain caused by the measured DUT (see also "Shifting the reference line (and normalized trace)" on page 347).

Restoring the calibration settings

If the measurement settings no longer match the instrument settings with which the calibration was performed (indicated by the "APX" or no label next to "Ext.TG" in the channel bar), you can restore the calibration settings, which are stored with the reference dataset on the R&S FSW.

Storing the normalized reference trace as a transducer factor

The (inverse) normalized reference trace can also be stored as a *transducer factor* for use in other R&S FSW applications that do not support external generator control. The normalized trace data is converted to a transducer with unit dB and stored in a file with the specified name and the suffix .trd under c:\r_s\instr\trd. The frequency points are allocated in equidistant steps between the start and stop frequency.

This is useful, for example, to determine the effects of a particular device component and then remove these effects from a subsequent measurement which includes this component.

For an example see "How to Remove the Effects of a Particular Component from Measurement Results Using Calibration" on page 360.

Note that the *normalized* measurement data is stored, not the original *reference* trace! Thus, if you store the normalized trace directly after calibration, without changing any settings, the transducer factor will be 0 dB for the entire span (by definition of the normalized trace).

Reference Trace, Reference Line and Reference Level

Reference trace

The calibration results are stored internally on the R&S FSW as a *reference trace*. For each measured sweep point the offset to the expected values is determined. If normalization is activated, the offsets in the reference trace are removed from the current measurement results to compensate for the inherent distortions.

Reference line

The reference line is defined by the Reference Value and Reference Position in the "External Generator" > "Source Calibration" settings. It is similar to the Reference Level defined in the "Amplitude" settings. However, as opposed to the reference *level*, this reference *line* only affects the y-axis scaling in the diagram, it has no effect on the expected input power level or the hardware settings.

The reference line determines the range and the scaling of the y-axis, just as the reference level does.

The normalized reference trace (0 dB directly after calibration) is displayed on this reference line, indicated by a red line in the diagram. By default, the reference line is displayed at the top of the diagram. If you shift the reference line, the normalized trace is shifted, as well.

Shifting the reference line (and normalized trace)

You can shift the reference line - and thus the normalized trace - in the result display by changing the Reference Position or the Reference Value.

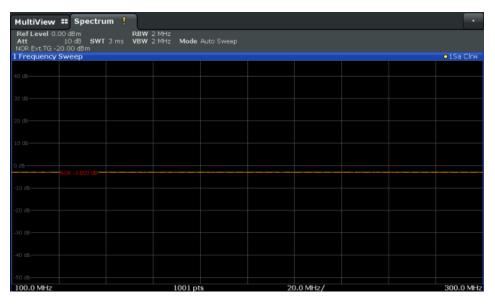


Figure 6-7: Shifted reference line

If the DUT inserts a gain or an attenuation in the measurement, this effect can be reflected in the result display on the R&S FSW. To reflect a power offset in the measurement trace, change the Reference Value.

For a detailed example see Chapter 6.2.4.5, "Measurement Example: Calibration with an External Generator", on page 361.

Coupling the Frequencies

As described in "Normalization" on page 345, normalized measurement results are very accurate as long as the same settings are used as for calibration. Although approximate normalization is possible, it is important to consider the required frequencies for calibration in advance. The frequencies and levels supported by the connected signal generator are provided for reference with the interface configuration.

Two different methods are available to define the frequencies for calibration, that is to couple the frequencies of the R&S FSW with those of the signal generator:

- Manual coupling: a single frequency is defined
- Automatic coupling: a series of frequencies is defined (one for each sweep point), based on the current frequency at the RF input of the R&S FSW; the RF frequency range covers the currently defined span of the R&S FSW (unless limited by the range of the signal generator)

Automatic coupling

If automatic coupling is used, the output frequency of the generator (source frequency) is calculated as follows:

Source Freq = RF
$$\cdot \frac{\text{Numerator}}{\text{Denominator}} + \text{Offset}$$

Equation 6-1: Output frequency of the generator

where:

 $F_{Generator}$ = output frequency of the generator

F_{Analyzer} = current frequency at the RF input of the R&S FSW

Numerator = multiplication factor for the current analyzer frequency

Denominator = division factor for the current analyzer frequency

F_{Offset} = frequency offset for the current analyzer frequency, for example for frequencyconverting measurements or harmonics measurements

The value range for the offset depends on the selected generator. The default setting is 0 Hz. Offsets other than 0 Hz are indicated by the "FRQ" label in the channel bar (see also "Displayed Information and Errors" on page 350).

Swept frequency range

The F_{Analyzer} values for the calibration sweep start with the start frequency and end with the stop frequency defined in the "Frequency" settings of the R&S FSW. The resulting output frequencies (Result Frequency Start and Result Frequency Stop) are displayed in the "External Generator" > "Measurement Configuration" for reference.

If the resulting frequency range exceeds the allowed ranges of the signal generator, an error message is displayed (see "Displayed Information and Errors" on page 350) and the Result Frequency Start and Result Frequency Stop values are corrected to comply with the range limits.

The calibration sweep nevertheless covers the entire span defined by the R&S FSW; however, no input is received from the generator outside the generator's defined limits.

TTL synchronization

Some Rohde & Schwarz signal generators support TTL synchronization when connected via GPIB. The TTL interface is included in the AUX CONTROL connector of the External Generator Control option.

When pure GPIB connections are used between the R&S FSW and the signal generator, the R&S FSW sets the generator frequency for each frequency point individually via GPIB, and only when the setting procedure is finished, the R&S FSW can measure the next sweep point.

For generators with a TTL interface, the R&S FSW sends a list of the frequencies to be set to the generator before the beginning of the first sweep. Then the R&S FSW starts the sweep and the next frequency point is selected by both the R&S FSW and the generator using the TTL handshake line "TRIGGER". The R&S FSW can only measure a value when the generator signals the end of the setting procedure via the "BLANK" signal.

Using the TTL interface allows for considerably higher measurement rates than pure GPIB control, because the frequency stepping of the R&S FSW is directly coupled with the frequency stepping of the generator.

Reverse sweep

The frequency offset for automatic coupling can be used to sweep in the reverse direction. To do so, define a negative offset in the external generator measurement configuration. (Note that the frequency is defined as the unsigned value of the equation, thus a negative frequency is not possible.)

Example: Example for reverse sweep

```
F_{AnalyzerStart}= 100 MHz

F_{AnalyzerStop} = 200 MHz

F_{Offset} = -300 MHz

Numerator = Denominator = 1

\rightarrow F_{GeneratorStart} = 200 MHz

\rightarrow F_{GeneratorStop} = 100 MHz
```

If the offset is adjusted so that the sweep of the generator crosses the minimum generator frequency, a message is displayed in the status bar ("Reverse Sweep via min. Ext. Generator Frequency!").

Example: Example for reverse sweep via minimum frequency

F_{AnalyzerStart}= 100 MHz

F_{AnalyzerStop} = 200 MHz

 F_{Offset} = -150 MHz

 $F_{min} = 20 \text{ MHz}$

Numerator = Denominator = 1

→F_{GeneratorStart} = 50 MHz

→F_{GeneratorStop} = 50 MHz via Fmin

Displayed Information and Errors

Channel bar

If external generator control is active, some additional information is displayed in the channel bar.

Label	Description
EXT TG: <source power=""/>	External generator active; signal sent with <source power=""/> level
LVL	Power Offset (see "Source Offset" on page 354
FRQ	Frequency Offset (see "(Automatic) Source Frequency (Numerator/Denominator/Offset)" on page 355
NOR	Normalization on; No difference between reference setting and measurement
APX (approximation)	Normalization on; Deviation from the reference setting occurs
-	Aborted normalization or no calibration performed yet

Error and status messages

The following status and error messages may occur during external generator control.

Message	Description
"Ext. Generator GPIB Handshake Error!" /	Connection to the generator is not possible, e.g. due to a
"Ext. Generator TCPIP Handshake Error!" /	cable damage or loose connection or wrong address.
"Ext. Generator TTL Handshake Error!"	
"Ext. Generator Limits Exceeded!"	The allowed frequency or power ranges for the generator were exceeded.
"Reverse Sweep via min. Ext. Generator Frequency!"	Reverse sweep is performed; frequencies are reduced to the minimum frequency, then increased again; see "Reverse sweep" on page 349
"Ext. Generator File Syntax Error!"	Syntax error in the generator setup file (see "Generator Setup Files" on page 344

Message	Description
"Ext. Generator Command Error!"	Missing or wrong command in the generator setup file (see "Generator Setup Files" on page 344
"Ext. Generator Visa Error!!"	Error with Visa driver provided with installation (very unlikely)

NOTICE

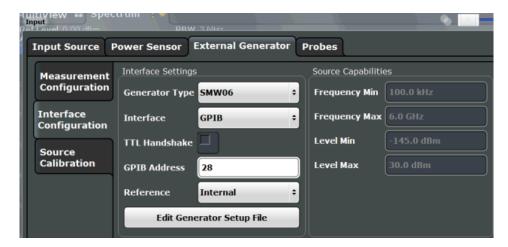
Overloading

At a reference level of -10 dBm and at an external generator output level of the same value, the R&S FSW operates without overrange reserve. That means the R&S FSW is in danger of being overloaded if a signal is applied whose amplitude is higher than the reference line. In this case, either the message "RF OVLD" for overload or "IF OVLD" for exceeded display range (clipping of the trace at the upper diagram border = overrange) is displayed in the status line.

Overloading can be avoided as follows:

- Reducing the output level of the external generator ("Source Power" on page 354 in "External Generator > Measurement Configuration")
- Increasing the reference level (Reference Level in the "Amplitude" menu)

6.2.4.3 External Generator Control Settings


Access: INPUT/OUPUT > "External Generator Config"

The "External Generator" settings are available if the R&S FSW External Generator Control option is installed. For each measurement channel, you can configure one external generator. To switch between different configurations, define multiple measurement channels.

For more information on external generator control, see Chapter 6.2.4.2, "Basics on External Generator Control", on page 339.

Interface Configuration Settings

Access: INPUT/OUPUT > "External Generator Config" > "Interface Configuration" tab

For more information on configuring interfaces, see Chapter 10.1.1, "Remote Control Interfaces and Protocols", on page 635.

Generator Type	352
Interface	
TTL Handshake	
GPIB Address / TCP/IP Address	
Reference	353
Edit Generator Setup File	353
Frequency Min. / Frequency Max	
Level Min. / Level Max	

Generator Type

Selects the generator type and thus defines the generator setup file to use.

For an overview of supported generators, see "Overview of Supported Generators" on page 342. For information on generator setup files, see "Generator Setup Files" on page 344.

Remote command:

SYSTem: COMMunicate: RDEVice: GENerator: TYPE on page 942

Interface

Type of interface connection used. The following interfaces are currently supported:

- GPIE
- TCP/IP (not by all generators)

For details on which signal generators support which interfaces, see the documentation of the corresponding signal generator.

Remote command:

SYSTem: COMMunicate: RDEVice: GENerator: INTerface on page 941

TTL Handshake

If available for the specified generator type, this option activates TTL synchronization via handshake for GPIB connections.

Using the TTL interface allows for considerably higher measurement rates than pure GPIB control, because the frequency stepping of the R&S FSW is directly coupled with the frequency stepping of the generator.

For more information on TTL synchronization, see "TTL synchronization" on page 349.

For an overview of which generators support TTL synchronization see "Overview of Supported Generators" on page 342.

Remote command:

SYSTem: COMMunicate: RDEVice: GENerator: LINK on page 942

GPIB Address / TCP/IP Address

For LAN connections: TCP/IP address of the signal generator. For GPIB connections: GPIB address of the signal generator.

Remote command:

SYSTem:COMMunicate:GPIB:RDEVice:GENerator:ADDRess on page 941 SYSTem:COMMunicate:TCPip:RDEVice:GENerator:ADDRess on page 943

Reference

Selects the internal R&S FSW or an external frequency reference to synchronize the R&S FSW with the generator (default: internal).

Remote command:

SOURce: EXTernal: ROSCillator[:SOURce] on page 941

Edit Generator Setup File

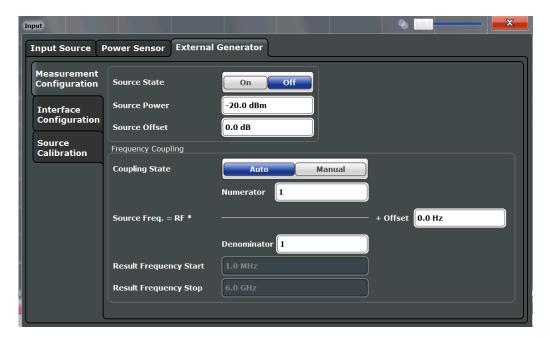
Displays the setup file for the currently selected Generator Type in read-only mode in an editor.

Although the existing setup files are displayed in read-only mode in the editor, they can be saved under a different name (using "File > SaveAs").

Be careful, however, to adhere to the required syntax and commands. Errors are only detected and displayed when you try to use the new generator (see also "Displayed Information and Errors" on page 350).

For details, see "Generator Setup Files" on page 344.

Frequency Min. / Frequency Max.


For reference only: Lower and upper frequency limit for the generator.

Level Min. / Level Max.

For reference only: Lower and upper power limit for the generator.

Measurement Settings

Access: INPUT/OUPUT > "External Generator Config" > "Measurement Configuration" tab

Source State	354
Source Power	354
Source Offset	
Source Frequency Coupling	
(Manual) Source Frequency	
(Automatic) Source Frequency (Numerator/Denominator/Offset)	
Result Frequency Start	
Result Frequency Stop	356

Source State

Activates or deactivates control of an external generator.

Remote command:

SOURce: EXTernal [:STATe] on page 940

Source Power

The output power of the external generator. The default output power is -20 dBm. The range is specified in the data sheet.

Remote command:

SOURce: EXTernal: POWer[:LEVel] on page 940

Source Offset

Constant level offset for the external generator. Values from -200 dB to +200 dB in 1 dB steps are allowed. The default setting is 0 dB. Offsets are indicated by the "LVL" label in the channel bar (see also "Displayed Information and Errors" on page 350).

Using this offset, attenuators or amplifiers at the output connector of the external generator can be taken into account. This is useful, for example, for the displayed output power values on screen or during data entry. Positive offsets apply to an amplifier, while negative offsets apply to an attenuator after the external generator.

Remote command:

SOURce: POWer[:LEVel][:IMMediate]:OFFSet on page 940

Source Frequency Coupling

Defines the frequency coupling mode between the R&S FSW and the generator.

For more information on coupling frequencies, see "Coupling the Frequencies" on page 347.

"Auto" Default setting: a series of frequencies is defined (one for each

sweep point), based on the current frequency at the RF input of the R&S FSW (see "(Automatic) Source Frequency (Numerator/Denominator/Offset)" on page 355). The RF frequency range covers the currently defined span of the R&S FSW (unless limited by the range of

the signal generator).

"Manual" The generator uses a single fixed frequency, defined by (Manual)

Source Frequency which is displayed when you select "Manual" cou-

pling.

Remote command:

SOURce: EXTernal: FREQuency: COUPling[:STATe] on page 938

(Manual) Source Frequency

Defines the fixed frequency to be used by the generator.

Remote command:

SOURce: EXTernal: FREQuency on page 938

(Automatic) Source Frequency (Numerator/Denominator/Offset)

With automatic frequency coupling, a series of frequencies is defined (one for each sweep point), based on the current frequency at the RF input of the R&S FSW.

However, the frequency used by the generator may differ from the input from the R&S FSW. The RF frequency can be multiplied by a specified factor, or a frequency offset can be added, or both.

Note: The input for the generator frequency is not validated, i.e. you can enter any values. However, if the allowed frequency ranges of the generator are exceeded, an error message is displayed on the R&S FSW. The values for Result Frequency Start and Result Frequency Stop are corrected to comply with the range limits.

The value range for the offset depends on the selected generator. The default setting is 0 Hz. Offsets <> 0 Hz are indicated by the "FRQ" label in the channel bar. Negative offsets can be used to define reverse sweeps.

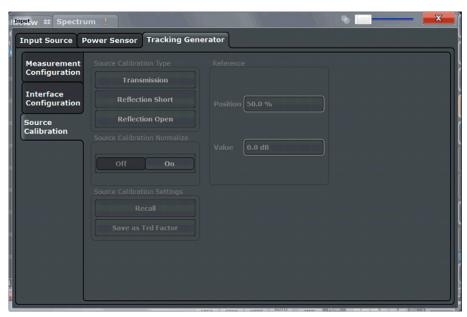
For more information on coupling frequencies and reverse sweeps, see "Coupling the Frequencies" on page 347. For more information on error messages and the channel bar, see "Displayed Information and Errors" on page 350.

Remote command:

```
SOURce: EXTernal: FREQuency[:FACTor]: DENominator on page 939 SOURce: EXTernal: FREQuency[:FACTor]: NUMerator on page 939 SOURce: EXTernal: FREQuency: OFFSet on page 939
```

Result Frequency Start

For reference only: The start frequency for the generator, calculated from the configured generator frequency and the start value defined for the R&S FSW.


Result Frequency Stop

For reference only: The stop frequency for the generator, calculated from the configured generator frequency and the stop value defined for the R&S FSW.

Source Calibration Functions

Access: INPUT/OUPUT > "External Generator Config" > "Source Calibration" tab

The calibration functions of the external generator are available *only if external generator control is active* (see "Source State" on page 354).

Calibrate Transmission	356
Calibrate Reflection Short	357
Calibrate Reflection Open	
Source Calibration Normalize	357
Recall	357
Save As Trd Factor	357
Reference Position.	358
Reference Value	358

Calibrate Transmission

Starts a transmission type measurement to determine a reference trace. This trace is used to calculate the difference for the normalized values.

For details, see "Calibration Mechanism" on page 344.

Remote command:

[SENSe:] CORRection: METHod on page 944

Calibrate Reflection Short

Starts a short-circuit reflection type measurement to determine a reference trace for calibration.

If both calibrations (open circuit, short circuit) are carried out, the calibration trace is calculated by averaging the two measurements. The order of the two calibration measurements is irrelevant.

Remote command:

[SENSe:] CORRection: METHod on page 944

Selects the reflection method.

[SENSe:]CORRection:COLLect[:ACQuire] on page 944

Starts the sweep for short-circuit calibration.

Calibrate Reflection Open

Starts an open-circuit reflection type measurement to determine a reference trace for calibration.

If both reflection-type calibrations (open circuit, short circuit) are carried out, the reference trace is calculated by averaging the two measurements. The order of the two calibration measurements is irrelevant.

Remote command:

[SENSe:] CORRection: METHod on page 944

Selects the reflection method.

[SENSe:]CORRection:COLLect[:ACQuire] on page 944

Starts the sweep for open-circuit calibration.

Source Calibration Normalize

Switches the normalization of measurement results on or off. This function is only available if the memory contains a reference trace, that is, after a calibration has been performed.

For details on normalization, see "Normalization" on page 345.

Remote command:

[SENSe:]CORRection[:STATe] on page 945

Recall

Restores the settings that were used during source calibration. This can be useful if instrument settings were changed after calibration (e.g. center frequency, frequency deviation, reference level, etc.).

Remote command:

[SENSe:]CORRection:RECall on page 945

Save As Trd Factor

Uses the normalized measurement data to generate a transducer factor. The trace data is converted to a transducer with unit dB and stored in a file with the specified name and the suffix .trd under "c:\r_s\instr\trd". The frequency points are allocated in equidistant steps between start and stop frequency. The generated transducer factor can be further adapted using the "Transducer" softkey in the SETUP menu.

For more information on transducers, see Chapter 9.2, "Basics on Transducer Factors", on page 591.

This function is only available if Source Calibration Normalize is switched on.

Note: Note that the *normalized* measurement data is used, not the *reference* trace! Thus, if you store the normalized trace directly after calibration, without changing any settings, the transducer factor will be 0 dB for the entire span (by definition of the normalized trace).

Remote command:

[SENSe:]CORRection:TRANsducer:GENerator on page 946

Reference Position

Defines the position of the Result Frequency Stop in percent of the total y-axis range. The top of the diagram is 100%, the bottom is 0%. By default, the 0 dB line is displayed at the top of the diagram (100%).

This setting is only available if normalization is on (see "Source Calibration Normalize" on page 357).

The reference line defined by the reference value and reference position is similar to the Reference Level defined in the "Amplitude" settings. However, this reference line only affects the y-axis scaling in the diagram, it has no effect on the expected input power level or the hardware settings.

The normalized trace (0 dB directly after calibration) is displayed on this reference line, indicated by a red line in the diagram. If you shift the reference line, the normalized trace is shifted, as well.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 902

Reference Value

Defines the reference value to be displayed at the specified Result Frequency Start.

This setting can be used to shift the reference line and thus the normalized trace, similar to the Shifting the Display (Offset) defined in the "Amplitude" settings shifts the reference level *in the display*.

Shifting the normalized trace is useful, for example, to reflect an attenuation or gain caused by the measured DUT. If you then zoom into the diagram around the normalized trace, the measured trace still remains fully visible.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue on page 943

6.2.4.4 How to Work With External Generator Control

The following step-by-step instructions demonstrate how to work with the optional External Generator Control.

- How to Compensate for Additional Gain or Attenuation after Calibration............361

How to Calibrate a Measurement Setup using an External Generator

- 1. Connect the signal generator's GPIB interface connector to the EXT. GEN.CONTROL GPIB connector on the rear panel of the R&S FSW.
- 2. Connect the signal generator output to the RF INPUT connector of the R&S FSW.
- 3. If the signal generator supports TTL synchronization, connect the signal generator to the optional AUX. CONTROL port.
- If the measurement setup does not require the full span of the R&S FSW, change the "Frequency Start" and "Frequency Stop" values (FREQ key > "Frequency Config" softkey).
- 5. Press the INPUT/OUTPUT key and select "External Generator Config".
- In the "Interface Configuration" subtab, select the "Generator Type" connected to the R&S FSW.
 - If the required generator type is not available, define a new setup file as described in "To define a new generator setup file" on page 360.
- 7. Select the type of interface and the address used to connect the generator to the R&S FSW.
- 8. If the generator supports "TTL Synchronization", activate this function.
- 9. Select "Reference: External" to synchronize the analyzer with the generator.
- 10. Switch to the "Measurement Configuration" subtab.
- 11. Set the "Source State" to "On".
- 12. Define the generator output level as the "Source Power".
- 13. Optionally, to define a constant level offset for the external generator, define a "Source Offset".
- 14. The default frequency list for the calibration sweep contains 1001 values, divided in equi-distant frequencies between the R&S FSW's start and stop frequency. For most cases, this automatic coupling should be correct. Check the "Result Frequency Start" and "Result Frequency Stop" values to make sure the required measurement span is covered. If necessary, change the frequency settings on the R&S FSW (FREQ key > "Frequency Config" softkey), or use a different generator type.
- 15. Switch to the "Source Calibration" subtab.
- 16. Select the "Source Calibration Type": "Transmission" to perform a calibration sweep and store a reference trace for the measurement setup.
- 17. Select "Source Calibration Normalize": "On".

18. Optionally, shift the reference line further down in the result display by descreasing the "Reference": "Position".

The measurement setup is now calibrated. Subsequent measurement results are normalized, so that any unwanted effects from the cables and connectors are removed.

To define a new generator setup file

- 1. Press the INPUT/OUTPUT key and select "External Generator Config".
- 2. In the "Interface Configuration" subtab, select a generator type that has similar characteristics (frequency and power ranges).
- Select "Edit Generator Setup File".
 The configuration file for the selected generator type is displayed (read-only) in an editor.
- 4. Edit the configuration values according to your generator. Be sure not to change the syntax of the file - only change the *values* of the parameters. Errors will only be detected and displayed when you try to use the new generator (see also "Displayed Information and Errors" on page 350).
- 5. Save the file under a different name with the extension .gen:
 - a) In the editor, select "File > SaveAs".
 - b) Select "Save as type: All Files (*.*)".
 - c) Specify a name with the extension .gen.
- 6. In the R&S FSW firmware, close the "External Generator Config" dialog and reopen it.

Now you can select the new generator type from the selection list on the "Interface Configuration" tab.

How to Remove the Effects of a Particular Component from Measurement Results Using Calibration

- Set up the measurement, including the component, and perform a calibration as described in "How to Calibrate a Measurement Setup using an External Generator" on page 359.
- 2. After setting "Source Calibration Normalize": "On", select "Save as Trd Factor" to store the normalized reference trace as a transducer factor.
- 3. If necessary, switch to another measurement channel for a different R&S FSW application.
- 4. Press the SETUP key, then select the "Transducer" softkey.
- 5. Select the stored transducer in the list of available transducers and select the "Active" setting for it.

6. Perform any measurement with the setup that contains the calibrated component.

The measurement results do not include the effects from the component.

How to Compensate for Additional Gain or Attenuation after Calibration

If a gain or an attenuation is inserted in the measurement after calibration, this effect can be reflected in the display of the normalized trace on the R&S FSW. Thus, the measured trace and the normalized trace are not so far apart in the display, so that you can zoom into the normalized trace without cropping the measurement trace.

Prerequisite: a calibration has been performed for the original measurement setup, except for the component causing an additional gain or attenuation (as described in "How to Calibrate a Measurement Setup using an External Generator" on page 359)

- 1. Insert the additional component in the calibrated measurement setup and perform a new measurement.
- 2. Press the INPUT/OUTPUT key and select "External Generator Config".
- 3. Switch to the "Source Calibration" subtab.
- 4. With active normalization, set the "Reference": "Value" to the same value as the gain or attenuation the inserted component causes.
- 5. Optionally, shift the reference line further down in the result display by decreasing the "Reference": "Position".
 - The normalized reference trace moves to the position of the measured trace.
- 6. Optionally, zoom into the measured trace by changing the y-axis scaling (or the range: "AMPT > Scale Config > Range").

The measured trace is still fully visible, and the absolute values are still valid.

6.2.4.5 Measurement Example: Calibration with an External Generator

The following measurement example demonstrates the most common functions using an external generator. This example requires the External Generator Control option.

The example assumes an SMW100A generator is connected to the R&S FSW. A band elimination filter is the device under test. After calibration, an additional attenuator is inserted between the DUT and the R&S FSW.

The following procedures are described:

- "Calibrating the measurement setup" on page 361
- "Measuring the effects of the DUT" on page 363
- "Compensating the effects of additional attenuation after calibration" on page 365

Calibrating the measurement setup

 Connect the signal generator's GPIB interface connector to the EXT. GEN.CONTROL GPIB connector on the rear panel of the R&S FSW.

- 2. Connect the signal generator output to the RF INPUT connector of the R&S FSW.
- 3. Adapt the measurement range of the R&S FSW to the filter to be tested. In this measurement, define the following settings:
 - a) Press the FREQ key, select "Frequency Config" and enter "Frequency Start": 100 MHz.
 - b) Enter "Frequency Stop": 300 MHz
- 4. Press the INPUT/OUTPUT key and select "External Generator Config".
- 5. In the "Interface Configuration" sub-tab, select "Generator Type": "SMW06".
- 6. Select "Reference: External" to synchronize the analyzer with the generator.
- 7. Switch to the "Measurement Configuration" sub-tab.
- 8. Set the "Source State" to "On".
- 9. Define the generator output level as the "Source Power": -20 dBm.
- 10. Set the "Coupling State" to "Auto".
 - The "Result Frequency Start" value for the generator is indicated as 100.0 MHz. The "Result Frequency Stop" value is indicated as 300.0 MHz.
- 11. Switch to the "Source Calibration" sub-tab.
- 12. Select the "Source Calibration Type": "Transmission" to perform a calibration sweep and store a reference trace for the measurement setup.



Figure 6-8: Measurement results from generator, analyzer and connecting cables

13. Select "Source Calibration Normalize": "On" to set the measurement results for the current setup to 0, thus eliminating all effects from the generator, the analyzer and

the connecting cables from subsequent measurements with the band elimination filter.

The reference line is displayed at 0 dB at the top of the diagram (100%).

Figure 6-9: Normalized measurement results after calibration

Measuring the effects of the DUT

After calibration we can insert the band elimination filter (our DUT) in the measurement setup.

- 1. Connect the signal generator output to the band elimination filter.
- 2. Connect the band elimination filter output to the RF INPUT connector of the R&S FSW.

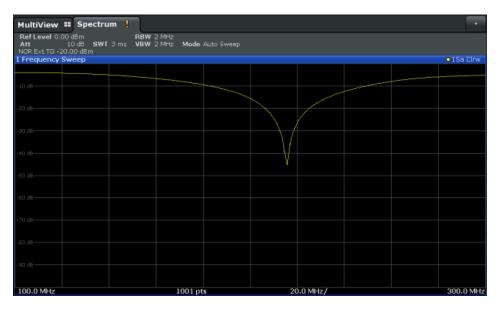


Figure 6-10: Band elimination filter results

 Shift the reference line from the top of the diagram to the middle of the diagram by changing the position of the reference point 0.0 dB to 50 %.
 In the "Source Calibration" tab, enter "Position": 50 %.

At the same time, the range of the displayed y-axis moves from [-100.0 dB to 0 dB] to [-50 dB to +50 dB].

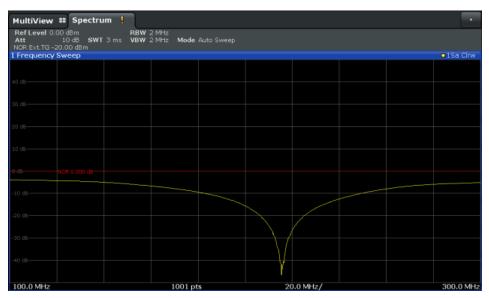


Figure 6-11: Reference line shifted to middle of diagram (50%)

Compensating the effects of additional attenuation after calibration

After calibration, an additional attenuator is inserted between the DUT and the R&S FSW. This may be necessary, for example, to protect the analyzer's input connector. Nevertheless, we are only interested in the effects of the DUT, not those of the additional protective attenuator. Thus, we will compensate these effects in the result display on the R&S FSW by moving the reference line.

1. Connect a 3 dB attenuator between the band elimination filter output and the RF INPUT connector on the R&S FSW.

The measurement results are now 3 dB lower.

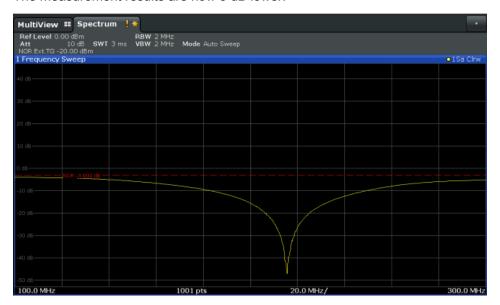


Figure 6-12: Measurement results with additional attenuator

2. In the "Source Calibration" tab, enter "Reference Value":-3 dB.

The reference line is shifted down by 3 dB so that the measurement trace is displayed on the reference line again.

At the same time, the scaling of the y-axis is changed: -3 dB are now shown at 50% of the diagram; the range is [-53 dB to +47 dB].

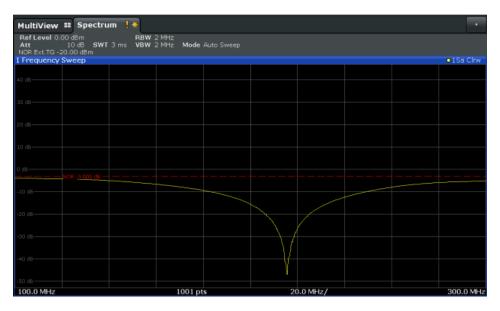


Figure 6-13: Reference line with an offset of -3 dB and shifted to middle of diagram (50%)

- After the reference trace has been shifted, you can zoom into the measured trace
 to determine the offsets to the reference line, which represent the effects of the
 band elimination filter in the measurement setup.
 Change the y-axis scaling to 1 dB/div (or the range to 10 dB).
 - a) Press the AMPT key, then select "Scale Config" > "Range".
 - b) Enter 10 dB.

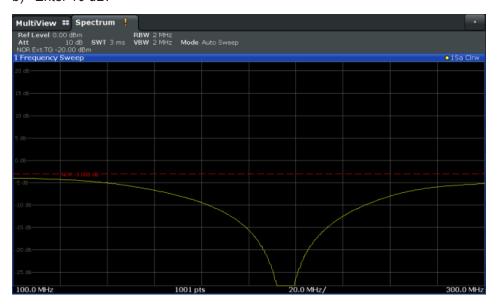


Figure 6-14: Reference line with measurement results using larger scale

6.2.5 Optional External Mixers

If the R&S FSW External Mixer option is installed, an external mixer can be connected to the R&S FSW to increase the available frequency range. In this case, the input to measure is not taken from the RF input connector, but from the EXT MIXER connector(s).

•	Basics on External Mixers	.367
•	External Mixer Settings	. 376
•	How to Work with External Mixers	. 386
•	Measurement Example: Using an External Mixer	.389

6.2.5.1 Basics on External Mixers

Some background knowledge on basic terms and principles used with external mixers is provided here for a better understanding of the required configuration settings.

	Frequency Ranges	.367
•	Two-port and Three-port Mixers	.368
	Bias Current	
•	Conversion Loss Tables	.370
•	Automatic Signal Identification	.371

Frequency Ranges

In a common spectrum analyzer, rather than providing one large (and thus inaccurate) filter, or providing several filters to cover the required frequency range of the input signal (at a high cost), a single, very accurate filter is used. Therefore, the input signal must be converted to the frequencies covered by the single accurate filter. This is done by a mixer, which converts and multiplies the frequency of the input signal with the help of the local oscillator (LO). The result is a higher and lower intermediate frequency (IF). The local oscillator can be tuned within the supported frequency range of the input signal.

In order to extend the supported frequency range of the input signal, an external mixer can be used. In this case, the LO frequency is output to the external mixer, where it is mixed with the RF input from the original input signal. In addition, the *harmonics* of the LO are mixed with the input signal, and converted to new intermediate frequencies. Thus, a wider range of frequencies can be obtained. The IF from the external mixer is then returned to the spectrum analyzer.

The frequency of the input signal can be expressed as a function of the LO frequency and the selected harmonic of the first LO as follows:

$$f_{in} = n * f_{LO} + f_{IF}$$

where:

f_{in}: frequency of input signal

n: order of harmonic used for conversion

f_{LO}: frequency of first LO: 7.65 GHz to 17.45 GHz

f_{ir}: intermediate frequency (variable; defined internally depending on RBW and span)

Thus, depending on the required frequency band, the appropriate order of harmonic must be selected. For commonly required frequency ranges, predefined bands with the appropriate harmonic order setting are provided. By default, the lowest harmonic order is selected that allows conversion of input signals in the whole band.

For the band "USER", the order of harmonic is defined by the user. The order of harmonic can be between 2 and 61, the lowest usable frequency being 16.53 GHz.

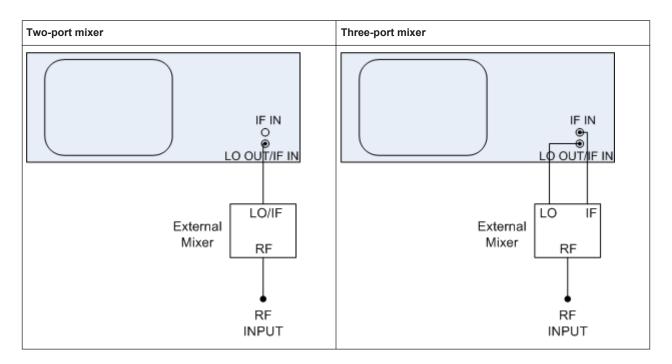
The frequency ranges for pre-defined bands are described in Table 11-6.

Changes to the band and mixer settings are maintained even after using the PRESET function. A "Preset band" function allows you to restore the original band settings.

Extending predefined ranges

In some cases, the harmonics defined for a specific band allow for an even larger frequency range than the band requires. By default, the pre-defined range is used. However, you can take advantage of the extended frequency range by overriding the defined start and stop frequencies by the maximum possible values ("RF Overrange" option).

Additional ranges


If due to the LO frequency the conversion of the input signal is not possible using one harmonic, the band must be split. An adjacent, partially overlapping frequency range can be defined using different harmonics. In this case, the sweep begins using the harmonic defined for the first range, and at a specified frequency in the overlapping range ("handover frequency"), switches to the harmonic for the second range.

Which harmonics are supported depends on the mixer type.

Two-port and Three-port Mixers

External mixers are connected to the R&S FSW at the LO OUT/IF IN and IF IN connectors.

When using three-port mixers, the LO signal output from the R&S FSW and the IF input from the mixer are transmitted on separate connectors, whereas for two-port mixers, both signals are exchanged via the same connector (LO OUT/IF IN). Because of the diplexer contained in the R&S FSW, the IF signal can be tapped from the line which is used to feed the LO signal to the mixer.

In both cases, the nominal LO level is 15.5 dBm.

Bias Current

Single-diode mixers generally require a DC voltage which is applied via the LO line. This DC voltage is to be tuned to the minimum conversion loss versus frequency. Such a DC voltage can be set via the "BIAS" function using the D/A converter of the R&S FSW. The value to be entered is not the voltage but the short-circuit current. The current is defined in the "Bias Settings" or set to the value of the conversion loss table (see "Bias Settings" on page 381 and "Bias" on page 385.

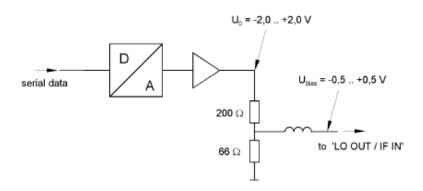


Figure 6-15: Bias circuit of the R&S FSW

The voltage U_0 at the output of the operational amplifier can be set in the range -2.0 to +2.0 V. An open-circuit voltage U_{bias} of -0.5 to +0.5 V is obtained accordingly at the output of the voltage divider. A short-circuit current of $I_{short} = U_0 / 200 \Omega = 10$ mA to +10 mA is obtained for a short circuit at the output of the voltage divider. In order to use

biasing it is not important to know the exact current flowing through the diode since the conversion loss must be set to a minimum with the frequency. Therefore, it makes no difference whether the setting is performed by an open-circuit voltage or by a short-circuit current. A DC return path is ensured via the $66~\Omega$ resistor, which is an advantage in some mixers.

Conversion Loss Tables

Conversion loss tables consist of value pairs that describe the correction values for conversion loss at certain frequencies. Correction values for frequencies between the reference values are obtained by interpolation. Linear interpolation is performed if the table contains only two values. If it contains more than two reference values, spline interpolation is carried out. Outside the frequency range covered by the table the conversion loss is assumed to be the same as that for the first and last reference value (see Figure 6-16).

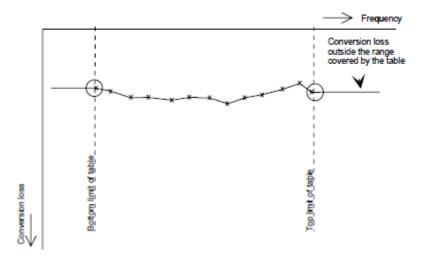


Figure 6-16: Conversion loss outside the band's frequency range

Predefined conversion loss tables are often provided with the external mixer and can be imported to the R&S FSW. Alternatively, you can define your own conversion loss tables. Conversion loss tables are configured and managed in the "Conversion loss Table Settings" tab of the "External Mixer Configuration" dialog box (see "Managing Conversion Loss Tables" on page 382).

B2000-specific conversion loss tables

External mixers can be used together with the optional 2 GHz bandwidth extension (R&S FSW-B2000). However, special conversion loss tables are required, with a .b2g file extension, as opposed to .acl for common tables.

While .acl files can be used, data acquisition with the B2000 option using such conversion loss tables will lead to substantial inaccuracy. Using an average conversion loss for the entire range (instead of a conversion loss table) during data acquisition with the B2000 option will cause even more inaccuracy. In both cases, the UNCAL status message indicates that the measurement may have inaccurate results.

Special B2000 tables (in b2g files) cannot be edited within the R&S FSW firmware; they can only be imported and deleted.

Importing CVL tables

The conversion loss table to be used for a particular range is also defined in the "External Mixer Configuration" dialog box. All tables stored on the instrument in the $C:\r_s\instr\user\cvl\$ directory are offered for selection. A validation check is then performed on the selected table to ensure that it complies with the settings. In particular, the following is checked:

- the assigned band name
- the harmonic order
- the mixer type
- the table must contain at least one frequency that lies within the frequency range for the band

Reference level

The maximum possible reference level depends on the maximum used conversion loss value. Thus, the reference level can be adjusted for each range according to the used conversion loss table or average conversion loss value. If a conversion loss value is used which exceeds the maximum reference level, the reference level is adjusted to the maximum value permitted by the firmware.

Automatic Signal Identification

Automatic signal identification allows you to compare the upper and lower band results of the mixer, thus detecting unwanted mixer products due to conversion.

Note that automatic signal identification is only available for measurements that perform frequency sweeps (not in vector signal analysis or the I/Q Analyzer, for instance).

The "Auto ID" function is now also available for Spectrum Emission Mask (SEM) Measurement and Spurious Emissions Measurement using an external mixer.

Signal ID function

Two sweeps are performed alternately. Trace 1 shows the trace measured on the upper side band (USB) of the LO (the test sweep), trace 2 shows the trace measured on the lower side band (LSB), i.e. the reference sweep.

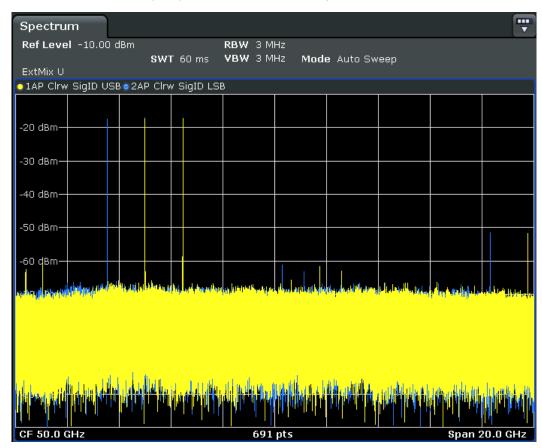


Figure 6-17: Signal identification function (Signal ID) with optional external mixer

The reference sweep is performed using an LO setting shifted downwards by 2*IF/ <Harmonic order>. Input signals in the desired sideband that are converted using the specified harmonic are displayed in both traces at the same position on the frequency axis. Image signals and mixer products caused by other harmonics are displayed at different positions in both traces. The user identifies the signals visually by comparing the two traces.

Since the LO frequency is displaced downwards in the reference sweep, the conversion loss of the mixer may differ from the test sweep. Therefore the signal *level* should only be measured in the test sweep (trace 1).

Auto ID function

The Auto ID function basically functions like Signal ID function. However, the test and reference sweeps are converted into a single trace by a comparison of maximum peak values of each sweep point. The result of this comparison is displayed in trace 3 if "Signal ID" is active at the same time. If "Signal ID" is not active, the result can be dis-

played in any of the traces 1 to 3. Unwanted mixer products are suppressed in this calculated trace.

Test sweep and reference sweep traces

Depending on which of the automatic signal identification functions are used, the traces are used to display either the test sweep (the upper side-band sweep) or the reference sweep (lower side-band sweep).

Function	Trace 1	Trace 2	Trace 3
Signal ID	Signal ID upper side-band	Signal ID lower side-band	-
Auto ID	Auto ID	-	-
Signal ID + Auto ID	Signal ID upper side-band	Signal ID lower side-band	Auto ID

Tolerance for the comparison of test sweep and reference

Since the LO frequency is displaced downwards in the reference sweep, the conversion loss of the mixer may differ from that of the test sweep. This is due to the fact that the LO output power of the R&S FSW varies with the frequency, and also due to the non-ideal characteristics of the mixer. A certain tolerance should therefore be permitted for the comparison of the signal levels in the test sweep and reference sweep. A user-defined threshold is used to determine deviations.

Auto ID detection threshold

Real input signals are displayed at the same frequency in the test and reference sweeps, i.e. theoretically, identical signal levels are expected at the frequency of the real mixer product in both sweeps. If the level difference is lower than the user-defined threshold, the signal obtained in the test sweep is displayed. If a signal occurs only in the test sweep or reference sweep, it is an unwanted mixer product. The level of this signal is compared to the noise floor in the other sweep. If the S/N ratio is sufficiently large, the threshold is exceeded. This means that the signal with the lower level, i.e. noise in this case, is displayed.

Note that the Auto ID method operates according to the fail-safe principle, i.e. unwanted mixer products may not be detected as such but signals which are in fact real input signals are not blanked out.

Time-constant spectrum

The automatic comparison of the test sweep and reference sweep with the Auto ID function can only be applied usefully for signals with a time-constant spectrum since the two sweeps are always required to determine the actual spectrum.

Mixer products with low S/N ratio

If the S/N ratio of a mixer product is lower than the user-defined threshold, the level difference between the test sweep and reference sweep at the frequency of this mixer product is always within limits, even if the signal occurs in one of the sweeps only. Such mixer products cannot be identified by the Auto ID function. It is therefore recom-

mended that you perform a visual comparison of the test sweep and reference sweep using the Signal ID function.

Examining unwanted mixer products with small span

With large spans in which non-modulated sinewave signals are represented as single lines, unwanted mixer products are generally completely blanked out. However, if you examine the frequency range containing a blanked signal in detail using a small span, e.g. an image-frequency response, part of the signal may nevertheless be displayed. This happens when the displayed components of a blanked signal have a level difference which is smaller than the user-defined threshold when compared with the noise floor. These components are therefore not blanked out.

An unwanted signal with an S/N ratio that corresponds approximately to the user-defined threshold may not be blanked out permanently. Due to the fact that the noise display varies from one sweep to another, the S/N ratio changes and thus the level difference between the test sweep and reference sweep measured at a frequency changes as well. As a result, the criterion for detecting unwanted signals is not fulfilled. To blank out unwanted signals permanently, an almost constant noise indication is therefore required. This can be achieved by reducing the video bandwidth. Since the average noise indication lies well below the generated noise peak values, the minimum level diminishes. For identification using the Auto ID function, signals should have this minimum noise level.

Display of mixer products at the same frequency

If the input signal consists of a very large number of spectral components, it will become more and more probable that two different unwanted mixer products will be displayed at the same frequency in the test sweep and reference sweep.

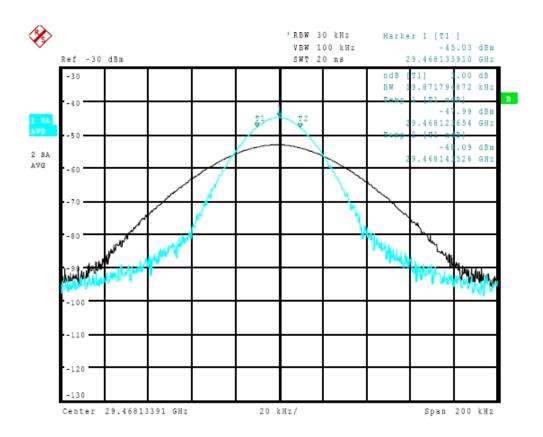


Figure 6-18: Different mixer products displayed at the same frequency in the test sweep and reference sweep (large span)

Example:

The external mixer is set to use the 2nd order harmonic. The signal recorded in the test sweep is displayed by trace 1. The IF filter of the R&S FSW is represented at a 3 dB bandwidth of 20 kHz, the real IF bandwidth being 30 kHz. If, however, the 3 dB bandwidth of the signal recorded in the reference sweep is examined (trace 2), it will be found to be larger exactly by a factor of 2. This shows that the two products were generated by mixing with LO harmonics of different orders. The signal recorded in the test sweep was generated by mixing with the 3rd order harmonic. Since the frequency axis scaling is based on the 2nd order, the mixer product or the resulting diagram of the IF filter is compressed by a factor of 2/3. The signal recorded in the reference sweep was generated by mixing with the fundamental of the LO signal. Since the frequency axis scaling is based on the 2nd order, the mixer product or the resulting diagram of the IF filter is expanded by a factor of 2.

Automatic identification with a large span is not possible since the two mixer products are displayed at the same frequency. The diagram shown in Figure 6-19 is obtained when examining products with a narrow span using the Auto ID function. You can easily recognize unwanted mixer products in the diagram obtained using one of the automatic detection functions.

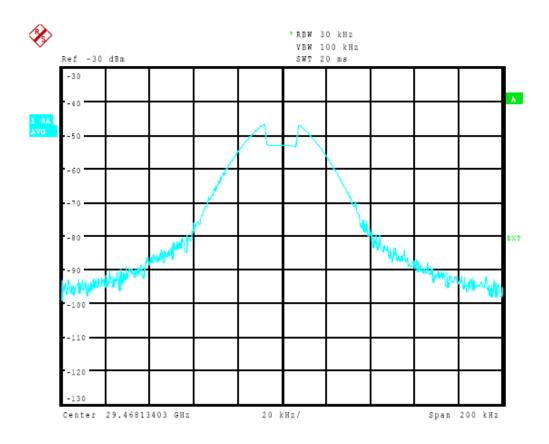


Figure 6-19: Unwanted mixer products displayed for small span

6.2.5.2 External Mixer Settings

Access: INPUT/OUTPUT > "External Mixer Config"

If installed, the optional external mixer can be configured from the Spectrum application.

Note that external mixers are not supported in MSRA/MSRT mode.

•	Mixer Settings	376
	Basic Settings	
	Managing Conversion Loss Tables	
•	Creating and Editing Conversion Loss Tables	383

Mixer Settings

Access: INPUT/OUTPUT > "External Mixer Config" > "Mixer Settings"

External Mixer State	377
RF Start / RF Stop	377
Handover Freq	378
Band	378
RF Overrange	378
Preset Band	378
Mixer Type	378
Mixer Settings (Harmonics Configuration)	
L Range 1/2	
L Harmonic Type	379
L Harmonic Order	
L Conversion loss	379

External Mixer State

Activates or deactivates the external mixer for input. If activated, "ExtMix" is indicated in the channel bar of the application, together with the used band (see "Band" on page 378).

Remote command:

[SENSe:]MIXer[:STATe] on page 921

RF Start / RF Stop

Displays the start and stop frequency of the selected band (read-only).

The frequency range for the user-defined band is defined via the harmonics configuration (see "Range 1/2" on page 379).

For details on available frequency ranges, see table 11-6 on page 925.

Remote command:

[SENSe:]MIXer:FREQuency:STARt? on page 924
[SENSe:]MIXer:FREQuency:STOP? on page 924

Handover Freq.

If due to the LO frequency the conversion of the input signal is not possible using one harmonic, the band must be split. An adjacent, partially overlapping frequency range can be defined using different harmonics (see "Mixer Settings (Harmonics Configuration)" on page 379). In this case, the sweep begins using the harmonic defined for the first range. At the specified "handover frequency" in the overlapping range, it switches to the harmonic for the second range.

The handover frequency can be selected freely within the overlapping frequency range.

Remote command:

[SENSe:]MIXer:FREQuency:HANDover on page 924

Rand

Defines the waveguide frequency band or user-defined frequency band to be used by the mixer.

The start and stop frequencies of the selected band are displayed in the "RF Start" and "RF Stop" fields.

For a definition of the frequency range for the pre-defined bands, see table 11-6 on page 925.

The mixer settings for the user-defined band can be selected freely. The frequency range for the user-defined band is defined via the harmonics configuration (see "Range 1/2" on page 379).

Remote command:

[SENSe:]MIXer:HARMonic:BAND[:VALue] on page 925

RF Overrange

In some cases, the harmonics defined for a specific band allow for an even larger frequency range than the band requires. By default, the pre-defined range is used. However, you can take advantage of the extended frequency range by overriding the defined "RF Start" and "RF Stop" frequencies by the maximum values.

If "RF Overrange" is enabled, the frequency range is not restricted by the band limits ("RF Start" and "RF Stop"). In this case, the full frequency range that can be reached using the selected harmonics is used.

Remote command:

```
[SENSe:]MIXer:RFOVerrange[:STATe] on page 928
```

Preset Band

Restores the presettings for the selected band.

Note: changes to the band and mixer settings are maintained even after using the PRESET function. This function allows you to restore the original band settings.

Remote command:

```
[SENSe:]MIXer:HARMonic:BAND:PRESet on page 924
```

Mixer Type

The External Mixer option supports the following external mixer types:

"2 Port" LO and IF data use the same port

"3 Port" LO and IF data use separate ports

Remote command:

[SENSe:]MIXer:PORTs on page 928

Mixer Settings (Harmonics Configuration)

The harmonics configuration determines the frequency range for user-defined bands (see "Band" on page 378).

Range 1/2 ← Mixer Settings (Harmonics Configuration)

Enables the use of one or two frequency ranges, where the second range is based on another harmonic frequency of the mixer to cover the band's frequency range.

For each range, you can define which harmonic to use and how the Conversion loss is handled.

Remote command:

[SENSe:]MIXer:HARMonic:HIGH:STATe on page 925

Harmonic Type ← **Mixer Settings (Harmonics Configuration)**

Defines if only even, only odd, or even and odd harmonics can be used for conversion. Depending on this selection, the order of harmonic to be used for conversion changes (see "Harmonic Order" on page 379). Which harmonics are supported depends on the mixer type.

Remote command:

[SENSe:]MIXer:HARMonic:TYPE on page 926

Harmonic Order ← **Mixer Settings (Harmonics Configuration)**

Defines which order of the harmonic of the LO frequencies is used to cover the frequency range.

By default, the lowest order of the specified harmonic type is selected that allows conversion of input signals in the whole band. If due to the LO frequency the conversion is not possible using one harmonic, the band is split.

For the "USER" band, you define the order of harmonic yourself. The order of harmonic can be between 2 and 61, the lowest usable frequency being 26.5 GHz.

Remote command:

```
[SENSe:]MIXer:HARMonic[:LOW] on page 926
[SENSe:]MIXer:HARMonic:HIGH[:VALue] on page 926
```

Conversion loss ← **Mixer Settings** (Harmonics Configuration)

Defines how the conversion loss is handled. The following methods are available:

"Average" Defines the average conversion loss for the entire frequency range in dB.

"Table"

Defines the conversion loss via the table selected from the list. Predefined conversion loss tables are often provided with the external mixer and can be imported to the R&S FSW. Alternatively, you can define your own conversion loss tables. Imported tables are checked for compatibility with the current settings before being assigned. Conversion loss tables are configured and managed in the Conversion Loss Table tab.

For details on conversion loss tables, see "Conversion Loss Tables" on page 370.

For details on importing tables, see "Import Table" on page 383.

Remote command:

Average for range 1:

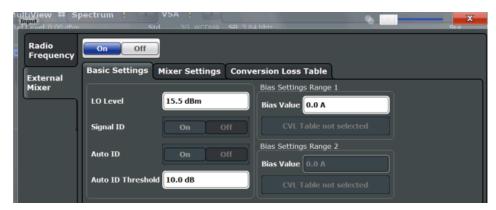
[SENSe:]MIXer:LOSS[:LOW] on page 927

Table for range 1:

[SENSe:]MIXer:LOSS:TABLe[:LOW] on page 927

Average for range 2:

[SENSe:]MIXer:LOSS:HIGH on page 927


Table for range 2:

[SENSe:]MIXer:LOSS:TABLe:HIGH on page 927

Basic Settings

Access: INPUT/OUTPUT > "External Mixer Config" > "Basic Settings"

The basic settings concern general use of an external mixer. They are only available if the External Mixer State is "On".

LO Level	380
Signal ID	381
Auto ID	
Auto ID Threshold	
Bias Settings	381
L Write to <cvl name="" table=""></cvl>	382

LO Level

Defines the LO level of the external mixer's LO port. Possible values are from 13.0 dBm to 17.0 dBm in 0.1 dB steps. Default value is 15.5 dB.

Remote command:

[SENSe:]MIXer:LOPower on page 922

Signal ID

Activates or deactivates visual signal identification. Two sweeps are performed alternately. Trace 1 shows the trace measured on the upper side band (USB) of the LO (the test sweep). Trace 2 shows the trace measured on the lower side band (LSB), i.e. the reference sweep.

Note that automatic signal identification is only available for measurements that perform frequency sweeps (not in the VSA, the I/Q Analyzer, or the Real-Time Spectrum application, for instance).

(See also "Automatic Signal Identification" on page 371).

Mathematical functions with traces and trace copy cannot be used with the Signal ID function.

Remote command:

[SENSe:]MIXer:SIGNal on page 922

Auto ID

Activates or deactivates automatic signal identification.

Auto ID basically functions like Signal ID. However, the test and reference sweeps are converted into a single trace by a comparison of maximum peak values of each sweep point. The result of this comparison is displayed in trace 3 if "Signal ID" is active at the same time. If "Signal ID" is not active, the result can be displayed in any of the traces 1 to 3. Unwanted mixer products are suppressed in this calculated trace.

Note that automatic signal identification is only available for measurements that perform frequency sweeps (not in vector signal analysis or the I/Q Analyzer, for instance).

Note: The "Auto ID" function is now also available for Spectrum Emission Mask (SEM) Measurement and Spurious Emissions Measurement using an external mixer.

(See also "Automatic Signal Identification" on page 371).

Remote command:

[SENSe:]MIXer:SIGNal on page 922

Auto ID Threshold

Defines the maximum permissible level difference between test sweep and reference sweep to be corrected during automatic comparison ("Auto ID" on page 381 function). The input range is between 0.1 dB and 100 dB. Values of about 10 dB (i.e. default setting) generally yield satisfactory results.

(See also "Automatic Signal Identification" on page 371).

Remote command:

[SENSe:]MIXer:THReshold on page 923

Bias Settings

Define the bias current for each range, which is required to set the mixer to its optimum operating point. It corresponds to the short-circuit current. The bias current can range from -10 mA to 10 mA. The actual bias current is lower because of the forward voltage of the mixer diode(s).

Tip: The trace in the currently active result display (if applicable) is adapted to the settings immediately so you can check the results.

To store the bias setting in the currently selected conversion loss table, select the Write to <CVL table name> button.

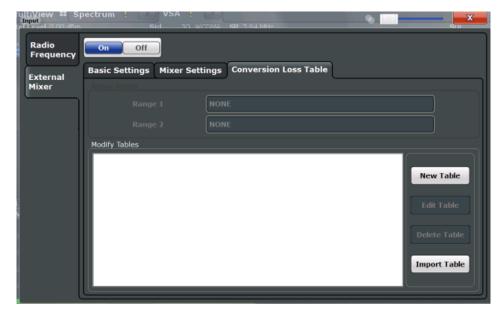
Remote command:

```
[SENSe:]MIXer:BIAS[:LOW] on page 922
[SENSe:]MIXer:BIAS:HIGH on page 922
```

Write to <CVL table name> ← Bias Settings

Stores the bias setting in the currently selected "Conversion loss table" for the range (see "Managing Conversion Loss Tables" on page 382). If no conversion loss table is selected yet, this function is not available ("CVL Table not selected").

Remote command:


```
[SENSe:] CORRection: CVL: BIAS on page 929
```

Managing Conversion Loss Tables

Access: INPUT/OUTPUT > "External Mixer Config" > "Conversion Loss Table"

In this tab, you configure and manage conversion loss tables. Conversion loss tables consist of value pairs that describe the correction values for conversion loss at certain frequencies. The correction values for frequencies between the reference points are obtained via interpolation.

The currently selected table for each range is displayed at the top of the dialog box. All conversion loss tables found in the instrument's $C: R_S\setminus INSTR\setminus USER\setminus CvI\setminus directory$ are listed in the "Modify Tables" list.

New Table	383
Edit Table	383
Delete Table	383
Import Table	383
·	

New Table

Opens the "Edit Conversion loss table" dialog box to configure a new conversion loss table. For details on table configuration, see "Creating and Editing Conversion Loss Tables" on page 383.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 932

Edit Table

Opens the "Edit Conversion loss table" dialog box to edit the selected conversion loss table. For details on table configuration, see "Creating and Editing Conversion Loss Tables" on page 383.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 932

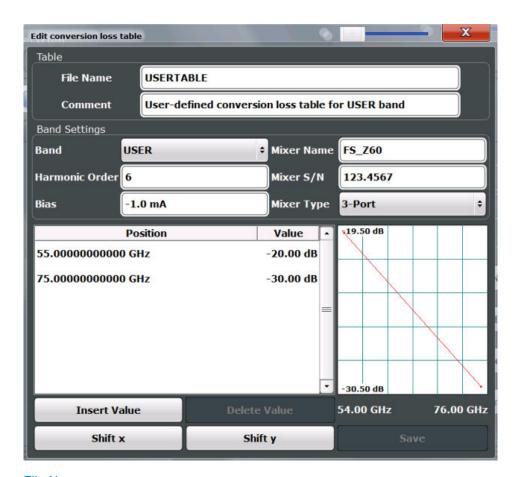
Delete Table

Deletes the currently selected conversion loss table after you confirm the action.

Remote command:

[SENSe:]CORRection:CVL:CLEAr on page 929

Import Table


Imports a stored conversion loss table from any directory and copies it to the instrument's C:\R_S\INSTR\USER\cvl\ directory. It can then be assigned for use for a specific frequency range (see "Conversion loss" on page 379).

Creating and Editing Conversion Loss Tables

Access: INPUT/OUTPUT > "External Mixer Config" > "Conversion Loss Table" > "New Table" / "Edit Table"

Conversion loss tables can be newly defined and edited.

A preview pane displays the current configuration of the conversion loss function as described by the position/value entries.

File Name	384
Comment	385
Band	
Harmonic Order	385
Bias	385
Mixer Name	385
Mixer S/N	385
Mixer Type	
Position/Value	386
Insert Value	386
Delete Value	386
Shift x	386
Shift y	386
Save	386

File Name

Defines the name under which the table is stored in the C:\R_S\INSTR\USER\cvl\ directory on the instrument. The name of the table is identical with the name of the file (without extension) in which the table is stored. This setting is mandatory. The .ACL extension is automatically appended during storage.

Remote command:

[SENSe:]CORRection:CVL:SELect on page 932

Comment

An optional comment that describes the conversion loss table. The comment is userdefinable.

Remote command:

[SENSe:]CORRection:CVL:COMMent on page 930

Band

The waveguide or user-defined band to which the table applies. This setting is checked against the current mixer setting before the table can be assigned to the range.

For a definition of the frequency range for the pre-defined bands, see table 11-6 on page 925.

Remote command:

[SENSe:]CORRection:CVL:BAND on page 928

Harmonic Order

The harmonic order of the range to which the table applies. This setting is checked against the current mixer setting before the table can be assigned to the range.

Remote command:

[SENSe:]CORRection:CVL:HARMonic on page 931

Rias

The bias current which is required to set the mixer to its optimum operating point. It corresponds to the short-circuit current. The bias current can range from -10 mA to 10 mA. The actual bias current is lower because of the forward voltage of the mixer diode(s).

Tip: You can also define the bias interactively while a preview of the trace with the changed setting is displayed, see "Bias Settings" on page 381.

Remote command:

[SENSe:]CORRection:CVL:BIAS on page 929

Mixer Name

Specifies the name of the external mixer to which the table applies. This setting is checked against the current mixer setting before the table can be assigned to the range.

Remote command:

[SENSe:]CORRection:CVL:MIXer on page 931

Mixer S/N

Specifies the serial number of the external mixer to which the table applies.

The specified number is checked against the currently connected mixer number before the table can be assigned to the range.

Remote command:

[SENSe:]CORRection:CVL:SNUMber on page 932

Mixer Type

Specifies whether the external mixer to which the table applies is a two-port or threeport type. This setting is checked against the current mixer setting before the table can be assigned to the range.

Remote command:

[SENSe:]CORRection:CVL:PORTs on page 931

Position/Value

Each position/value pair defines the conversion loss value in dB for a specific frequency. The reference values must be entered in order of increasing frequencies. A maximum of 50 reference values can be entered. To enter a new value pair, select an empty space in the "Position/Value" table, or select the Insert Value button.

Correction values for frequencies between the reference values are interpolated. Linear interpolation is performed if the table contains only two values. If it contains more than two reference values, spline interpolation is carried out. Outside the frequency range covered by the table, the conversion loss is assumed to be the same as that for the first and last reference value.

The current configuration of the conversion loss function as described by the position/value entries is displayed in the preview pane to the right of the table.

Remote command:

[SENSe:]CORRection:CVL:DATA on page 930

Insert Value

Inserts a new position/value entry in the table.

If the table is empty, a new entry at 0 Hz is inserted.

If entries already exist, a new entry is inserted above the selected entry. The position of the new entry is selected such that it divides the span to the previous entry in half.

Delete Value

Deletes the currently selected position/value entry.

Shift x

Shifts all positions in the table by a specific value. The value can be entered in the edit dialog box. The conversion loss function in the preview pane is shifted along the x-axis.

Shift v

Shifts all conversion loss values by a specific value. The value can be entered in the edit dialog box. The conversion loss function in the preview pane is shifted along the y-axis.

Save

The conversion loss table is stored under the specified file name in the $C:\R_S\INSTR\USER\cvl\$ directory of the instrument.

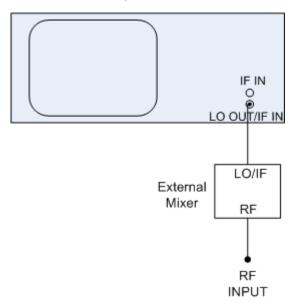

6.2.5.3 How to Work with External Mixers

The required tasks to work with external mixers are described step-by-step:

- "To connect a three-port mixer" on page 387
- "To connect a two-port mixer" on page 388
- "To activate and configure the external mixer" on page 388
- "To define a new conversion loss table" on page 389
- "To shift the conversion loss values" on page 389

To connect a three-port mixer

External mixers can be connected at the LO OUT/IF IN and IF IN female connectors (if option is installed). Both two-port and three-port mixers can be used. Connect the mixer as follows:



Use the supplied coaxial cable to feed in the LO signal. If no external mixers are connected to the R&S FSW, cover the two front connectors LO OUT / IF IN and IF IN with the SMA caps supplied.

- Connect the LO OUT / IF IN output of the R&S FSW to the LO port of the external mixer.
- 2. Connect the IF IN input of the R&S FSW to the IF port of the external mixer.
- 3. Feed the signal to be measured to the RF input of the external mixer.

To connect a two-port mixer

- 1. Connect the LO OUT / IF IN output of the R&S FSW to the LO/IF port of the
 external mixer. The nominal LO level is 15.5 dBm.
 Because of the diplexer contained in the R&S FSW, the IF signal can be tapped
 from the line which is used to feed the LO signal to the mixer.
- 2. Feed the signal to be measured to the RF input of the external mixer.

To activate and configure the external mixer

- 1. Select "INPUT > Input Source Config > External Mixer: ON" to activate the external mixer for the current application.
- 2. Select "Mixer Settings > Band" to define the required frequency range.
- 3. From the "Band" selection list, select the required band.
- 4. In the Mixer Settings, select "Conversion Loss: Table" for Range 1 to define frequency-dependent level correction.
- From the selection list, select a conversion loss table stored on the instrument. No further settings are necessary since the selected file contains all required parameters. If the selected table is not valid for the selected band, an error message is displayed.
 - If no conversion loss table is available yet, create a new table first (as described in "To define a new conversion loss table" on page 389).
- 6. Optionally, select "Basic Settings> Auto ID: On" to activate automatic signal identification.
- 7. If necessary, adapt the tolerance limit by selecting "Basic Settings> Auto ID Threshold".

To define a new conversion loss table

- Select "INPUT > Input Source Config > External Mixer > Conversion Loss Table".
- 2. Select "New Table".
- 3. Define a file name and, optionally, a comment for the new table.
- 4. Define the band and mixer settings for which the conversion loss table is to be used. These settings will be compared to the current mixer settings during the validation check when the table is imported.
- 5. Define the reference values for the frequency-dependant conversion loss:
 - a) Select "Insert Value" to add a new row in the table.
 - b) Enter the first reference frequency.
 - c) Enter the corresponding conversion loss value.
 The conversion loss function is updated and displayed in the preview diagram in the dialog box.
 - d) Repeat these steps to define up to 50 reference values.
- 6. Select "Save".

The table is stored and is then available for import and assignment to a specific frequency range.

To shift the conversion loss values

In order to increase each reference value in the conversion-loss table a constant value (a_0) , the values can be shifted either in x-directoin or in y-direction.

- 1. Select "INPUT > Input Source Config > External Mixer > Conversion Loss Table".
- 2. Select the assigned conversion loss table.
- 3. Select "Edit Table".
- 4. Select "Shift y" and enter the constant value $\langle a_0 \rangle$ to shift all y-values in the table by this value.

Or:

Select "Shift x" and enter the constant value $\langle a_0 \rangle$ to shift all x-values in the table by this value.

5. Select "Save".

6.2.5.4 Measurement Example: Using an External Mixer

The following example demonstrates the operation of external mixers as well as the required settings. A sine wave signal with f = 14.5 GHz is applied to the input of a multiplier. The spectrum at the multiplier output is to be recorded in the range of 52 GHz to 60 GHz using a 2-port mixer for the V band. The mixer used is a double-diode mixer. The example of operation is described in the following steps:

- "To set up the measurement" on page 390
- "To activate and configure the external mixer" on page 390

"To take into account the cable loss in the IF path" on page 391

To set up the measurement

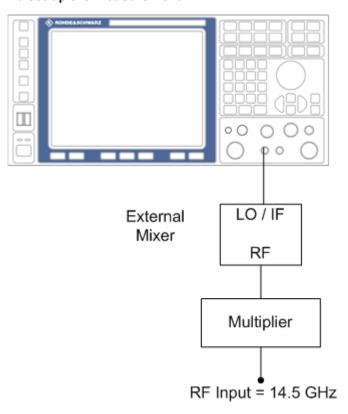


Figure 6-20: External Mixer test setup

- 1. Connect the LO OUT / IF IN output of the R&S FSW to the LO/IF port of the external mixer.
- 2. Connect the multiplier to the RF input of the external mixer.
- 3. Apply a sine wave signal with f = 14.5 GHz to the input of the multiplier.

To activate and configure the external mixer

- 1. Select "INPUT > Input Source Config > External Mixer: ON" to activate the external mixer for the current application.
- 2. Select "Mixer Settings > Band" to define the required frequency range.
- 3. From the "Band" selection list, select the band "V".
- 4. In the Mixer Settings, select "Conversion Loss: Table" for Range 1 to define frequency-dependent level correction.
- From the selection list, select a conversion loss table stored on the instrument. No further settings are necessary since the selected file contains all required parameters. If the selected table is not valid for the selected band, an error message is displayed.

If no conversion loss table is available yet, create a new table first (as described in "To define a new conversion loss table" on page 389).

- 6. A span is automatically set which covers the whole V band (50 to 75 GHz).
- Reduce the video bandwidth by selecting "BW > Video Bandwidth Manual"=1
 MHz. This allows for correct signal identification using the Auto ID function (see
 also "Automatic Signal Identification" on page 371).
- 8. Select "Basic Settings> Auto ID: On" to activate automatic signal identification.
- 9. Adapt the tolerance limit by selecting "Basic Settings> Auto ID Threshold". The tolerance limit is set to 5 dB in this example.

To take into account the cable loss in the IF path

On performing level correction, the conversion loss of the mixer and also the insertion loss a_0 of the cable used to tap off the IF signal are to be taken into account. This additional loss is frequency-dependent.

- 1. Determine the insertion of the cable at the used intermediate frequency.
- Increase each reference value in the conversion-loss table by the insertion loss (a₀).
 - a) Select "INPUT > Input Source Config > External Mixer > Conversion Loss Table".
 - b) Select the assigned conversion loss table.
 - c) Select "Edit Table".
 - d) Select "Shift y" and enter the insertion loss value $\langle a_0 \rangle$ to shift all y-values in the table by this value.
- 3. Select "Save".

6.2.6 Output Settings

Access: INPUT/OUTPUT > "Output"


The R&S FSW can provide output to special connectors for other devices.

For details on connectors, refer to the R&S FSW Getting Started manual, "Front / Rear Panel View" chapters.

Providing trigger signals as output is described in Chapter 6.6.4, "How to Output a Trigger Signal", on page 448.

Providing output for LISN control in EMI measurements is described in Chapter 5.13.4.3, "LISN Control Settings", on page 311.

IF/Video Output	392
IF (Wide) Out Frequency	
Noise Source	
Trigger 2/3	
L Output Type	394
L Level	
L Pulse Length	394
L Send Trigger	

IF/Video Output

Defines the type of signal available at the IF/VIDEO/DEMOD on the rear panel of the R&S FSW.

For restrictions and additional information, see Chapter 6.2.1.6, "IF and Video Signal Output", on page 324.

"IF"

The measured IF value is available at the IF/VIDEO/DEMOD output connector.

The frequency at which this value is available is defined in "IF (Wide) Out Frequency" on page 393.

"IF 2 GHz Out"

The measured IF value is provided at the IF OUT 2 GHZ output connector, if available, at a frequency of 2 GHz.

If the optional 2 GHz bandwidth extension (R&S FSW-B2000) option is installed and active, this is the *only* option available for IF output. When the B2000 option is activated, the basic IF OUT 2 GHZ output is automatically deactivated. It is not reactivated when the B2000 option is switched off.

option is switched off.

For details, see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

"VIDEO"

The displayed video signal (i.e. the filtered and detected IF signal) is available at the IF/VIDEO/DEMOD output connector.

This setting is required to provide demodulated audio frequencies at the output.

Remote command:

OUTPut:IF[:SOURce] on page 960
SYSTem:SPEaker:VOLume on page 961

IF (Wide) Out Frequency

Defines or indicates the frequency at which the IF signal level is provided at the IF/ VIDEO/DEMOD connector if IF/Video Output is set to "IF".

Note: The IF output frequency of the **IF WIDE OUTPUT** connector cannot be defined manually, but is determined automatically depending on the center frequency. It is indicated in this field when the IF WIDE OUTPUT connector is used. For details on the used frequencies, see the data sheet.

The IF WIDE OUTPUT connector is used automatically instead of the IF/VIDEO/DEMOD connector if the bandwidth extension (hardware option R&S FSW-B160 / - U160) is activated (i.e. for bandwidths > 80 MHz).

If the IF OUT 2 GHZ output or the **optional 2 GHz bandwidth extension (R&S FSW-B2000)** output is activated, the measured IF value is provided at a fixed frequency of 2 GHz.

For more information, see Chapter 6.2.1.6, "IF and Video Signal Output", on page 324.

OUTPut: IF: IFFRequency on page 960

Noise Source

Remote command:

This command turns the 28 V supply of the BNC connector labeled NOISE SOURCE CONTROL on the R&S FSW on and off.

External noise sources are useful when you are measuring power levels that fall below the noise floor of the R&S FSW itself, for example when measuring the noise level of a DUT.

Remote command:

DIAGnostic: SERVice: NSOurce on page 959

Trigger 2/3

Defines the usage of the variable TRIGGER INPUT/OUTPUT connectors, where:

"Trigger 2": TRIGGER INPUT/OUTPUT connector on the front panel

"Trigger 3": TRIGGER 3 INPUT/ OUTPUT connector on the rear panel (Trigger 1 is INPUT only.)

"Input" The signal at the connector is used as an external trigger source by

the R&S FSW. Trigger input parameters are available in the "Trigger"

dialog box.

"Output" The R&S FSW sends a trigger signal to the output connector to be

used by connected devices.

Further trigger parameters are available for the connector.

Remote command:

OUTPut:TRIGger<port>:DIRection on page 912

Output Type ← Trigger 2/3

Type of signal to be sent to the output

"Device Trig- (Default) Sends a trigger when the R&S FSW triggers.

gered"

"Trigger Sends a (high level) trigger when the R&S FSW is in "Ready for trig-

Armed" ger" state.

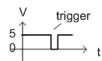
This state is indicated by a status bit in the STATus:OPERation register (bit 5), as well as by a low-level signal at the AUX port (pin 9). For details, see "STATus:OPERation Register" on page 661 and the

R&S FSW Getting Started manual.

"User Defined" Sends a trigger when you select the "Send Trigger" button.

In this case, further parameters are available for the output signal.

Remote command:


OUTPut:TRIGger<port>:OTYPe on page 912

Level ← **Output Type** ← **Trigger 2/3**

Defines whether a high (1) or low (0) constant signal is sent to the trigger output connector.

The trigger pulse level is always opposite to the constant signal level defined here. For example, for "Level = High", a constant high signal is output to the connector until you select the Send Trigger function. Then, a low pulse is provided.

low-level constant, high-level trigger

high-level constant, low-level trigger

Remote command:

OUTPut: TRIGger<port>: LEVel on page 912

Pulse Length ← Output Type ← Trigger 2/3

Defines the duration of the pulse (pulse width) sent as a trigger to the output connector.

Remote command:

OUTPut:TRIGger<port>:PULSe:LENGth on page 913

Send Trigger ← Output Type ← Trigger 2/3

Sends a user-defined trigger to the output connector immediately.

Note that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting. For example, for "Level = High", a constant high signal is output to the connector until you select the "Send Trigger" function. Then, a low pulse is sent.

Which pulse level will be sent is indicated by a graphic on the button.

Remote command:

OUTPut:TRIGger<port>:PULSe:IMMediate on page 913

6.3 Frequency and Span Configuration

The frequency and span settings define the scope of the signal and spectrum to be analyzed with the R&S FSW.

•	Impact of the Frequency and Span Settings	395
	Frequency and Span Settings	
	How To Define the Frequency Range	
	How to Move the Center Frequency through the Frequency Range	
	How to Keep the Center Frequency Stable.	

6.3.1 Impact of the Frequency and Span Settings

Some background knowledge on the impact of the described settings is provided here for a better understanding of the required configuration.

•	Defining the Scope of the Measurement - Frequency Range	395
	Stepping Through the Frequency Range - Center Frequency Stepsize	
•	Keeping the Center Frequency Stable - Signal Tracking	396
•	Coping with Large Frequency Ranges - Logarithmic Scaling	396

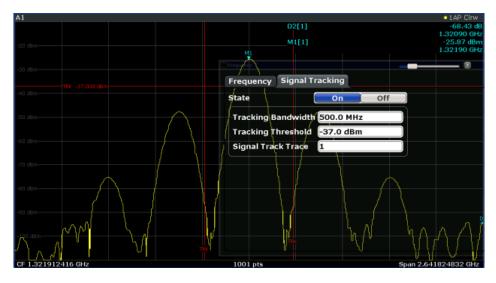
6.3.1.1 Defining the Scope of the Measurement - Frequency Range

The frequency range defines the scope of the signal and spectrum to be analyzed. It can either be defined as a span around a center frequency, or as a range from a start to a stop frequency. Furthermore, the full span comprising the entire possible frequency range can be selected, or a zero span. The full span option allows you to perform an overview measurement over the entire span. Using the "Last Span" function you can easily switch back to the detailed measurement of a specific frequency range.

For sinusoidal signals, the center frequency can be defined automatically by the R&S FSW as the highest frequency level in the frequency span (see "Adjusting the Center Frequency Automatically (Auto Freq)" on page 449).

6.3.1.2 Stepping Through the Frequency Range - Center Frequency Stepsize

Using the arrow keys you can move the center frequency in discrete steps through the available frequency range. The step size by which the center frequency is increased or decreased is defined by the "Center Frequency Stepsize".


The "Center Frequency Stepsize" also defines the step size by which the value is increased or decreased when you use the rotary knob to change the center frequency; however, the **rotary knob** moves in steps of only **1/10 of the "Center Frequency Stepsize"** to allow for a more precise setting.

By default, the step size is set in relation to the selected span or resolution bandwidth (for zero span measurements). In some cases, however, it may be useful to set the step size to other values.

For example, to analyze signal harmonics, you can define the step size to be equal to the center frequency. In this case, each stroke of the arrow key selects the center frequency of another harmonic. Similarly, you can define the step size to be equal to the current marker frequency.

6.3.1.3 Keeping the Center Frequency Stable - Signal Tracking

If the signal drifts on the display but you want to keep the center frequency on the signal peak, the center frequency can be adjusted automatically using **signal tracking**. In this case, the signal trace is surveyed in a specified bandwidth around the expected center frequency. After each sweep, the center frequency is set to the maximum signal found within the searched bandwidth. If no maximum signal above a defined threshold value is found in the searched bandwidth, the center frequency remains unchanged. The search bandwidth and the threshold value are shown in the diagram by red lines which are labeled as "TRK".

6.3.1.4 Coping with Large Frequency Ranges - Logarithmic Scaling

In a linear display, the frequencies are distributed linearly across the x-axis. That means the entire frequency range is divided by the number of sweep points, and the distance between sweep points is equal. Linear scaling is useful to determine precise frequencies within a small range.

Figure 6-21: Linear x-axis scaling: the distance between the sweep points is equal, e.g. 200 kHz

However, if high and low frequencies appear in the same display, it is difficult to determine individual frequencies precisely or to distinguish frequencies that are close together.

In a logarithmic display, lower frequencies are distributed among a much larger area of the display, while high frequencies are condensed to a smaller area. Now it is much easier to distinguish several lower frequencies, as they are spread over a wider area. Logarithmic scaling is useful for overview measurements when a large frequency range must be displayed in one diagram.

However, with logarithmic scaling, the frequency resolution between two sweep points deteriorates with higher frequencies.

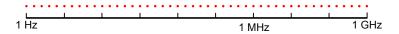
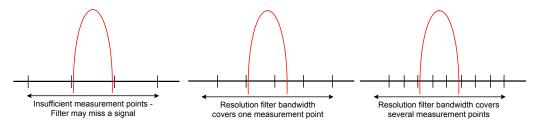
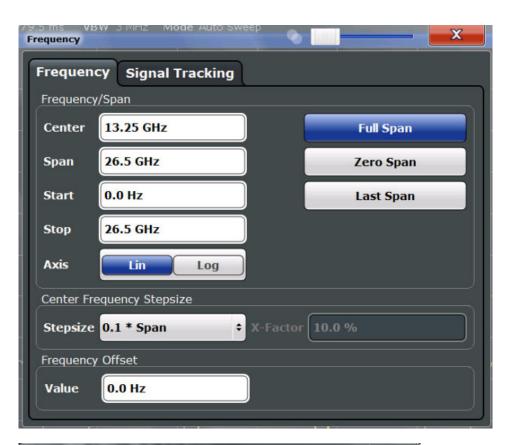



Figure 6-22: Logarithmic x-axis scaling: the distance between sweep points is variable

In the spectrum from 10 Hz to 100 Hz, the distance is a few Hz. Between 100 MHz and 1 GHz, the distance is several MHz.


Thus, for logarithmic x-axis scaling, the number of sweep points must be sufficiently high in order to distinguish high frequencies precisely. The resolution bandwidth should cover at least one sweep point (that means: the distance between two sweep points should not exceed the RBW). If this condition is not met, signals or interferers could be missed, especially narrowband interferers.

6.3.2 Frequency and Span Settings

Access: "Overview" > "Frequency" (> "Signal Tracking")

For more information see Chapter 6.3.3, "How To Define the Frequency Range", on page 402.

Center frequency	399
Span	
Start / Stop	
Frequency Axis Scaling	399
Full Span	

Zero Span	400
Last Span	400
Center Frequency Stepsize	
Frequency Offset	
Signal Tracking	401
L Signal Tracking State	
L Tracking Bandwidth	
L Tracking Threshold	
L Signal Track Trace	402

Center frequency

Defines the center frequency of the signal in Hertz.

The allowed range of values for the center frequency depends on the frequency span.

$$span > 0: span_{min}/2 \le f_{center} \le f_{max} - span_{min}/2$$

zero span: 0 Hz \leq f_{center} \leq f_{max}

 f_{max} and span_{min} depend on the instrument and are specified in the data sheet.

Remote command:

[SENSe:] FREQuency: CENTer on page 882

Span

Defines the frequency span. The center frequency is kept constant. The following range is allowed:

span = 0: 0 Hz

span >0:

 $span_{min} \le f_{span} \le f_{max}$

f_{max} and span_{min} are specified in the data sheet.

For more information see Chapter 6.3.1.1, "Defining the Scope of the Measurement - Frequency Range", on page 395.

Remote command:

[SENSe:] FREQuency: SPAN on page 884

Start / Stop

Defines the start and stop frequencies.

The following range of values is allowed:

$$f_{min} \le f_{start} \le f_{max} - span_{min}$$

$$f_{min} + span_{min} \le f_{stop} \le f_{max}$$

 f_{min} , f_{max} and span_{min} are specified in the data sheet.

Remote command:

[SENSe:] FREQuency:STARt on page 885 [SENSe:] FREQuency:STOP on page 885

Frequency Axis Scaling

Switches between linear and logarithmic scaling for the frequency axis.

By default, the frequency axis has linear scaling. Logarithmic scaling of the frequency axis, however, is common for measurements over large frequency ranges as it enhances the resolution of the lower frequencies. On the other hand, high frequencies get more crowded and become harder to distinguish.

For more information see Chapter 6.3.1.4, "Coping with Large Frequency Ranges - Logarithmic Scaling", on page 396.

Remote command:

DISPlay[:WINDow<n>]:TRACe:X:SPACing on page 881

Full Span

Sets the span to the full frequency range of the R&S FSW specified in the data sheet. This setting is useful for overview measurements.

Remote command:

[SENSe:] FREQuency:SPAN:FULL on page 884

Zero Span

Sets the span to 0 Hz (zero span). The x-axis becomes the time axis with the grid lines corresponding to 1/10 of the current sweep time ("SWT").

For details see Chapter 5.2, "Basic Measurements", on page 119.

Remote command:

FREQ:SPAN OHz, see [SENSe:] FREQuency:SPAN on page 884

Last Span

Sets the span to the previous value. With this function you can switch between an overview measurement and a detailed measurement quickly.

Remote command:

[SENSe:] FREQuency: SPAN on page 884

Center Frequency Stepsize

Defines the step size by which the center frequency is increased or decreased when the arrow keys are pressed. When you use the rotary knob the center frequency changes in steps of only 1/10 of the span.

The step size can be coupled to the span (span > 0) or the resolution bandwidth (span = 0), or it can be manually set to a fixed value.

For more details see Chapter 6.3.1.2, "Stepping Through the Frequency Range - Center Frequency Stepsize", on page 395.

"0.1 * Span / RBW"

Sets the step size for the center frequency to 10 % of the span / RBW.

This is the default setting.

"0.5 * Span / RBW"

Sets the step size for the center frequency to 50 % of the span / RBW.

"X * Span / RBW"

Sets the step size for the center frequency to a manually defined factor of the span / RBW. The "X-Factor" defines the percentage of the span / RBW.

span / Rovv.

Values between 1 and 100 % in steps of 1 % are allowed. The default

setting is 10 %.

"= Center" Sets the step size to the value of the center frequency and removes

the coupling of the step size to span or resolution bandwidth. The

used value is indicated in the "Value" field.

"= Marker" This setting is only available if a marker is active.

Sets the step size to the value of the current marker and removes the coupling of the step size to span or resolution bandwidth. The used

value is indicated in the "Value" field.

"Manual" Defines a fixed step size for the center frequency. Enter the step size

in the "Value" field.

Remote command:

```
[SENSe:] FREQuency:CENTer:STEP:LINK on page 883
[SENSe:] FREQuency:CENTer:STEP:LINK:FACTor on page 883
[SENSe:] FREQuency:CENTer:STEP on page 882
```

Frequency Offset

Shifts the displayed frequency range along the x-axis by the defined offset.

This parameter has no effect on the instrument's hardware, or on the captured data or on data processing. It is simply a manipulation of the final results in which absolute frequency values are displayed. Thus, the x-axis of a spectrum display is shifted by a constant offset if it shows absolute frequencies, but not if it shows frequencies relative to the signal's center frequency.

A frequency offset can be used to correct the display of a signal that is slightly distorted by the measurement setup, for example.

The allowed values range from -100 GHz to 100 GHz. The default setting is 0 Hz.

Remote command:

```
[SENSe:] FREQuency:OFFSet on page 884
```

Signal Tracking

Access: "Overview" > "Frequency" > "Signal Tracking" tab

Defines the settings for signal tracking. These settings are only available for spans > 0.

For more details see Chapter 6.3.1.3, "Keeping the Center Frequency Stable - Signal Tracking", on page 396.

Signal Tracking State ← Signal Tracking

Activates or deactivates signal tracking. This function is only available for spans > 0.

If activated, after each sweep, the center frequency is set to the maximum level of the specified trace found within the searched bandwidth.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe] on page 885
```

Tracking Bandwidth ← Signal Tracking

Defines the search bandwidth for signal tracking around the center frequency.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:BANDwidth on page 886

Tracking Threshold ← Signal Tracking

Defines the threshold value for signal tracking. If the signal level does not pass the threshold, the center frequency is not changed.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:THReshold on page 886

Signal Track Trace ← Signal Tracking

Defines the trace to be tracked.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:STRack:TRACe on page 886

6.3.3 How To Define the Frequency Range

The following step-by-step instructions demonstrate how to configure the frequency and span settings. For details on individual functions and settings see Chapter 6.3.2, "Frequency and Span Settings", on page 397.

The remote commands required to perform these tasks are described in Chapter 11.7.1, "Defining the Frequency and Span", on page 880.

To configure the frequency and span

Frequency and span settings can be configured via the "Frequency" dialog box. Signal tracking is configured in the "Signal Tracking" tab of this dialog box.

- 1. To display the "Frequency" dialog box, do one of the following:
 - Select "Frequency" from the "Overview".
 - Select the FREQ key and then the "Frequency Config" softkey.
 - Select the SPAN key and then the "Frequency Config" softkey.
- 2. Define the frequency range using one of the following methods:
 - Define the "Center frequency" and "Span".
 - Define the "Start frequency" and "Stop frequency".
 - To perform a measurement in the time domain, define the "Center frequency" and select the "Zero span" button.
 - To perform a measurement over the entire available frequency range, select the "Full span" button.
 - To return to the previously set frequency range, select the "Last span" button.

6.3.4 How to Move the Center Frequency through the Frequency Range

In some cases it may be useful to move the center frequency through a larger frequency range, for example from one harmonic to another.

- In the "Frequency" dialog box, define the "Center Frequency Stepsize". This is the
 size by which the center frequency is to be increased or decreased in each step.
 Enter a manual or relative value, or set the step size to the current center frequency or marker value. To move from one harmonic to the next, use the center
 frequency or marker value.
- 2. Select the "Center Frequency" dialog field.
- 3. Use the arrow keys to move the center frequency in discrete steps through the available frequency range.

6.3.5 How to Keep the Center Frequency Stable

If the signal is slightly instable on the display but you want to keep the center frequency on the signal peak, the center frequency can be adjusted automatically using **signal tracking**.

- 1. In the "Frequency" dialog box, select the "Signal Tracking" tab.
- 2. Define the following settings:
 - "Signal Tracking Bandwidth": the frequency range around the center frequency to be tracked
 - "Signal Tracking Threshold": the minimum level the trace must reach to be detected as a maximum
 - "Signal Tracking Trace": the trace to be tracked
- 3. Activate signal tracking by selecting "State: ON".

After each sweep, the center frequency is set to the maximum signal found within the searched bandwidth. If no maximum signal above the defined threshold value is found in the searched bandwidth, the center frequency remains unchanged. The search bandwidth and the threshold value are shown in the diagram by red lines which are labeled as "TRK".

6.4 Amplitude and Vertical Axis Configuration

In the Spectrum application, measurement results usually consist of the measured signal levels (amplitudes) displayed on the vertical (y-)axis for the determined frequency spectrum or for the measurement time (horizontal, x-axis). The settings for the vertical axis, regarding amplitude and scaling, are described here.

•	Impact of the Vertical Axis Settings	.404
•	Amplitude Settings	406
	Scaling the Y-Axis	
•	How to Optimize the Amplitude Display	412

6.4.1 Impact of the Vertical Axis Settings

Some background knowledge on the impact of the described settings is provided here for a better understanding of the required configuration.

•	Reference Level	404
•	RF Attenuation	405
•	Scaling	406

6.4.1.1 Reference Level

The reference level value is the maximum value the AD converter can handle without distortion of the measured value. Signal levels above this value will not be measured correctly, which is indicated by the "IF OVLD" status display.

Internally, the reference level is also used to determine the optimum hardware settings for the R&S FSW. The defined reference level should correspond with the maximum expected RF input level.

When determining the expected input level, consider that the power from *all* input signals contribute to the total power. The reference level must be higher than the total power from all signals.

The optimum reference level for the current measurement settings can be set automatically by the R&S FSW (see "Reference Level" on page 407).

The reference level determines the amplitude represented by the topmost grid line in the display. When you change the reference level, the measurement is not restarted; the results are merely shifted in the display. Only if the reference level changes due to a coupled RF attenuation (see "Attenuation Mode / Value" on page 409), the measurement is restarted.

In general, the R&S FSW measures the signal voltage at the RF input. The level display is calibrated in RMS values of an unmodulated sine wave signal. In the default state, the level is displayed at a power of 1 mW (= dBm). Via the known input impedance (50 Ω or 75 Ω , see "Impedance" on page 327), conversion to other units is possible.

Reference level offset

If the signal is attenuated or amplified before it is fed into the R&S FSW, you can define an (arithmetic) offset to the reference level so the application shows correct power results. All displayed power level results are shifted by this value, and the scaling of the y-axis is changed accordingly.

To determine the required offset, consider the external attenuation or gain applied to the input signal. For attenuation, define a positive offset so the R&S FSW increases the displayed power values.

If an external gain is applied, define a negative offset so the R&S FSW decreases the displayed power values.

Note, however, that the *internal* reference level (used to adjust the hardware settings to the expected signal optimally) ignores any "Reference Level Offset". Thus, it is important to keep in mind the actual power level the R&S FSW must handle, and not to rely on the displayed reference level.

internal reference level = displayed reference level - offset

Example

- The initial reference level is 2 dBm with no offset.
 Both the displayed reference level and the internal reference level are 2 dBm.
- 2. An offset of 3 dB is defined.

The displayed reference level is adjusted to 5 dBm. The internal reference level remains at 2 dBm. (5 dBm (displayed ref level) - 3 dB (offset) = 2 dBm)

3. Now the user decreases the reference level to 1 dBm.

The displayed reference level is adjusted to 1 dBm. The internal reference level is adjusted to: 1 dBm (displayed ref level) - 3 dB (offset) = -2 dBm.

6.4.1.2 RF Attenuation

The attenuation is meant to protect the input mixer from high RF input levels. The level at the input mixer is determined by the set RF attenuation according to the formula:

"level_{mixer} = level_{input} – RF attenuation"

The maximum mixer level allowed is 0 dBm. Mixer levels above this value may lead to incorrect measurement results, which is indicated by the "RF OVLD" status display. Furthermore, higher input levels may damage the instrument. Therefore, the required RF attenuation is determined automatically according to the reference level by default.

High attenuation levels also avoid intermodulation. On the other hand, attenuation must be compensated for by re-amplifying the signal levels after the mixer. Thus, high attenuation values cause the inherent noise (i.e the noise floor) to rise and the sensitivity of the analyzer decreases.

The sensitivity of a signal analyzer is directly influenced by the selected RF attenuation. The highest sensitivity is obtained at an RF attenuation of 0 dB. Each additional 10 dB step reduces the sensitivity by 10 dB, i.e. the displayed noise is increased by 10 dB. To measure a signal with an improved signal-to-noise ratio, decrease the RF attenuation.

For ideal sinusoidal signals, the displayed signal level is independent of the RF attenuation.

Depending on the type of measurement evaluation that is required, a compromise must be found between a low noise floor and high intermodulation levels, and protecting the instrument from high input levels. This is best done by letting the R&S FSW determine the optimum level automatically (see "Attenuation Mode / Value" on page 409).

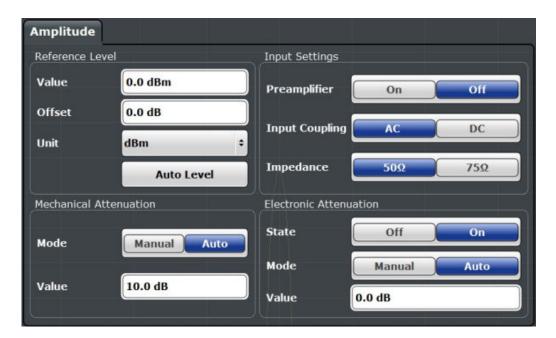
Electronic attenuation

If the optional electronic attenuation hardware is installed on the R&S FSW, you can also activate an electronic attenuator. For details see "Using Electronic Attenuation" on page 409.

6.4.1.3 Scaling

In a linear display, the measurement values are distributed linearly throughout the grid. That means the entire range of measured values is divided by the number of rows in the grid (10) and each row corresponds to 1/10 of the total range. Linear scaling is useful to determine precise levels for a small range of values. However, if large and small values appear in the same display, it is difficult to determine individual values precisely or to distinguish values that are close together.

In a logarithmic display, smaller values are distributed among a much larger area of the display, while large values are condensed to a smaller area. Now it is much easier to distinguish several lower values, as they are spread over a wider area. Logarithmic scaling is useful when large ranges of values must be combined in one display. Logarithmic scaling is best applied to measurement values in logarithmic units (dB, dBm etc.).


In addition to linear or logarithmic scaling, the vertical axis can be set to display either absolute or relative values. Absolute values show the measured levels, while relative values show the difference between the measured level and the defined reference level. Relative values are indicated in percent for linear scaling, and in dB for logarithmic scaling.

6.4.2 Amplitude Settings

Access: "Overview" > "Amplitude"

Amplitude settings determine how the R&S FSW must process or display the expected input power levels.

The remote commands required to define these settings are described in Chapter 11.7.3.1, "Amplitude Settings", on page 895.

Reference Level	407
L Shifting the Display (Offset)	408
L Unit.	
L Setting the Reference Level Automatically (Auto Level)	408
RF Attenuation	
L Attenuation Mode / Value	409
Using Electronic Attenuation	409
Input Settings	410
L Preamplifier	
Noise Cancelation	

Reference Level

Defines the expected maximum input signal level. Signal levels above this value may not be measured correctly, which is indicated by the "IF OVLD" status display ("OVLD" for analog baseband or digital baseband input).

The reference level can also be used to scale power diagrams; the reference level is then used as the maximum on the y-axis.

Since the hardware of the R&S FSW is adapted according to this value, it is recommended that you set the reference level close above the expected maximum signal level. Thus you ensure an optimum measurement (no compression, good signal-to-noise ratio).

For details, see Chapter 6.4.1.1, "Reference Level", on page 404.

Note that for input from the External Mixer (R&S FSW-B21) the maximum reference level also depends on the conversion loss, see "Reference level" on page 371.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel on page 896

Shifting the Display (Offset) ← Reference Level

Defines an arithmetic level offset. This offset is added to the measured level. In some result displays, the scaling of the y-axis is changed accordingly.

Define an offset if the signal is attenuated or amplified before it is fed into the R&S FSW so the application shows correct power results. All displayed power level results are shifted by this value.

The setting range is ±200 dB in 0.01 dB steps.

Note, however, that the *internal* reference level (used to adjust the hardware settings to the expected signal) ignores any "Reference Level Offset". Thus, it is important to keep in mind the actual power level the R&S FSW must handle. Do not rely on the displayed reference level (internal reference level = displayed reference level - offset).

For details, see "Reference level offset" on page 404.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet on page 897

Unit ← Reference Level

The R&S FSW measures the signal voltage at the RF input.

In the default state, the level is displayed at a power level of 1 mW (= dBm). Via the known input impedance (50 Ω or 75 Ω , see "Impedance" on page 327), conversion to other units is possible.

The following units are available and directly convertible:

- dBm
- dBmV
- dBµV
- dBµA
- dBpW
- Volt
- Ampere
- Watt

Remote command:

INPut: IMPedance on page 919

CALCulate<n>:UNIT:POWer on page 896

Setting the Reference Level Automatically (Auto Level) ← Reference Level

Automatically determines a reference level which ensures that no overload occurs at the R&S FSW for the current input data. At the same time, the internal attenuators and the preamplifier (for analog baseband input: the full scale level) are adjusted so the signal-to-noise ratio is optimized, while signal compression and clipping are minimized.

To determine the required reference level, a level measurement is performed on the R&S FSW

If necessary, you can optimize the reference level further. Decrease the attenuation level manually to the lowest possible value before an overload occurs, then decrease the reference level in the same way.

You can change the measurement time for the level measurement if necessary (see "Changing the Automatic Measurement Time (Meastime Manual)" on page 450).

Remote command:

[SENSe:] ADJust:LEVel on page 916

RF Attenuation

Defines the attenuation applied to the RF input of the R&S FSW.

Attenuation Mode / Value ← RF Attenuation

The RF attenuation can be set automatically as a function of the selected reference level (Auto mode). This ensures that no overload occurs at the RF INPUT connector for the current reference level. It is the default setting.

By default and when no (optional) electronic attenuation is available, mechanical attenuation is applied.

In "Manual" mode, you can set the RF attenuation in 1 dB steps (down to 0 dB). Other entries are rounded to the next integer value. The range is specified in the data sheet. If the defined reference level cannot be set for the defined RF attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is displayed.

NOTICE! Risk of hardware damage due to high power levels. When decreasing the attenuation manually, ensure that the power level does not exceed the maximum level allowed at the RF input, as an overload may lead to hardware damage.

For details, see Chapter 6.4.1.2, "RF Attenuation", on page 405.

Remote command:

INPut:ATTenuation on page 898
INPut:ATTenuation:AUTO on page 898

Using Electronic Attenuation

If the (optional) Electronic Attenuation hardware is installed on the R&S FSW, you can also activate an electronic attenuator.

In "Auto" mode, the settings are defined automatically; in "Manual" mode, you can define the mechanical and electronic attenuation separately.

Note: Electronic attenuation is not available for stop frequencies (or center frequencies in zero span) > 13.6 GHz.

In "Auto" mode, RF attenuation is provided by the electronic attenuator as much as possible to reduce the amount of mechanical switching required. Mechanical attenuation may provide a better signal-to-noise ratio, however.

When you switch off electronic attenuation, the RF attenuation is automatically set to the same mode (auto/manual) as the electronic attenuation was set to. Thus, the RF attenuation can be set to automatic mode, and the full attenuation is provided by the mechanical attenuator, if possible.

Both the electronic and the mechanical attenuation can be varied in 1 dB steps. Other entries are rounded to the next lower integer value.

For the R&S FSW85, the mechanical attenuation can be varied only in 10 dB steps.

If the defined reference level cannot be set for the given attenuation, the reference level is adjusted accordingly and the warning "Limit reached" is displayed in the status bar.

Remote command:

INPut:EATT:STATe on page 899
INPut:EATT:AUTO on page 899
INPut:EATT on page 898

Input Settings

Some input settings affect the measured amplitude of the signal, as well.

The parameters "Input Coupling" and "Impedance" are identical to those in the "Input" settings.

See Chapter 6.2.2, "Input Source Settings", on page 326.

Preamplifier ← Input Settings

If the (optional) Preamplifier hardware is installed, a preamplifier can be activated for the RF input signal.

You can use a preamplifier to analyze signals from DUTs with low output power.

For R&S FSW26 or higher models, the input signal is amplified by 30 dB if the preamplifier is activated.

For R&S FSW8 or 13 models, the following settings are available:

"Off" Deactivates the preamplifier.

"15 dB" The RF input signal is amplified by about 15 dB.

"30 dB" The RF input signal is amplified by about 30 dB.

Remote command:

INPut:GAIN:STATe on page 899
INPut:GAIN[:VALue] on page 900

Noise Cancelation

The R&S FSW can correct the results by removing the inherent noise of the analyzer, which increases the dynamic range.

In this case, a reference measurement of the inherent noise of the analyzer is carried out. The measured noise power is then subtracted from the power in the channel that is being analyzed (first active trace only).

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen. To enable the correction function after changing one of these settings, activate it again. A new reference measurement is carried out.

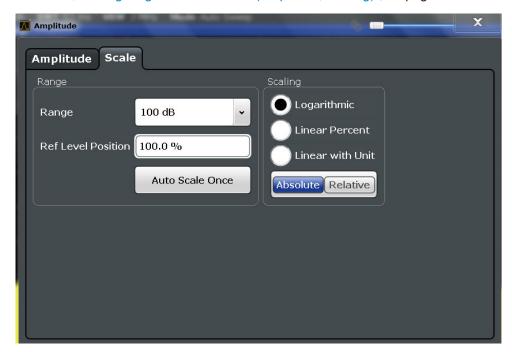
Noise cancellation is also available in zero span.

Currently, noise cancellation is only available for the following trace detectors (see "Detector" on page 479):

- RMS
- Average
- Sample
- Positive Peak

Remote command:

[SENSe:] POWer:NCORrection on page 897


6.4.3 Scaling the Y-Axis

The individual scaling settings that affect the vertical axis are described here.

Access: "Overview" > "Amplitude" > "Scale" tab

Or: AMPT > "Scale Config"

The remote commands required to define these settings are described in Chapter 11.7.3, "Configuring the Vertical Axis (Amplitude, Scaling)", on page 895.

Range	411
Ref Level Position	
Auto Scale Once	412
Scaling	412

Range

Defines the displayed y-axis range in dB.

The default value is 100 dB.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 900

Ref Level Position

Defines the reference level position, i.e. the position of the maximum AD converter value on the level axis in %, where 0 % corresponds to the lower and 100 % to the upper limit of the diagram.

For spectrograms, this value defines the position of the reference level value within the span covered by the color map. In this case, the value is given in %, where 0 % corresponds to the maximum (right end) and 100 % to the minimum (left end) of the color map.

Amplitude and Vertical Axis Configuration

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 902

Auto Scale Once

Automatically determines the optimal range and reference level position to be displayed for the current measurement settings.

The display is only set once; it is not adapted further if the measurement settings are changed again.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE on page 901

Scaling

Defines the scaling method for the y-axis.

For more information see Chapter 6.4.1.3, "Scaling", on page 406.

"Logarithmic" Logarithmic scaling (only available for logarithmic units - dB..., and A,

V, Watt)

"Linear Unit" Linear scaling in the unit of the measured signal

"Linear Per- Linear scaling in percentages from 0 to 100

cent"

"Absolute" The labeling of the level lines refers to the absolute value of the refer-

ence level (not available for "Linear Percent")

"Relative" The scaling is in dB, relative to the reference level (only available for

logarithmic units - dB...). The upper line of the grid (reference level) is

always at 0 dB.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 902
DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MODE on page 901
```

6.4.4 How to Optimize the Amplitude Display

This section gives you some advice on how to optimize the display of the measured signal amplitudes depending on the required evaluation.

- 1. Perform a measurement with the default settings to get an impression of the values to be expected.
- 2. Use the "Auto Level" function (AUTO menu) to optimize the reference level.
- 3. Use the "Auto Scale" function (AUTO menu) to optimize the scaling.
- 4. To determine a precise level at a specific point in the signal:
 - Reduce the "Range" of the y-axis to a small area around the required level. If necessary, change the "Ref Level Position" so the required range remains visible.
 - Select "Linear Unit" scaling.

Now you can set a marker at the point in question and read the result.

5. To detect a spurious signal close to the noise floor:

- Set the "RF attenuation" to "Manual" mode and reduce the "Value" to lower the noise floor.
- Select "Relative Logarithmic" scaling.

Now you can determine if any spurious levels of a certain size are visible.

6.5 Bandwidth, Filter and Sweep Configuration

The basic bandwidth, filter and sweep settings that apply to most measurements are described here. These parameters define how the data is measured: how much data is collected internally and which filters are used.

•	Impact of the Bandwidth, Filter and Sweep Settings	413
•	Bandwidth, Filter and Sweep Settings	419
•	Reference: List of Available RRC and Channel Filters	427

6.5.1 Impact of the Bandwidth, Filter and Sweep Settings

The bandwidth, filter and sweep settings are closely related and interdependant. The values available for resolution bandwidth and video bandwidth depend on the selected filter type. In addition, these settings have an impact on other measurement parameters. The following equation shows the interdependency of these settings:

$T_{\text{sweepMIN}} = K*Span/RBW^2$

where K = Filter constant

By default, a Gaussian filter is used. The resolution bandwidth, the video bandwidth and the sweep time are set automatically according to the set span, and default coupling is used. Thus, the following settings are applied:

RBW = 100 * Span

VBW = RBW = 100 * Span

Sweep time = T_{min} for set Span, RBW, VBW

When defining the bandwidth and filter settings, consider the impact of the individual settings on the other settings and the measurement result, as described in more detail in the following sections.

•	Separating Signals by Selecting an Appropriate Resolution Bandwidth	414
•	Smoothing the Trace Using the Video Bandwidth	414
•	Coupling VBW and RBW	415
•	Coupling Span and RBW	415
•	How Data is Measured: the Sweep Type	416
•	Which Data May Pass: Filter Types	417
•	How Long the Data is Measured: Sweep Time	418
	How Much Data is Measured: Sweep Points and Sweep Count	
•	How Often Data is Measured: Sweep Mode	419

6.5.1.1 Separating Signals by Selecting an Appropriate Resolution Bandwidth

The resolution bandwidth defines the 3 dB bandwidth of the resolution filter to be used. An RF sinusoidal signal is displayed according to the passband characteristic of the resolution filter (RBW), i.e. the signal display reflects the shape of the filter.

A basic feature of a signal analyzer is being able to separate the spectral components of a mixture of signals. The resolution at which the individual components can be separated is determined by the resolution bandwidth. Selecting a resolution bandwidth that is too large may make it impossible to distinguish between spectral components, i.e. they are displayed as a single component. Smaller resolution bandwidths, however, increase the required measurement time.

Two signals with the same amplitude can be resolved if the resolution bandwidth is smaller than or equal to the frequency spacing of the signal. If the resolution bandwidth is equal to the frequency spacing, the spectrum display screen shows a level drop of 3 dB precisely in the center of the two signals. Decreasing the resolution bandwidth makes the level drop larger, which thus makes the individual signals clearer.

The highest sensitivity is obtained at the smallest bandwidth (1 Hz). If the bandwidth is increased, the reduction in sensitivity is proportional to the change in bandwidth. Increasing the bandwidth by a factor of 3 increases the displayed noise by approx. 5 dB (4.77 dB precisely). If the bandwidth is increased by a factor of 10, the displayed noise increases by a factor of 10, i.e. 10 dB.

If there are large level differences between signals, the resolution is determined by selectivity as well as by the resolution bandwidth that has been selected. The measure of selectivity used for signal analyzers is the ratio of the 60 dB bandwidth to the 3 dB bandwidth (= shape factor).

For the R&S FSW, the shape factor for bandwidths is < 5, i.e. the 60 dB bandwidth of the 30 kHz filter is <150 kHz.

The higher spectral resolution with smaller bandwidths is won by longer sweep times for the same span. The sweep time has to allow the resolution filters to settle during a sweep at all signal levels and frequencies to be displayed.

If the RBW is too large, signal parts that are very far away (e.g. from a different signal) are considered in the measurement and distort the results. The noise increases.

If the RBW is too small, parts of the signal are lost. As the displayed signal always reflects the shape of the filter, select a bandwidth large enough so the displayed signal reflects the entire shape of the filter.

6.5.1.2 Smoothing the Trace Using the Video Bandwidth

The video filters are responsible for smoothing the displayed trace. Using video bandwidths that are small compared to the resolution bandwidth, only the signal average is displayed and noise peaks and pulsed signals are repressed. If pulsed signals are to be measured, it is advisable to use a video bandwidth that is large compared to the resolution bandwidth (VBW = $10 \times RBW$) for the amplitudes of pulses to be measured correctly.

The level of a sine wave signal is not influenced by the video bandwidth. A sine wave signal can therefore be freed from noise by using a video bandwidth that is small compared with the resolution bandwidth, and thus be measured more accurately.

RMS/Average detector and VBW

If an RMS or average detector is used, the video bandwidth in the hardware is bypassed. Thus, duplicate trace averaging with small VBWs and RMS or average detector no longer occurs. However, the VBW is still considered when calculating the sweep time. This leads to a longer sweep time for small VBW values. Thus, you can reduce the VBW value to achieve more stable trace curves even when using an RMS or average detector. Normally, if the RMS or average detector is used the sweep time should be increased to get more stable traces.

6.5.1.3 Coupling VBW and RBW

The video bandwidth can be coupled to the resolution bandwidth automatically. In this case, if the resolution bandwidth is changed, the video bandwidth is automatically adjusted.

Coupling is recommended if a minimum sweep time is required for a selected resolution bandwidth. Narrow video bandwidths require longer sweep times due to the longer settling time. Wide bandwidths reduce the signal/noise ratio.

Table 6-1: Overview of RBW/VBW ratios and recommendations for use

Ratio RBW/VBW	Recommendation for use	
1/1	Recommended for sinusoidal signals This is the default setting for automatic coupling.	
0.1	Recommended when the amplitudes of pulsed signals are to be measured correctly. The IF filter is exclusively responsible for the pulse shape. No additional evaluation is performed by the video filter.	
10	Recommended to suppress noise and pulsed signals in the video domain.	
Manually set (0.001 to 1000)	Recommended for other measurement requirements	

6.5.1.4 Coupling Span and RBW

The resolution bandwidth can be coupled to the span setting, either by a manually defined factor or automatically. If the span is changed, the resolution bandwidth is automatically adjusted. The automatic coupling adapts the resolution bandwidth to the currently set frequency span/100.

The 6 dB bandwidths 200 Hz, 9 kHz and 120 kHz and the available channel filters are not changed by the coupling.

With a span/RBW ratio of 100 and a screen resolution of 1000 pixels, each frequency in the spectrum is displayed by 10 pixels. A span/RBW ratio of 1000 provides the highest resolution.

A higher span/RBW ratio (i.e. low RBW values and large frequency spans), however, results in large amounts of data.

6.5.1.5 How Data is Measured: the Sweep Type

In a standard analog **frequency sweep**, the local oscillator of the analyzer sweeps the applied signal quasi analog from the start to the stop frequency to determine the frequency spectrum.

Alternatively, the analyzer can sample signal levels over time at a defined frequency and transform the data to a spectrum by Fast Fourier Transformation (**FFT**). Although this measurement method requires additional calculations, it can provide results much faster than the frequency sweep, in particular for small RBWs.

Which sweep mode is appropriate for the current measurement depends on the span, RBW, VBW and sweep time settings. By default ("Auto" sweep type), the R&S FSW automatically uses the sweep type with the highest sweep rate depending on these measurement settings.

Restrictions for FFT mode

FFT mode is not available when using 5-Pole filters, Channel filters or RRC filters, or the Quasi peak detector. In this case, sweep mode is used.

The same applies when an external generator is active (with the optional External Generator Control).

Optimization

In FFT mode, FFT analysis is performed to determine a spectrum of frequencies. Several analysis steps are required to cover the entire span. The partial span which is covered by one FFT analysis depends on the RBW. The partial span cannot be defined directly, but it can be optimized according to measurement requirements.

Narrow partial spans provide a higher dynamic range, and also allow you to perform measurements near a carrier with a reduced reference level. With a wide partial span, the carrier and the useful signal are likely to be measured at the same time, in which case the powers of both signals are summarized, so the reference level must be high enough to consider this factor. With a narrow partial span, this is less likely to happen, so the reference level can be reduced.

For an optimal dynamic range, the narrowest possible partial span (depending on the RBW) is used. Furthermore, the autorange function for the internal IF gain calculation is activated to obtain the best control range of the A/D converter.

On the other hand, the narrower the partial span, the more steps are required to cover the entire span, thus increasing analysis and calculation time. To **optimize the sweep rate**, the widest possible partial span (depending on the RBW) is used.

For an optimal sweep rate, it is recommended that you set the sweep time to "Auto", as well.

For general purpose measurements, an "Auto" mode is available, which provides a **compromise between a large dynamic range and a fast sweep**. In this case, a medium-sized partial span is used.

FFT mode and external mixers (R&S FSW-B21)

The partial span optimation modes "Dynamic" and "Auto" include automatic suppression of unwanted mixing products. Thus, when using external mixers (R&S FSW-B21), use the "Speed" mode to obtain similar results in FFT mode as in normal sweep mode.

FFT mode and EMI measurements (R&S FSW-K54)

For EMI measurements (using R&S FSW-K54), the partial span optimation mode "Dynamic" is not supported. "Auto" mode always uses "Speed" optimization.

Optimization for zero span sweeps

For normal sweeps in the time domain (zero span), the optimization mode determines the selection of the A/D converter prefilter, which depends on the RBW.

In "Dynamic" mode, the narrowest possible prefilter is used.

In "Speed" mode, the widest possible prefilter is used.

In "Auto" mode, a medium-sized prefilter is used.

6.5.1.6 Which Data May Pass: Filter Types

While the filter is irrelevant when measuring individual narrowband signals (as long as the signal remains within the RBW), the measurement result for broadband signals is very dependant on the selected filter type and its shape. If the filter is too narrow, the signal is distorted by the filter. If the filter is too wide, multiple signals can no longer be distinguished. Generally, the smaller the filter width and the steeper its edges, the longer the settling time and thus the longer the sweep time must be.

All resolution bandwidths are realized with digital filters. Normal (3dB) Gaussian filters are set by default. Some communication standards require different filters.

For a list of available filter types, see Chapter 6.5.3, "Reference: List of Available RRC and Channel Filters", on page 427.

Normal (3 dB) Gaussian filters

Gaussian filters provide a good compromise between steep edges and a short settling time. This filter is suitable for most measurement tasks and is used by default.

The available Gaussian (3 dB) sweep filters are listed in the R&S FSW data sheet.

Channel filters

Channel filters are fairly steep but require a long settling time; they are useful for pulse measurements in the time domain.

RRC filters

Root raised cosine filters are similar in shape to channel filters and are required by some measurement standards.

5-Pole filters

5-Pole filters are very broad and allow for a large bandwidth to pass.

6.5.1.7 How Long the Data is Measured: Sweep Time

Each filter has a settling time that must be awaited in order to obtain correct results. Since the resolution bandwidth and video bandwidth define the filter, the smaller of the two determines the minimum sweep time required for the measurement. Allowed values depend on the ratio of span to RBW and RBW to VBW.

If the selected sweep time is too short for the selected bandwidth and span, level measurement errors will occur. In this case, the R&S FSW displays the error message "Sweep time too low" and marks the indicated sweep time with a red bullet. Furthermore, a status bit indicates an error.

(For more information see "STATus:QUEStionable:TIMe Register" on page 668.)

The sweep time can be coupled to the span (not zero span), video bandwidth (VBW) and resolution bandwidth (RBW) automatically. If the span, resolution bandwidth or video bandwidth is changed, the sweep time is automatically adjusted.

Note that the sweep time only indicates how long data is captured; the time required to process the captured data may be considerably longer, in particular for FFT sweeps. For FFT sweeps, an estimated duration is indicated behind the sweep time in the channel bar (in the Spectrum application only).

6.5.1.8 How Much Data is Measured: Sweep Points and Sweep Count

By default, 1001 data points are determined in a single sweep. During the next sweep, 1001 new data points are collected, and so on. The number of **sweep points** defines how much of the entire span is covered by a single data point. By increasing the number of sweep points you can increase the reliability of the individual data points and thus the accuracy of the analyzed results. However, these data points are all stored on the instrument, occupying a large amount of memory, and each sweep point increases the overall measurement time. Up to 200 000 points can be swept at once.

The number of sweeps to be performed in single sweep mode is defined by the "Sweep Count". Values from 0 to 200000 are allowed. If the values 0 or 1 are set, one sweep is performed. The sweep count is applied to all the traces in a diagram.

If the trace configurations "Average", "Max Hold" or "Min Hold" are set, the "sweep/ average count" also determines the number of averaging or maximum search procedures (see Chapter 7.3.1.2, "Analyzing Several Traces - Trace Mode", on page 467).

For details on how the number of sweep points and the sweep count affect the trace results on the screen, see Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464.

6.5.1.9 How Often Data is Measured: Sweep Mode

How often the spectrum is swept depends on the sweep mode. Either a certain number of sweeps can be defined ("Sweep Count") which are performed in "Single Sweep" mode, or the sweep is repeated continuously ("Continuous Sweep" mode).

By default, the data is collected for the specified number of sweeps and the corresponding trace is displayed. When the next sweep is started, the previous trace is deleted.

However, the data from a single sweep run can also be retained and displayed together with the new data ("Continue Single Sweep" mode). This is particularly of interest when using the trace configurations "Average" or "Max Hold" to take previously recorded measurements into account for averaging/maximum search (see Chapter 7.3.1.2, "Analyzing Several Traces - Trace Mode", on page 467).

6.5.2 Bandwidth, Filter and Sweep Settings

Access: "Overview" > "Bandwidth"

The remote commands required to define these settings are described in Chapter 11.7.2, "Configuring Bandwidth and Sweep Settings", on page 887.

How to perform a basic sweep measurement is described in Chapter 5.2.1, "How to Perform a Basic Sweep Measurement", on page 119.

Figure 6-23: Bandwidth dialog box

Figure 6-24: Sweep dialog box for spectrogram display

RBW	421
VBW	421
Sweep Time	421
Span/RBW	422
RBW/VBW	422
Filter Type	422
Default Coupling	423
Sweep / Average Count	423
Sweep Points	424
Optimization	424
Sweep Type	425
Single Sweep/ RUN SINGLE	425
Continuous Sweep/RUN CONT	426
Continue Single Sweep	426
Spectrogram Frames	426
L Selecting a frame to display	426
L Continue Frame	427
L Frame Count	427
L Clear Spectrogram	

RBW

Defines the resolution bandwidth. The available resolution bandwidths are specified in the data sheet. Numeric input is always rounded to the nearest possible bandwidth.

If "AUTO" is selected, the resolution bandwidth is coupled to the selected span (for span > 0). If the span is changed, the resolution bandwidth is automatically adjusted.

If the resolution bandwidth is defined manually, a green bullet is displayed next to the "RBW" display in the channel bar.

For more information see Chapter 6.5.1.1, "Separating Signals by Selecting an Appropriate Resolution Bandwidth", on page 414.

For measurements on I/Q data in the frequency domain, the maximum RBW is 1 MHz.

For EMI measurements using the quasipeak detector, the 1 MHz RBW filter is not available (see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297).

Remote command:

```
[SENSe:]BANDwidth[:RESolution] on page 887
[SENSe:]BANDwidth[:RESolution]:AUTO on page 888
```

VBW

Defines the video bandwidth automatically or manually.

For more information see Chapter 6.5.1.2, "Smoothing the Trace Using the Video Bandwidth", on page 414.

"Auto" The video bandwidth is coupled to the resolution bandwidth. If the

resolution bandwidth is changed, the video bandwidth is automatically

adjusted.

"Manual" For manual mode, define the bandwidth value. The available video

bandwidths are specified in the data sheet. Numeric input is always

rounded to the nearest possible bandwidth.

If the video bandwidth is defined manually, a green bullet is displayed

next to the "VBW" display in the channel bar.

Remote command:

```
[SENSe:]BANDwidth:VIDeo:AUTO on page 889 [SENSe:]BANDwidth:VIDeo on page 889
```

Sweep Time

Defines the duration of a single sweep, during which the defined number of sweep points are measured. The sweep time can be defined automatically or manually.

The allowed sweep times depend on the device model; refer to the data sheet.

For more information see Chapter 6.5.1.7, "How Long the Data is Measured: Sweep Time", on page 418.

Note: The sweep time only indicates how long data is captured; the time required to process the captured data may be considerably longer, in particular for FFT sweeps. For FFT sweeps, an estimated duration is indicated behind the sweep time in the channel bar (in the Spectrum application only).

"Auto" The sweep time is coupled to the span (not zero span), video band-

width (VBW) and resolution bandwidth (RBW). If the span, resolution bandwidth or video bandwidth is changed, the sweep time is automat-

ically adjusted.

"Manual" For manual mode, define the sweep time. Allowed values depend on

the ratio of span to RBW and RBW to VBW. For details refer to the data sheet. Numeric input is always rounded to the nearest possible

sweep time.

Remote command:

```
[SENSe:]SWEep:TIME:AUTO on page 894
[SENSe:]SWEep:TIME on page 893
[SENSe:]SWEep:DURation? on page 891
```

Span/RBW

Sets the coupling ratio if RBW is set to auto mode.

For more information see Chapter 6.5.1.4, "Coupling Span and RBW", on page 415.

"Auto [100]" "resolution bandwidth = span/100"

This coupling ratio is the default setting of the R&S FSW.

"Manual" The coupling ratio is defined manually.

The span/resolution bandwidth ratio can be set in the range from 1 to

10000.

Remote command:

```
[SENSe:]BANDwidth[:RESolution]:RATio on page 888
```

RBW/VBW

Sets the coupling ratio between the resolution bandwidth and the video bandwidth.

This setting is only effective if VBW is set to auto mode.

For more information see Chapter 6.5.1.3, "Coupling VBW and RBW", on page 415.

"Sine [1/1]" "video bandwidth = resolution bandwidth"

This is the default setting for the coupling ratio RBW/VBW and is rec-

ommended if sinusoidal signals are to be measured.

"Pulse [.1]" "video bandwidth = 10 × resolution bandwidth"

or

"video bandwidth = 10 MHz (= max. VBW)"

Recommended for pulse signals

"Noise [10]" "video bandwidth = resolution bandwidth/10"

Recommended for noise measurements

"Manual" The coupling ratio is defined manually.

The RBW/VBW ratio can be set in the range of 0.001 to 1000.

Remote command:

```
[SENSe:]BANDwidth:VIDeo:AUTO on page 889 [SENSe:]BANDwidth:VIDeo:RATio on page 890
```

Filter Type

Defines the filter type.

The following filter types are available:

- Normal (3dB)
- Channel
- RRC
- 5-Pole (not available for sweep type "FFT")
- CISPR (6 dB) requires EMI (R&S FSW-K54) option
- MIL Std (6 dB) requires EMI (R&S FSW-K54) option

For more information see Chapter 6.5.1.6, "Which Data May Pass: Filter Types", on page 417.

Note: The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

The RBW filter configured in the bandwidth settings is identical to the filter configured in the EMI configuration.

Remote command:

```
[SENSe:]BANDwidth[:RESolution]:TYPE on page 888
```

Default Coupling

Sets all coupled functions to the default state ("AUTO"). In addition, the ratio "RBW/VBW" is set to "SINE [1/1]" and the ratio "SPAN/RBW" to 100.

For more information see Chapter 6.5.1.3, "Coupling VBW and RBW", on page 415.

Remote command:

```
[SENSe:]BANDwidth[:RESolution]:AUTO on page 888
[SENSe:]BANDwidth:VIDeo:AUTO on page 889
[SENSe:]SWEep:TIME:AUTO on page 894
```

Sweep / Average Count

Defines the number of sweeps to be performed in the single sweep mode. Values from 0 to 200000 are allowed. If the values 0 or 1 are set, one sweep is performed.

The sweep count is applied to all the traces in all diagrams.

If the trace modes "Average", "Max Hold" or "Min Hold" are set, this value also determines the number of averaging or maximum search procedures.

In continuous sweep mode, if sweep count = 0 (default), averaging is performed over 10 sweeps. For sweep count =1, no averaging, maxhold or minhold operations are performed.

For more information, see Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418.

For spectrogram displays, the sweep count determines how many sweeps are combined in one frame in the spectrogram; that is: how many sweeps the R&S FSW performs to plot one trace in the spectrogram result display. For more details, see "Time Frames" on page 472.

Remote command:

```
[SENSe:]SWEep:COUNt on page 891
[SENSe:]AVERage<n>:COUNt on page 968
```

Sweep Points

Defines the number of measured values to be collected during one sweep.

For details see Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418.

All values from 101 to 100001 can be set. The default value is 1001 sweep points.

For EMI measurements, 200001 sweep points are available.

Remote command:

[SENSe:] SWEep:POINts on page 893

Optimization

In FFT mode, several FFT analysis steps are required to cover the entire measurement span. The span which is covered by one FFT analysis step is called *partial span*. The partial span cannot be defined directly, but it can be optimized according to measurement requirements.

Table 6-2: Optimization parameters in FFT mode

Optimization mode	Description
Dynamic	Optimizes the dynamic range by using the narrowest possible partial span (depending on the RBW).
	The autorange function for the internal IF gain calculation is activated to obtain the best control range for the A/D converter.
Speed	Optimizes the sweep rate by using the widest possible partial span (depending on the RBW).
	The autorange function for the internal IF gain calculation is deactivated. (Note: set the reference level accordingly to optimize the control range for the A/D converter).
	It is recommended that you set the Sweep Time to "Auto" to optimize the sweep rate.
Auto	Uses a medium-sized partial span to obtain a compromise between a large dynamic range and a fast sweep rate.
	The autorange function for the internal IF gain calculation is activated to obtain the best control range for the A/D converter.

Note: FFT mode and external mixers (R&S FSW-B21)

The partial span optimization modes "Dynamic" and "Auto" include automatic suppression of unwanted mixing products. Thus, when using external mixers (R&S FSW-B21), use the "Speed" mode to obtain similar results in FFT mode as in frequency sweep mode.

Zero span mode

For zero span measurements, the optimization mode defines the selection of the A/D converter prefilter.

Table 6-3: Optimization parameters in zero span mode

Optimization mode	Description
Dynamic	The narrowest filter possible (depending on the RBW) is used.
Speed	The widest filter possible (depending on the RBW) is used.
Auto	A medium-sized prefilter is used.

Note: EMI measurements

For EMI measurements (using R&S FSW-K54), "Dynamic" mode is not supported. "Auto" mode always uses "Speed" optimization.

Remote command:

[SENSe:]SWEep:OPTimize on page 892

Sweep Type

Defines the sweep type.

"Sweep" In the standard sweep mode, the local oscillator is set to provide the

spectrum quasi analog from the start to the stop frequency.

"Auto" Automatically sets the fastest available sweep type for the current

measurement (Frequency or FFT). Auto mode is set by default.

"FFT" The FFT sweep samples on a defined frequency value and trans-

forms it to the spectrum by fast Fourier transformation (FFT) (see also Chapter 6.5.1.5, "How Data is Measured: the Sweep Type",

on page 416).

FFT is not available in the following cases:

- when using 5-Pole filters, Channel filters or RRC filters
- when using the Quasi peak detector
- when an external generator is active (via hardware option)

In these cases, frequency sweep is used.

Remote command:

[SENSe:] SWEep:TYPE on page 894

Single Sweep/ RUN SINGLE

After triggering, starts the number of sweeps set in "Sweep Count". The measurement stops after the defined number of sweeps has been performed.

While the measurement is running, the "Single Sweep" softkey and the RUN SINGLE key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again.

Note: Sequencer. If the Sequencer is active, the "Single Sweep" softkey only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, the Sequencer sweeps a channel in single sweep mode only once.

Furthermore, the RUN SINGLE key controls the Sequencer, not individual sweeps. RUN SINGLE starts the Sequencer in single mode.

If the Sequencer is off, only the evaluation for the currently displayed measurement channel is updated.

For details on the Sequencer, see Chapter 4.4.1, "The Sequencer Concept", on page 110.

Remote command:

INITiate<n>[:IMMediate] on page 729
CALCulate<n>:SPECtrogram:CONT on page 972

Continuous Sweep/RUN CONT

After triggering, starts the sweep and repeats it continuously until stopped. This is the default setting.

While the measurement is running, the "Continuous Sweep" softkey and the RUN CONT key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again. The results are not deleted until a new measurement is started.

Note: Sequencer. If the Sequencer is active, the "Continuous Sweep" softkey only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, a channel in continuous sweep mode is swept repeatedly.

Furthermore, the RUN CONT key controls the Sequencer, not individual sweeps. RUN CONT starts the Sequencer in continuous mode.

For details on the Sequencer, see Chapter 4.4.1, "The Sequencer Concept", on page 110.

Remote command:

INITiate<n>:CONTinuous on page 728

Continue Single Sweep

After triggering, repeats the number of sweeps set in "Sweep Count", without deleting the trace of the last measurement.

While the measurement is running, the "Continue Single Sweep" softkey and the RUN SINGLE key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again.

Remote command:

INITiate<n>:CONMeas on page 727

Spectrogram Frames

These settings are only available if spectrogram display is active.

For more information see Chapter 7.3.3.2, "How to Display and Configure a Spectrogram", on page 491.

Selecting a frame to display ← Spectrogram Frames

Selects a specific frame, loads the corresponding trace from the memory, and displays it in the Spectrum window.

Note that activating a marker or changing the position of the active marker automatically selects the frame that belongs to that marker.

This function is only available in single sweep mode or if the sweep is stopped, and only if a spectrogram is selected.

The most recent frame is number 0, all previous frames have a negative number.

For more details see "Time Frames" on page 472.

Remote command:

CALCulate<n>:SPECtrogram:FRAMe:SELect on page 973

Continue Frame ← Spectrogram Frames

Determines whether the results of the previous sweeps are included in the analysis of the next sweeps for trace modes "Max Hold", "Min Hold", and "Average".

This function is available in single sweep mode only.

On

When the average or peak values are determined for the new sweep, the results of the previous sweeps in the spectrogram are also taken into account.

Off

The average or peak values are determined from the results of the newly swept frames only.

Remote command:

CALCulate<n>:SPECtrogram:CONT on page 972

Frame Count ← Spectrogram Frames

Determines how many frames are plotted during a single sweep measurement (as opposed to a continuous sweep). The maximum number of possible frames depends on the history depth (see "History Depth" on page 487).

For more details see "Time Frames" on page 472.

Remote command:

CALCulate<n>:SPECtrogram:FRAMe:COUNt on page 972

Clear Spectrogram ← Spectrogram Frames

Resets the spectrogram result display and clears the history buffer.

This function is only available if a spectrogram is selected.

Remote command:

CALCulate<n>:SPECtrogram:CLEar[:IMMediate] on page 972

6.5.3 Reference: List of Available RRC and Channel Filters

For power measurement a number of especially steep-edged channel filters are available (see the following table). The indicated filter bandwidth is the 3 dB bandwidth. For RRC filters, the fixed roll-off factor (a) is also indicated.

The available Gaussian 3 dB sweep filters are listed in the R&S FSW data sheet.

Table 6-4: Filter types

Filter Bandwidth	Filter Type	Application
100 Hz	CFILter	
200 Hz	CFILter	
300 Hz	CFILter	
500 Hz	CFILter	

Filter Bandwidth	Filter Type	Application
1 kHz	CFILter	
1.5 kHz	CFILter	
2 kHz	CFILter	
2.4 kHz	CFILter	SSB
2.7 kHz	CFILter	
3 kHz	CFILter	
3.4 kHz	CFILter	
4 kHz	CFILter	DAB, Satellite
4.5 kHz	CFILter	
5 kHz	CFILter	
6 kHz	CFILter	
6 kHz, a=0.2	RRC	APCO
8.5 kHz	CFILter	ETS300 113 (12.5 kHz channels)
9 kHz	CFILter	AM Radio
10 kHz	CFILter	
12.5 kHz	CFILter	CDMAone
14 kHz	CFILter	ETS300 113 (20 kHz channels)
15 kHz	CFILter	
16 kHz	CFILter	ETS300 113 (25 kHz channels)
18 kHz, a=0.35	RRC	TETRA
20 kHz	CFILter	
21 kHz	CFILter	PDC
24.3 kHz, a=0.35	RRC	IS 136
25 kHz	CFILter	APCO 25-P2
30 kHz	CFILter	CDPD, CDMAone
50 kHz	CFILter	
100 kHz	CFILter	
150 kHz	CFILter	FM Radio
192 kHz	CFILter	PHS
200 kHz	CFILter	GSM
300 kHz	CFILter	

Filter Bandwidth	Filter Type	Application
500 kHz	CFILter	J.83 (8-VSB DVB, USA); RF ID 14333
1 MHz	CFILter	CDMAone
1.228 MHz	CFILter	CDMAone
1.28 MHz, a=0.22	RRC	TD-SCDMA
1.5 MHz	CFILter	DAB
2 MHz	CFILter	
3 MHz	CFILter	
3.75 MHz	CFILter	
3.84 MHz, a=0.22	RRC	W-CDMA 3GPP
4.096 MHz, a=0.22	RRC	W-CDMA NTT DOCoMo
5 MHz	CFILter	
10 MHz *)	CFILter	
20 MHz *)	CFILter	
28 MHz *)	CFILter	
40 MHz *)	CFILter	
80 MHz *)	CFILter	

^{*)} These filters are only available with option R&S FSW-B8 (Resolution Bandwidths > 10 MHz).

Filters larger than 10 MHz require an appropriate bandwidth extension option.

6.6 Trigger and Gate Configuration

Triggering means to capture the interesting part of the signal. Choosing the right trigger type and configuring all trigger settings correctly allows you to detect various incidents in your signals.

Gating allows you to restrict measurement analysis to the important part or parts of the signal, for example bursts.

•	Basics of Triggering and Gated Measurements	429
	Trigger and Gate Settings	
	How to Configure a Triggered and Gated Measurement	
	How to Output a Trigger Signal	

6.6.1 Basics of Triggering and Gated Measurements

Some background knowledge on triggering and gated measurements is provided here for a better understanding of the required configuration settings.

•	Triggered Measurements	430
•	Gated Measurements	433
•	Determining the Parameters in Preview Mode	436

6.6.1.1 Triggered Measurements

In a basic measurement with default settings, the sweep is started immediately. However, sometimes you want the measurement to start only when a specific condition is fulfilled, for example a signal level is exceeded, or in certain time intervals. For these cases you can define a trigger for the measurement. In FFT sweep mode, the trigger defines when the data acquisition starts for the FFT conversion.

An "Offset" can be defined to delay the measurement after the trigger event, or to include data before the actual trigger event in time domain measurements (pre-trigger offset).

For complex tasks, advanced trigger settings are available:

- Hysteresis to avoid unwanted trigger events caused by noise
- Holdoff to define exactly which trigger event will cause the trigger in a jittering signal

•	Trigger Source	. 430
	Trigger Offset	
	Trigger Hysteresis	
	Trigger Drop-Out Time	
	Trigger Holdoff	

Trigger Source

The trigger source defines which source must fulfill the condition that triggers the measurement. Basically, this can be:

- Time: the measurement is repeated in a regular interval
- Power: an input signal is checked for a defined power level The trigger signal can be any of the following:
 - The input signal at one of various stages in the signal analysis process before or after the input mixer, after the video filter etc.
 - A signal from an external device via one of the TRIGGER INPUT / OUTPUT connectors on the instrument
 - A signal from a power sensor, see "Using a Power Sensor as an External Power Trigger" on page 331.

For details on the available trigger sources see "Trigger Source" on page 438.

Trigger Offset

An offset can be defined to delay the measurement after the trigger event, or to include data before the actual trigger event in time domain measurements (pre-trigger offset). Pre-trigger offsets are possible because the R&S FSW captures data continuously in the time domain, even before the trigger occurs.

See "Trigger Offset" on page 442.

Trigger Hysteresis

Setting a hysteresis for the trigger helps avoid unwanted trigger events caused by noise, for example. The hysteresis is a threshold to the trigger level that the signal must fall below on a rising slope or rise above on a falling slope before another trigger event occurs.

Example:

In the following example, the second possible trigger event is ignored as the signal does not exceed the hysteresis (threshold) before it reaches the trigger level again on the rising edge. On the falling edge, however, two trigger events occur as the signal exceeds the hysteresis before it falls to the trigger level the second time.

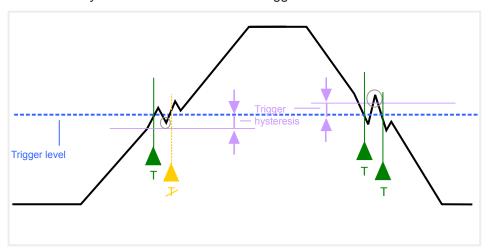


Figure 6-25: Effects of the trigger hysteresis

See "Hysteresis" on page 442

Trigger Drop-Out Time

If a modulated signal is instable and produces occasional "drop-outs" during a burst, you can define a minimum duration that the input signal must stay below the trigger level before triggering again. This is called the "drop-out" time. Defining a dropout time helps you stabilize triggering when the analyzer is triggering on undesired events.

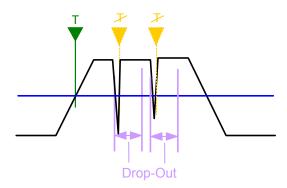


Figure 6-26: Effect of the trigger drop-out time

See "Drop-Out Time" on page 442.

Drop-out times for falling edge triggers

If a trigger is set to a falling edge ("Slope" = "Falling", see "Slope" on page 442) the measurement is to start when the power level falls below a certain level. This is useful, for example, to trigger at the end of a burst, similar to triggering on the rising edge for the beginning of a burst.

If a drop-out time is defined, the power level must remain below the trigger level at least for the duration of the drop-out time (as defined above). However, if a drop-out time is defined that is longer than the pulse width, this condition cannot be met before the final pulse, so a trigger event will not occur until the pulsed signal is over!

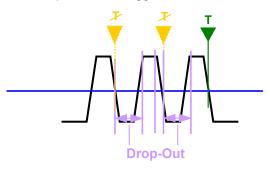


Figure 6-27: Trigger drop-out time for falling edge trigger

For gated measurements, a combination of a falling edge trigger and a drop-out time is generally not allowed.

Trigger Holdoff

The trigger holdoff defines a waiting period before the next trigger after the current one will be recognized.

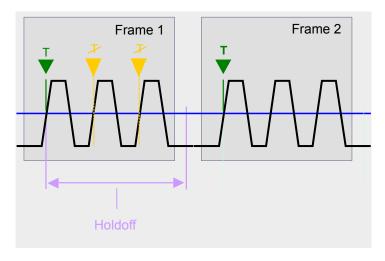


Figure 6-28: Effect of the trigger holdoff

See "Trigger Holdoff" on page 442.

6.6.1.2 Gated Measurements

Like a gate provides an opening in a fence, a gated measurement lets data from the input signal pass in defined areas only. The *gate* controls exactly when data is included in the measurement results and when not. The gate is opened by the trigger source, which is also the gate source. Gates can be used in two different modes:

- Level: The gate opens and the measurement starts when a defined level in the gate source is exceeded and stops when the gate source drops below the "Gate Level".
 - Using a pulsed gate signal in level mode, the following behaviour can be achieved: When the gate source signal is active, the input signal data is collected; when the gate signal is inactive, the input signal is ignored.
- **Edge:** The gate opens and the measurement starts when a defined level in the gate source is exceeded and stops when the defined "Gate Length" is reached.

The "Gate Mode" *Level* is not supported for Rohde & Schwarz power sensors. The signal sent by these sensors merely reflects the instant the level is first exceeded, rather than a time period. However, only time periods can be used for gating in level mode. Thus, the trigger impulse from the sensors is not long enough for a fully gated measurement; the measurement cannot be completed. For details on power sensors see "Using a Power Sensor as an External Power Trigger" on page 331.

Additionally, a delay time can be defined so that the first few measurement points after the gate opening are ignored.

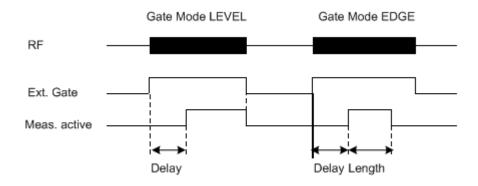


Figure 6-29: Effects of Gate mode, Gate delay and Gate length

Example:

By using a gate in sweep mode and stopping the measurement while the gate signal is inactive, the spectrum for pulsed RF carriers can be displayed without the superposition of frequency components generated during switching. Similarly, the spectrum can also be analyzed for an inactive carrier. The sweep can be controlled by an external gate or by the internal power trigger.

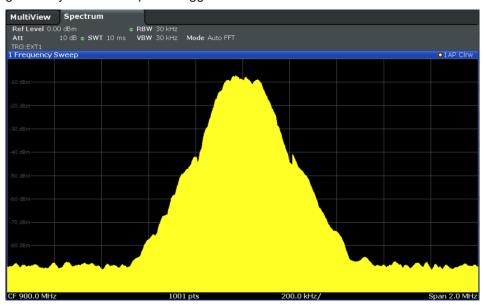


Figure 6-30: GSM signal with GATE OFF

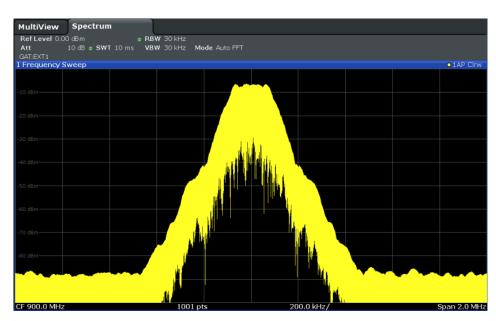
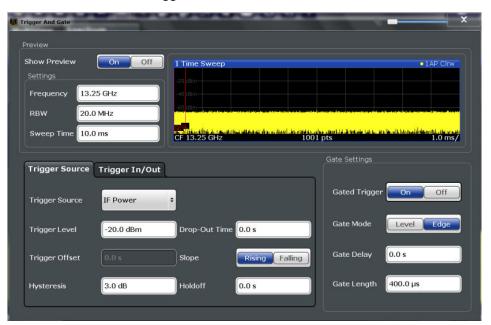


Figure 6-31: GSM signal with GATE ON

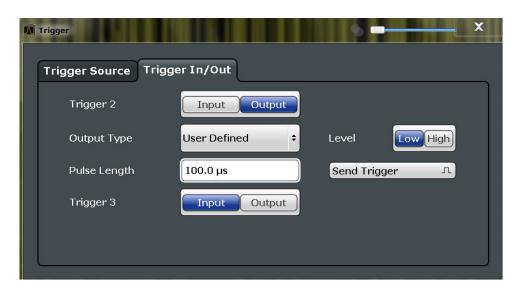
Gated sweep operation is also possible for zero span measurements. This allows you to display level variations of individual slots, for instance in burst signals, versus time.

To indicate that a gate is used for the sweep, "GAT" and the gate source is displayed in the channel bar.

6.6.1.3 Determining the Parameters in Preview Mode


The preview mode allows you to try out trigger and gate settings before actually applying them to the current measurement. When the preview diagram shows the correct results, you can "Update the Main Diagram" and check the results in the background before closing the dialog box.

If preview mode is switched off, changes to the trigger and gate settings are applied to the measurement diagram directly.


The preview diagram displays a zero span measurement at the center frequency with the defined RBW and sweep time. This is useful to analyze bursts, for example, to determine the required gate settings. The main diagram remains unchanged concerning the zero span settings. Only the trigger and gate settings are applied to the measurement.

6.6.2 Trigger and Gate Settings

Access: "Overview" > "Trigger/Gate"

External triggers from one of the TRIGGER INPUT / OUTPUT connectors on the R&S FSW are configured in a separate tab of the dialog box.

For step-by-step instructions on configuring triggered and gated measurements, see Chapter 6.6.3, "How to Configure a Triggered and Gated Measurement", on page 445.

Preview	438
L Frequency	438
L RBW	438
L Sweep Time	438
Trigger Settings	438
L Trigger Source	438
L Free Run	439
L External Trigger 1/2/3	439
L Video	439
L IF Power	440
L Baseband Power	440
L RF Power	440
L Power Sensor	441
L Time	
L Trigger Level	441
L Repetition Interval	441
L Drop-Out Time	442
L Trigger Offset	442
L Hysteresis	442
L Trigger Holdoff	442
L Slope	442
Trigger 2/3	443
L Output Type	443
L Level	443
L Pulse Length	444
L Send Trigger	
Gate Settings	444
L Gated Trigger	444
L Gate Mode	
L Gate Delay	
L Gate Length	

Preview

The preview diagram displays a zero span measurement at the center frequency with the defined RBW and sweep time.

For details see Chapter 6.6.1.3, "Determining the Parameters in Preview Mode", on page 436.

Note: The zero span settings refer only to the preview diagram. The main diagram remains unchanged.

The trigger and gate settings are applied to the measurement when the dialog box is closed or "Update Main Diagram" is selected.

If preview mode is switched off, any changes to the settings in this dialog box are applied to the measurement diagram directly. In this case, the zero span settings for the preview diagram are not displayed.

For information on the zero span settings see:

- "Center frequency" on page 399
- "RBW" on page 310
- "Sweep Time" on page 421

Frequency ← Preview

Defines the center frequency.

Remote command:

[SENSe:] FREQuency: CENTer on page 882

RBW ← **Preview**

Defines the bandwidth value. The available resolution bandwidths are specified in the data sheet. Numeric input is always rounded to the nearest possible bandwidth.

Remote command:

[SENSe:]BANDwidth[:RESolution] on page 887

Sweep Time ← Preview

Defines the sweep time. Allowed values depend on the ratio of span to RBW and RBW to VBW. For details refer to the data sheet. Numeric input is always rounded to the nearest possible sweep time.

Remote command:

[SENSe:] SWEep:TIME on page 893

Trigger Settings

The trigger settings define the beginning of a measurement.

Trigger Source ← **Trigger Settings**

Selects the trigger source. If a trigger source other than "Free Run" is set, "TRG" is displayed in the channel bar and the trigger source is indicated.

For gated measurements, this setting also selects the gating source.

For more information see "Trigger Source" on page 430.

Note: When triggering or gating is activated, the squelch function is automatically disabled

(See "Squelch" on page 530).

Remote command:

```
TRIGger[:SEQuence]:SOURce on page 907
[SENSe:]SWEep:EGATe:SOURce on page 910
```

Free Run ← Trigger Source ← Trigger Settings

No trigger source is considered. Data acquisition is started manually or automatically and continues until stopped explicitly.

In the Spectrum application, this is the default setting.

Remote command:

TRIG:SOUR IMM, see TRIGger[:SEQuence]:SOURce on page 907

External Trigger 1/2/3 ← **Trigger Source** ← **Trigger Settings**

Data acquisition starts when the TTL signal fed into the specified input connector meets or exceeds the specified trigger level.

(See "Trigger Level" on page 441).

Note: The "External Trigger 1" softkey automatically selects the trigger signal from the TRIGGER 1 INPUT connector on the front panel.

For details, see the "Instrument Tour" chapter in the R&S FSW Getting Started manual.

"External Trigger 1"

Trigger signal from the TRIGGER 1 INPUT connector.

"External Trigger 2"

Trigger signal from the TRIGGER 2 INPUT / OUTPUT connector. Note: Connector must be configured for "Input" in the "Outputs" configuration (see "Trigger 2/3" on page 393).

"External Trigger 3"

Trigger signal from the TRIGGER 3 INPUT/ OUTPUT connector on the rear panel.

Note: Connector must be configured for "Input" in the "Outputs" configuration (see "Trigger 2/3" on page 393).

Remote command:

```
TRIG:SOUR EXT, TRIG:SOUR EXT2
TRIG:SOUR EXT3
```

See TRIGger[:SEQuence]:SOURce on page 907

SWE:EGAT:SOUR EXT for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 910

Video ← Trigger Source ← Trigger Settings

Defines triggering by the video signal, i.e. the filtered and detected version of the input signal (the envelope of the IF signal), as displayed on the screen.

Define a trigger level from 0 % to 100 % of the diagram height. The absolute trigger level is indicated by a horizontal trigger line in the diagram, which you can also move graphically to change the trigger level.

Video mode is only available in the time domain, and not for I/Q-based data.

Remote command:

TRIG:SOUR VID, see TRIGger[:SEQuence]:SOURce on page 907

SWE:EGAT:SOUR VID for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 910

IF Power ← Trigger Source ← Trigger Settings

The R&S FSW starts capturing data as soon as the trigger level is exceeded around the third intermediate frequency.

For frequency sweeps, the third IF represents the start frequency. The trigger bandwidth at the third IF depends on the RBW and sweep type.

For measurements on a fixed frequency (e.g. zero span or I/Q measurements), the third IF represents the center frequency.

This trigger source is only available for RF input.

The available trigger levels depend on the RF attenuation and preamplification. A reference level offset, if defined, is also considered.

For details on available trigger levels and trigger bandwidths, see the data sheet.

Note: Be aware that in auto sweep type mode, due to a possible change in sweep types, the trigger bandwidth can vary considerably for the same RBW setting.

Remote command:

```
TRIG:SOUR IFP, see TRIGger[:SEQuence]:SOURce on page 907

SWE:EGAT:SOUR IFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 910
```

Baseband Power ← **Trigger Source** ← **Trigger Settings**

Defines triggering on the baseband power (for baseband input via the optional Digital Baseband Interface or the optional Analog Baseband interface).

Remote command:

TRIG:SOUR BBP, see TRIGger[:SEQuence]:SOURce on page 907

RF Power ← Trigger Source ← Trigger Settings

Defines triggering of the measurement via signals which are outside the displayed measurement range.

For this purpose, the instrument uses a level detector at the first intermediate frequency.

The input signal must be in the frequency range between 500 MHz and 8 GHz.

The resulting trigger level at the RF input depends on the RF attenuation and preamplification. For details on available trigger levels, see the instrument's data sheet.

Note: If the input signal contains frequencies outside of this range (e.g. for fullspan measurements), the sweep may be aborted. A message indicating the allowed input frequencies is displayed in the status bar.

A "Trigger Offset", "Trigger Polarity" and "Trigger Holdoff" (to improve the trigger stability) can be defined for the RF trigger, but no "Hysteresis".

Remote command:

```
TRIG:SOUR RFP, see TRIGger[:SEQuence]:SOURce on page 907

SWE:EGAT:SOUR RFP for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 910
```

Power Sensor ← **Trigger Source** ← **Trigger Settings**

Uses an external power sensor as a trigger source. This option is only available if a power sensor is connected and configured.

```
(See Chapter 6.2.3.3, "How to Work With a Power Sensor", on page 336.)
```

If a power sensor is selected as the trigger mode, the following softkeys are not available; these settings are configured in the "Power Sensor Configuration" dialog box (seeChapter 6.2.3.2, "Power Sensor Settings", on page 332).

- "Trigger Level" on page 441
- "Slope" on page 442
- "Hysteresis" on page 442
- "Trigger Holdoff" on page 442

Note: For R&S power sensors, the "Gate Mode" *LvI* is not supported. The signal sent by these sensors merely reflects the instant the level is first exceeded, rather than a time period. However, only time periods can be used for gating in level mode. Thus, the trigger impulse from the sensors is not long enough for a fully gated measurement; the measurement cannot be completed.

Remote command:

```
TRIG:SOUR PSE, see TRIGger[:SEQuence]:SOURce on page 907

SWE:EGAT:SOUR PSE for gated triggering, see [SENSe:]SWEep:EGATe:SOURce on page 910
```

Time ← Trigger Source ← Trigger Settings

Triggers in a specified repetition interval.

Remote command:

```
TRIG:SOUR TIME, see TRIGger[:SEQuence]:SOURce on page 907
```

Trigger Level ← **Trigger Settings**

Defines the trigger level for the specified trigger source.

For gated measurements, this setting also defines the gate level.

For details on supported trigger levels, see the data sheet.

Remote command:

```
TRIGger[:SEQuence]:LEVel:IFPower on page 905
TRIGger[:SEQuence]:LEVel:IQPower on page 906
TRIGger[:SEQuence]:LEVel[:EXTernal<port>] on page 905
TRIGger[:SEQuence]:LEVel:VIDeo on page 906
TRIGger[:SEQuence]:LEVel:RFPower on page 906
```

Repetition Interval ← Trigger Settings

Defines the repetition interval for a time trigger. The shortest interval is 2 ms.

The repetition interval should be set to the exact pulse period, burst length, frame length or other repetitive signal characteristic.

Remote command:

TRIGger[:SEQuence]:TIME:RINTerval on page 909

Drop-Out Time ← Trigger Settings

Defines the time the input signal must stay below the trigger level before triggering again.

For more information on the drop-out time, see "Trigger Drop-Out Time" on page 431.

Remote command:

TRIGger[:SEQuence]:DTIMe on page 904

Trigger Offset ← Trigger Settings

Defines the time offset between the trigger event and the start of the sweep.

For more information, see "Trigger Offset" on page 430.

Offset > 0:	Start of the sweep is delayed
Offset < 0:	Sweep starts earlier (pretrigger) Only possible for zero span (e.g. I/Q Analyzer application) and gated trigger switched off Maximum allowed range limited by the sweep time: Pretrigger _{max} = sweep time _{max}

For the "Time" trigger source, this function is not available.

Remote command:

TRIGger[:SEQuence]:HOLDoff[:TIME] on page 904

Hysteresis ← Trigger Settings

Defines the distance in dB to the trigger level that the trigger source must exceed before a trigger event occurs. Setting a hysteresis avoids unwanted trigger events caused by noise oscillation around the trigger level.

This setting is only available for "IF Power" trigger sources. The range of the value is between 3 dB and 50 dB with a step width of 1 dB.

For more information, see "Trigger Hysteresis" on page 431.

Remote command:

TRIGger[:SEQuence]:IFPower:HYSTeresis on page 905

Trigger Holdoff ← **Trigger Settings**

Defines the minimum time (in seconds) that must pass between two trigger events. Trigger events that occur during the holdoff time are ignored.

For more information, see "Trigger Holdoff" on page 432.

Remote command:

TRIGger[:SEQuence]:IFPower:HOLDoff on page 904

Slope ← Trigger Settings

For all trigger sources except time, you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

For gated measurements in "Edge" mode, the slope also defines whether the gate starts on a falling or rising edge.

Remote command:

TRIGger[:SEQuence]:SLOPe on page 906
[SENSe:]SWEep:EGATe:POLarity on page 910

Trigger 2/3

Defines the usage of the variable TRIGGER INPUT/OUTPUT connectors, where:

"Trigger 2": TRIGGER INPUT/OUTPUT connector on the front panel

"Trigger 3": TRIGGER 3 INPUT/ OUTPUT connector on the rear panel

(Trigger 1 is INPUT only.)

"Input" The signal at the connector is used as an external trigger source by

the R&S FSW. Trigger input parameters are available in the "Trigger"

dialog box.

"Output" The R&S FSW sends a trigger signal to the output connector to be

used by connected devices.

Further trigger parameters are available for the connector.

Remote command:

OUTPut:TRIGger<port>:DIRection on page 912

Output Type ← Trigger 2/3

Type of signal to be sent to the output

"Device Trig- (Default) Sends a trigger when the R&S FSW triggers.

gered"

"Trigger Sends a (high level) trigger when the R&S FSW is in "Ready for trig-

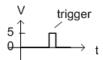
Armed" ger" state.

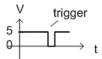
This state is indicated by a status bit in the STATUS: OPERation register (bit 5), as well as by a low-level signal at the AUX port (pin 9). For details, see "STATUS: OPERation Register" on page 661 and the

R&S FSW Getting Started manual.

"User Defined" Sends a trigger when you select the "Send Trigger" button.

In this case, further parameters are available for the output signal.


Remote command:


OUTPut:TRIGger<port>:OTYPe on page 912

Level ← **Output Type** ← **Trigger 2/3**

Defines whether a high (1) or low (0) constant signal is sent to the trigger output connector.

The trigger pulse level is always opposite to the constant signal level defined here. For example, for "Level = High", a constant high signal is output to the connector until you select the Send Trigger function. Then, a low pulse is provided.

low-level constant, high-level trigger

high-level constant, low-level trigger

Remote command:

OUTPut:TRIGger<port>:LEVel on page 912

Pulse Length ← Output Type ← Trigger 2/3

Defines the duration of the pulse (pulse width) sent as a trigger to the output connector.

Remote command:

OUTPut:TRIGger<port>:PULSe:LENGth on page 913

Send Trigger ← Output Type ← Trigger 2/3

Sends a user-defined trigger to the output connector immediately.

Note that the trigger pulse level is always opposite to the constant signal level defined by the output Level setting. For example, for "Level = High", a constant high signal is output to the connector until you select the "Send Trigger" function. Then, a low pulse is sent.

Which pulse level will be sent is indicated by a graphic on the button.

Remote command:

OUTPut:TRIGger<port>:PULSe:IMMediate on page 913

Gate Settings

Gate settings define one or more extracts of the signal to be measured.

Note: Gating is not available for measurements on I/Q-based data.

Gated Trigger ← **Gate Settings**

Switches gated triggering on or off.

If the gate is switched on, a gate signal applied to one of the "TRIGGER INPUT" connectors or the internal IF power detector controls the sweep.

Gate Mode ← Gate Settings

Sets the gate mode.

For more information see Chapter 6.6.1.2, "Gated Measurements", on page 433

"Edge"

The trigger event for the gate to open is the detection of the signal edge.

After the gate signal has been detected, the gate remains open until the gate length is over.

"Level"

The trigger event for the gate to open is a particular power level. After the gate signal has been detected, the gate remains open until the signal disappears.

Note: If you perform gated measurements in combination with the IF Power trigger, the R&S FSW ignores the holding time for frequency sweep, FFT sweep, zero span and I/Q mode measurements. This mode is not supported when using R&S Power Sensors as power triggers ("Trg/Gate Source" = *Power Sensor* or *External*).

Remote command:

Remote command:

[SENSe:] SWEep:EGATe:TYPE on page 911

Gate Delay ← Gate Settings

Defines the delay time between the gate signal and the continuation of the measurement.

The delay position on the time axis in relation to the sweep is indicated by a line labeled "GD".

For more information see Chapter 6.6.1.2, "Gated Measurements", on page 433

[SENSe:] SWEep:EGATe:HOLDoff on page 910

Gate Length ← Gate Settings

Defines how long the gate is open when it is triggered. The gate length can only be set in the edge-triggered gate mode. In the level-triggered mode the gate length depends on the level of the gate signal.

The gate length in relation to the sweep is indicated by a line labeled "GL".

For more information see Chapter 6.6.1.2, "Gated Measurements", on page 433 Remote command:

[SENSe:] SWEep:EGATe:LENGth on page 910

6.6.3 How to Configure a Triggered and Gated Measurement

The following step-by-step instructions demonstrate how to configure a triggered and gated measurement manually.

For remote operation see Chapter 11.7.4, "Configuring Triggered and Gated Measurements", on page 903.

Trigger and gate settings are configured in the "Trigger and Gate" dialog box.

To display the "Trigger and Gate" dialog box, do one of the following:

- Select "Trigger/Gate" from the "Overview".
- Select the TRIG key and then the "Trigger/Gate Config" softkey.

The following tasks are described:

6.6.3.1	How to Determine the Required Trigger/Gate Parameters	. 446
6.6.3.2	How to Configure a Triggered Measurement	. 446
6.6.3.3	How to Configure a Gated Measurement	.447

6.6.3.1 How to Determine the Required Trigger/Gate Parameters

- In the "Trigger and Gate" dialog box, switch on "Show Preview".
 A zero span measurement for the currently defined center frequency is displayed.
- 2. Set the "Frequency", "RBW" and "Sweep Time" such that the relevant part of the signal is displayed, for example a complete burst.
- 3. Determine the parameters you want to use to define the trigger and gate conditions from the preview diagram, for example:
 - the length of a burst or slot
 - the upper or lower power level of a pulse
 - the maximum noise level
 - the power level or time at which a certain incident occurs
- 4. Try out different trigger and gate settings as described in How to Configure a Triggered Measurement and How to Configure a Gated Measurement, then select "Update Main Diagram" to see the effect of the current settings on the main measurement in the background.
- 5. If the results are as expected, close the dialog box to keep the changes permanently. Otherwise, correct the settings as necessary.

6.6.3.2 How to Configure a Triggered Measurement

To define a time trigger:

- 1. In the "Trigger and Gate" dialog box, define the "Trigger Source" = "Time".
- 2. Define the "Repetition Interval": the time after which a new measurement is started.

To define an external trigger:

- Connect an external device that will provide the trigger signal to one of the TRIG-GER INPUT / OUTPUT connectors on the R&S FSW (for details see the R&S FSW "Getting Started" manual).
- 2. In the "Trigger and Gate" dialog box, define the "Trigger Source" = "External".
- 3. If you are using the variable TRIGGER 2 INPUT / OUTPUT connector, you must define its use as an input connector. In the "Trigger In/Out" tab of the "Trigger and Gate" dialog box, set the corresponding trigger to "Input".

 (Note: Trigger 2 is on the front panel, Trigger 3 is on the rear panel.)
- 4. Configure the external trigger as described for the other power triggers.

To define a power trigger:

- 1. In the "Trigger and Gate" dialog box, define the "Trigger Source" = "IF Power" or "Video". Note that the video signal corresponds to the envelope of the IF signal: it has been processed by the resolution and video filters and the selected detector.
- Define the "Trigger Level": the power level at which the measurement will start.
 For a "Video" trigger source you can move the level line graphically to define the
 level. If you define the value numerically, you must enter a percentage of the full
 diagram height as the level.
- 3. Define whether the signal must cross the trigger level on a falling or on a rising edge ("Slope") to trigger the measurement.
- 4. To start the measurement with a time delay, define a "Trigger Offset".
- To reject triggers due to noise or jittering in the signal, define a "Hysteresis" that is larger than the expected noise or jittering. After the previous trigger, the signal must exceed this threshold before the next level crossing triggers a new measurement.
- 6. To skip multiple triggers in a burst, define a "Holdoff" time that must pass between two triggers. The holdoff time should be slightly larger than the burst.

6.6.3.3 How to Configure a Gated Measurement

- 1. Determine the required parameters as described in Chapter 6.6.3.1, "How to Determine the Required Trigger/Gate Parameters", on page 446.
- The gate is opened by a trigger event, which must be based on a power source.
 Define the trigger as described in Chapter 6.6.3.2, "How to Configure a Triggered Measurement", on page 446. As the "Trigger Source", use "IF Power", "Video" or "External".
- 3. Define how long the gate is to remain open:
 - To measure the signal as long as the trigger level is exceeded, for example for one or more pulses, define "Gate Mode" = "Level".
 - To measure the signal for a certain time after a level is exceeded, for example during a burst:
 - a) Define "Gate Mode" = "Edge".
 - b) Define the time to measure for each gate: "Gate Length".
- 4. To open the gate with a time delay, for example to ignore an overshoot, define a "Gate Delay".
- 5. Select "Gated Trigger" = "On".

Adjusting Settings Automatically

6.6.4 How to Output a Trigger Signal

Using the variable TRIGGER 2 INPUT / OUTPUT connector of the R&S FSW, the internal trigger signal can be output for use by other connected devices. For details on the connectors see the R&S FSW "Getting Started" manual.

To output a trigger to a connected device

- 1. In the "Trigger In/Out" tab of the "Trigger and Gate" dialog box, set the trigger to be used to "Output".
 - (Note: Trigger 2 is output to the front panel connector, Trigger 3 is output to the rear panel connector.)
- Define whether the trigger signal is to be output automatically ("Output Type" =
 "Device triggered" or "Trigger Armed") or whether you want to start output manually
 ("Output Type" = "User-defined").
- For manual output: Specify the constant signal level and the length of the trigger pulse to be output. Note that the level of the trigger pulse is opposite to the constant output "Level" setting (compare the graphic on the "Send Trigger" button).
- 4. Connect a device that will receive the trigger signal to the configured TRIGGER 2 INPUT / OUTPUT connector.
- 5. Start a measurement and wait for an internal trigger, or select the "Send Trigger" button.

The configured trigger is output to the connector.

6.7 Adjusting Settings Automatically

Access: AUTO SET

Some settings can be adjusted by the R&S FSW automatically according to the current measurement settings. In order to do so, a measurement is performed. The duration of this measurement can be defined automatically or manually.

MSRA/MSRT operating mode

In MSRA and MSRT operating mode, settings related to data acquisition can only be adjusted automatically for the MSRA/MSRT Master, not the applications.

Adjusting Settings Automatically

Adjusting settings automatically during triggered measurements

When you select an auto adjust function a measurement is performed to determine the optimal settings. If you select an auto adjust function for a triggered measurement, you are asked how the R&S FSW should behave:

- (default:) The measurement for adjustment waits for the next trigger
- The measurement for adjustment is performed without waiting for a trigger.
 The trigger source is temporarily set to "Free Run". After the measurement is completed, the original trigger source is restored. The trigger level is adjusted as follows:
 - For IF Power and RF Power triggers:
 Trigger Level = Reference Level 15 dB
 - For Video trigger:Trigger Level = 85 %

Remote command:

[SENSe:]ADJust:CONFigure:TRIG on page 916

Adjusting all Determinable Settings Automatically (Auto All)	449
Adjusting the Center Frequency Automatically (Auto Freq)	449
Setting the Reference Level Automatically (Auto Level)	450
Resetting the Automatic Measurement Time (Meastime Auto)	450
Changing the Automatic Measurement Time (Meastime Manual)	
Upper Level Hysteresis	450
Lower Level Hysteresis	

Adjusting all Determinable Settings Automatically (Auto All)

Activates all automatic adjustment functions for the current measurement settings.

This includes:

- Auto Frequency
- Auto Level

Note: MSRA/MSRT operating modes. In MSRA/MSRT operating mode, this function is only available for the MSRA/MSRT Master, not the applications.

Remote command:

[SENSe:]ADJust:ALL on page 914

Adjusting the Center Frequency Automatically (Auto Freq)

The R&S FSW adjusts the center frequency automatically.

The optimum center frequency is the frequency with the highest S/N ratio in the frequency span. As this function uses the signal counter, it is intended for use with sinusoidal signals.

Remote command:

[SENSe:] ADJust: FREQuency on page 916

Adjusting Settings Automatically

Setting the Reference Level Automatically (Auto Level)

Automatically determines a reference level which ensures that no overload occurs at the R&S FSW for the current input data. At the same time, the internal attenuators and the preamplifier (for analog baseband input: the full scale level) are adjusted so the signal-to-noise ratio is optimized, while signal compression and clipping are minimized.

To determine the required reference level, a level measurement is performed on the R&S FSW.

If necessary, you can optimize the reference level further. Decrease the attenuation level manually to the lowest possible value before an overload occurs, then decrease the reference level in the same way.

You can change the measurement time for the level measurement if necessary (see "Changing the Automatic Measurement Time (Meastime Manual)" on page 450).

Remote command:

[SENSe:]ADJust:LEVel on page 916

Resetting the Automatic Measurement Time (Meastime Auto)

Resets the measurement duration for automatic settings to the default value.

(Spectrum application: 1 ms)

Remote command:

[SENSe:] ADJust:CONFigure:DURation:MODE on page 915

Changing the Automatic Measurement Time (Meastime Manual)

This function allows you to change the measurement duration for automatic setting adjustments. Enter the value in seconds.

Remote command:

```
[SENSe:]ADJust:CONFigure:DURation:MODE on page 915
[SENSe:]ADJust:CONFigure:DURation on page 914
```

Upper Level Hysteresis

When the reference level is adjusted automatically using the Auto Level function, the internal attenuators and the preamplifier are also adjusted. To avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines a lower threshold the signal must fall below (compared to the last measurement) before the reference level is adapted automatically.

Remote command:

```
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer on page 915
```

Lower Level Hysteresis

When the reference level is adjusted automatically using the Auto Level function, the internal attenuators and the preamplifier are also adjusted. To avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines a lower threshold the signal must fall below (compared to the last measurement) before the reference level is adapted automatically.

Remote command:

```
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer on page 915
```

7 Common Analysis and Display Functions

Access: "Overview" > "Analysis"

General methods and basic settings to display and analyze measurements, regardless of the operating mode, are described here. If you are performing a specific measurement task, using an operating mode other than Signal and Spectrum Analyzer mode, or an application other than the Spectrum application, be sure to check the specific application or mode description for settings and functions that may deviate from these common settings.

•	Result Display Configuration	.451
	Zoomed Displays	
	Trace Configuration	
	Marker Usage	
	Display and Limit Lines	

7.1 Result Display Configuration

Measurement results can be evaluated in many different ways, for example graphically, as summary tables, statistical evaluations etc. Thus, the result display is highly configurable to suit your specific requirements and optimize analysis. Here you can find out how to optimize the display for your measurement results.

Basic operations concerning the R&S FSW display, for example how to use the Smart-Grid, are described in the R&S FSW Getting Started manual.

General display settings that are usually configured during initial instrument setup, independently of the current measurement, e.g. which items or colors are displayed on the screen, are described in Chapter 9.4, "Display Settings", on page 616.

•	Basic Evaluation Methods	451
•	Laving out the Result Display with the SmartGrid	453

7.1.1 Basic Evaluation Methods

Measurement results can be displayed and evaluated using various different methods, also at the same time. Depending on the currently selected measurement, in particular when using optional firmware applications, not all evaluation methods are available.

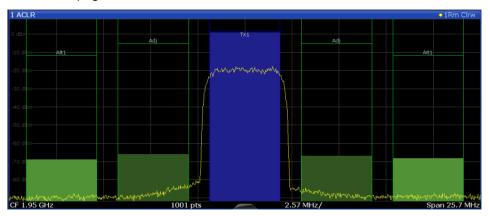

The evaluation methods described here are available for most measurements in the Spectrum application.

Diagram	452
Marker Table	452
Marker Peak List	452
Result Summary	453
Spectrogram	453

Diagram

Displays a basic level vs. frequency or level vs. time diagram of the measured data to evaluate the results graphically. This is the default evaluation method. Which data is displayed in the diagram depends on the "Trace" settings. Scaling for the y-axis can be configured.

See Chapter 7.3, "Trace Configuration", on page 463 and Chapter 6.4.3, "Scaling the Y-Axis", on page 411.

Remote command:

LAY: ADD? '1', RIGH, DIAG, see LAYout: ADD[:WINDow]? on page 872

Marker Table

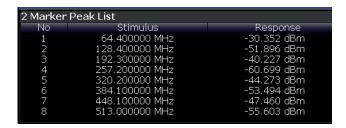
Displays a table with the current marker values for the active markers.

This table may be displayed automatically if configured accordingly (see "Marker Table Display" on page 512).

2 Marker	r					
Type	Ref	Trc	Stimulus	Response	Function	Function Result
N1		1	13.197 GHz	-25.87 dBm	Count	13.197052
D1	N1	1	-7.942 GHz	-49.41 dB		
D2	N1	2	-3.918 GHz	-21.90 dB		
D3	N1	3	4.024 GHz	-21.99 dB		

Tip: To navigate within long marker tables, simply scroll through the entries with your finger on the touchscreen.

Remote command:


LAY: ADD? '1', RIGH, MTAB, see LAYout: ADD[:WINDow]? on page 872 Results:

CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:MARKer<m>:Y? on page 1005

Marker Peak List

The marker peak list determines the frequencies and levels of peaks in the spectrum or time domain. How many peaks are displayed can be defined, as well as the sort order. In addition, the detected peaks can be indicated in the diagram. The peak list can also be exported to a file for analysis in an external application.

You can define search and sort criteria to influence the results of the analysis (See "Marker Search Settings" on page 514).

Tip: To navigate within long marker peak lists, simply scroll through the entries with your finger on the touchscreen.

Remote command:

```
LAY: ADD? '1', RIGH, PEAK, see LAYout: ADD[:WINDow]? on page 872 Results:
```

```
CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:MARKer<m>:Y? on page 1005
```

Result Summary

Result summaries provide the results of specific measurement functions in a table for numerical evaluation. The contents of the result summary vary depending on the selected measurement function. See the description of the individual measurement functions for details.

Tip: To navigate within long result summary tables, simply scroll through the entries with your finger on the touchscreen.

Remote command:

```
LAY: ADD? '1', RIGH, RSUM, see LAYout: ADD[:WINDow]? on page 872
```

Spectrogram

A spectrogram shows how the spectral density of a signal varies over time. The x-axis shows the frequency or sweep time, the y-axis shows the measurement time. A third dimension, the power level, is indicated by different colors. Thus you can see how the strength of the signal varies over time for different frequencies.

The spectrogram display consists of two diagrams: the standard spectrum result display (upper diagram) and the spectrogram result display (lower diagram).

For details see Chapter 7.3.1.7, "Working with Spectrograms", on page 470.

Remote command:

```
LAY: ADD? '1', RIGH, SGR, see LAYout: ADD[:WINDow]? on page 872
```

7.1.2 Laying out the Result Display with the SmartGrid

Measurement results can be evaluated in many different ways, for example graphically, as summary tables, statistical evaluations etc. Each type of evaluation is displayed in a separate window in the channel tab. Up to 16 individual windows can be displayed per measurement channel (i.e. per tab). To arrange the diagrams and tables

on the screen, the Rohde & Schwarz SmartGrid function helps you find the target position simply and quickly.

Principally, the layout of the windows on the screen is based on an underlying grid, the SmartGrid. However, the SmartGrid is dynamic and flexible, allowing for many different layout possibilities. The SmartGrid functionality provides the following basic features:

- Windows can be arranged in columns or in rows, or in a combination of both.
- Windows can be arranged in up to four rows and four columns.
- Windows are moved simply by dragging them to a new position on the screen, possibly changing the layout of the other windows, as well.
- All evaluation methods available for the currently selected measurement are displayed as icons in the evaluation bar. If the evaluation bar contains more icons than can be displayed at once on the screen, it can be scrolled vertically. The same evaluation method can be displayed in multiple windows simultaneously.
- New windows are added by dragging an evaluation icon from the evaluation bar to the screen. The position of each new window depends on where you drop the evaluation icon in relation to the existing windows.
- All display configuration actions are only possible in SmartGrid mode. When Smart-Grid mode is activated, the evaluation bar replaces the current softkey menu display. When the SmartGrid mode is deactivated again, the previous softkey menu display is restored.

•	Background Information: The SmartGrid Principle	.454
	How to Activate SmartGrid Mode	
•	How to Add a New Result Window	456
•	How to Close a Result Window	.457
	How to Arrange the Result Windows	

7.1.2.1 Background Information: The SmartGrid Principle

SmartGrid display

During any positioning action, the underlying SmartGrid is displayed. Different colors and frames indicate the possible new positions. The position in the SmartGrid where you drop the window determines its position on the screen.

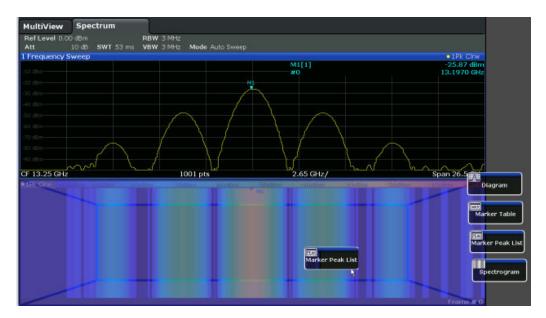


Figure 7-1: Moving a window in SmartGrid mode

The brown area indicates the possible "drop area" for the window, i.e. the area in which the window can be placed. A blue area indicates the (approximate) layout of the window as it would be if the icon were dropped at the current position. The frames indicate the possible destinations of the new window with respect to the existing windows: above/below, right/left or replacement (as illustrated in Figure 3-22). If an existing window would be replaced, the drop area is highlighted in a darker color shade.

Positioning the window

The screen can be divided into up to four rows. Each row can be split into up to four columns, where each row can have a different number of columns. However, rows always span the entire width of the screen and may not be interrupted by a column. A single row is available as the drop area for the window in the SmartGrid. The row can be split into columns, or a new row can be inserted above or below the existing row (if the maximum of 4 has not yet been reached).

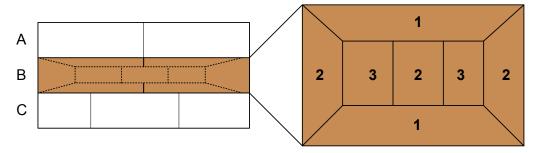


Figure 7-2: SmartGrid window positions

- 1 = Insert row above or below the existing row
- 2 = Create a new column in the existing row
- 3 = Replace a window in the existing row

SmartGrid functions

Once the evaluation icon has been dropped, icons in each window provide delete and move functions.

The "Move" icon allows you to move the position of the window, possibly changing the size and position of the other displayed windows.

The "Delete" icon allows you to close the window, enlarging the display of the remaining windows.

7.1.2.2 How to Activate SmartGrid Mode

All display configuration actions are only possible in SmartGrid mode. In SmartGrid mode the evaluation bar replaces the current softkey menu display. When the Smart-Grid mode is deactivated again, the previous softkey menu display is restored.

- To activate SmartGrid mode, do one of the following:

Select the "SmartGrid" icon from the toolbar.

- Select the "Display Config" button in the configuration "Overview".
- Select the "Display Config" softkey from the MEAS CONFIG menu.

The SmartGrid functions and the evaluation bar are displayed.

To close the SmartGrid mode and restore the previous softkey menu select the "Close" icon in the right-hand corner of the toolbar, or press any key.

7.1.2.3 How to Add a New Result Window

Each type of evaluation is displayed in a separate window. Up to 16 individual windows can be displayed per measurement channel (i.e. per tab).

- 1. Activate SmartGrid mode.
 - All evaluation methods available for the currently selected measurement are displayed as icons in the evaluation bar.
- Select the icon for the required evaluation method from the evaluation bar.
 If the evaluation bar contains more icons than can be displayed at once on the screen, it can be scrolled vertically. Touch the evaluation bar between the icons and move it up or down until the required icon appears.
- 3. Drag the required icon from the evaluation bar to the SmartGrid, which is displayed in the diagram area, and drop it at the required position. (See "How to Arrange the Result Windows" on page 93 for more information on positioning the window).

Remote command:

LAYout:ADD[:WINDow]? on page 872 / LAYout:WINDow<n>:ADD? on page 876

7.1.2.4 How to Close a Result Window

► To close a window, activate SmartGrid mode and select the "Delete" icon for the window.

Remote command:

LAYout:REMove[:WINDow] on page 874 / LAYout:WINDow<n>:REMove on page 877

7.1.2.5 How to Arrange the Result Windows

1. Select an icon from the evaluation bar or the "Move" icon for an existing evaluation window.

- Drag the evaluation over the SmartGrid.A blue area shows where the window will be placed.
- 3. Move the window until a suitable area is indicated in blue.
- 4. Drop the window in the target area.
 - The windows are rearranged to the selected layout, and "Delete" and "Move" icons are displayed in each window.
- 5. To close a window, select the corresponding "Delete" icon.

Remote command:

LAYout:REPLace[:WINDow] on page 874 / LAYout:WINDow<n>:REPLace on page 877

7.2 Zoomed Displays

You can zoom into the diagram to visualize the measurement results in greater detail. Using the touchscreen or a mouse pointer you can easily define the area to be enlarged.

Zoom and the number of sweep points

Note that zooming is merely a visual tool, it does not change any measurement settings, such as the number of sweep points!

You should increase the number of sweep points before zooming, as otherwise the function has no real effect (see Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418).

•	Single Zoom Versus Multiple Zoom	458
•	Zoom Functions	460
•	How to Zoom Into a Diagram	461

7.2.1 Single Zoom Versus Multiple Zoom

Two different (graphical) zoom modes are available: single zoom and multiple zoom. A single zoom replaces the current diagram by a new diagram which displays an enlarged extract of the trace. This function can be used repetitively until the required details are visible. In multiple zoom mode, you can enlarge up to four different areas of the trace simultaneously. An overview window indicates the zoom areas in the original trace, while the zoomed trace areas are displayed in individual windows. The zoom areas can be moved and resized any time. The zoom area that corresponds to the individual zoom display is indicated in the lower right corner, between the scrollbars.

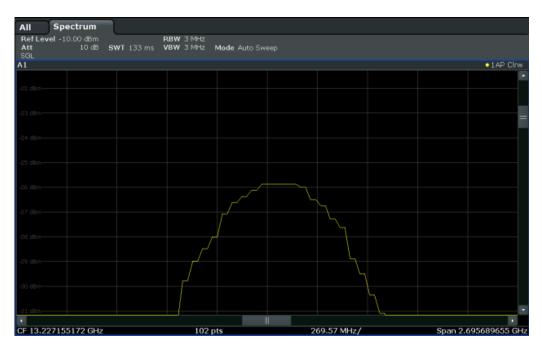


Figure 7-3: Single zoom

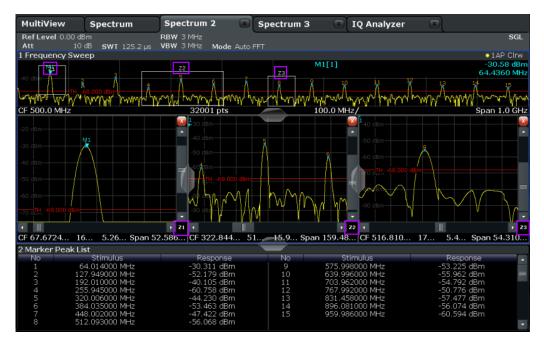


Figure 7-4: Multiple zoom

Using the zoom area to restrict a peak search

The selected zoom area can be used to restrict the search range for a peak search, but only in single zoom mode (see "Using Zoom Limits" on page 516).

7.2.2 Zoom Functions

Access: "Zoom" icons in toolbar

Single Zoom	460
Multiple Zoom	
Restore Original Display	
◆ Data Shift	
■ Data Zoom	
Deactivating Zoom (Selection mode)	461

Single Zoom

A single zoom replaces the current diagram by a new diagram which displays an enlarged extract of the trace. This function can be used repetitively until the required details are visible.

Remote command:

```
DISPlay[:WINDow<n>]:ZOOM:STATe on page 963
DISPlay[:WINDow<n>]:ZOOM:AREA on page 962
```

Multiple Zoom

In multiple zoom mode, you can enlarge several different areas of the trace simultaneously. An overview window indicates the zoom areas in the original trace, while the zoomed trace areas are displayed in individual windows. The zoom area that corresponds to the individual zoom display is indicated in the lower right corner, between the scrollbars.

Remote command:

```
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 964
DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:AREA on page 963
```

Restore Original Display

Restores the original display, that is, the originally calculated displays for the entire capture buffer, and closes all zoom windows.

Remote command:

Single zoom:

```
DISPlay[:WINDow<n>]:ZOOM:STATe on page 963
```

Multiple zoom:

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 964 (for each multiple zoom window)

Data Shift

Shifts the data to be evaluated in the result display (analysis region or hop/chirp) and re-evaluates the new data. *ALL* result displays based on the same data (analysis region or hop/chirp) are updated.

Currently, this function is only available in the Transient Analysis application.

Tip: Result tables are also re-evaluated for each data shift, which can take some time. Close the result tables during a data shift/zoom to improve the screen update speed.

After selecting the "Data Shift" (*) function, swipe the screen in the result display to shift the data base. When the required data base is evaluated, select the "Deactivating Zoom (Selection mode)" (*) to return to normal touchscreen behavior.

■ Data Zoom

Decreases the amount of data to be evaluated in the result display (analysis region or hop/chirp) and re-evaluates the new data, thus enlarging the display of the remaining data.

ALL result displays based on the same data (analysis region or hop/chirp) are updated.

Currently, this function is only available in the Transient Analysis application.

Tip: result tables are also re-evaluated for each data zoom, which can take some time. Close the result tables during a data shift/zoom to improve the screen update speed.

After selecting the "Data Zoom" (\(\bigcap_{\scrtap} \)) function, pinch or spread the area in the result display to zoom into or out of the data base. When the required data base is evaluated, select the "Deactivating Zoom (Selection mode)" (\(\bigcap_{\scrtap} \)) to return to normal touchscreen behavior.

▶ Deactivating Zoom (Selection mode)

Deactivates any zoom mode.

Tapping the screen no longer invokes a zoom, but selects an object.

Remote command:

Single zoom:

DISPlay[:WINDow<n>]:ZOOM:STATe on page 963

Multiple zoom:

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe on page 964 (for each multiple zoom window)

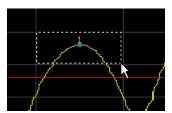
7.2.3 How to Zoom Into a Diagram

The remote commands required to zoom into a display are described in Chapter 11.8.1, "Zooming into the Display", on page 962.

The following tasks are described here:

- "To zoom into the diagram at one position" on page 462
- "To return to selection mode in the diagram" on page 462
- "To return to original display" on page 462
- "To zoom into multiple positions in the diagram" on page 463

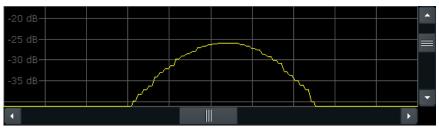
To zoom into the diagram at one position


1.

Click on the "Single Zoom" icon in the toolbar.

Zoom mode is activated.

2. Select the area in the diagram to be enlarged on the touchscreen. The selected area is indicated by a dotted rectangle.


When you leave the touchscreen, the diagram is replaced by the zoomed trace area.

3. Repeat these steps, if necessary, to enlarge the diagram further.

Scrolling in the zoomed display

You can scroll the diagram area to display the entire diagram using the scrollbars at the right and at the bottom of the diagram.

To return to selection mode in the diagram

While you are in zoom mode, touching the screen changes the zoom area. In order to select or move a trace or marker, you must switch back to selection mode:

Select the "Selection mode" icon in the toolbar.

To return to original display

Click on the "Zoom Off" icon in the toolbar.

The original trace display is restored. Zoom mode remains active, however.

To switch off zoom mode and return to selection mode, select the "Selection mode" icon in the toolbar.

To zoom into multiple positions in the diagram

Click on the "Multiple Zoom" icon in the toolbar.

Multiple zoom mode is activated.

Select the first area in the diagram to be enlarged as described in "To zoom into the diagram at one position" on page 462. The selected area is indicated by a dotted rectangle.

When you have completed your selection, the original trace is shown in an overview diagram with the selected area indicated by a dotted rectangle. The zoomed trace area is displayed in a separate window (see Figure 7-4.

- In the overview diagram, select the next area to be enlarged.
 The second zoom area is indicated in the overview diagram, and a second zoom window is displayed.
- 4. Repeat these steps, if necessary, to zoom into further trace areas (up to four).

To move or change zoom areas

In multiple zoom mode, you can change the size or position of the individual zoom areas easily at any time.

- 1. If necessary, switch off zoom mode and return to selection mode by selecting the "Selection mode" icon in the toolbar.
- 2. To resize a zoom area, tap directly **on** the corresponding frame in the overview window and drag the line to change the size of the frame.

To move a zoom area, tap **inside** the corresponding frame in the overview window and drag the frame to the new position.

The contents of the zoom windows are adapted accordingly.

7.3 Trace Configuration

A trace is a collection of measured data points. The trace settings determine how the measured data is analyzed and displayed on the screen.

•	Basics on Setting up Traces	464
•	Trace Configuration	478
•	How to Configure Traces	490

7.3.1 Basics on Setting up Traces

Some background knowledge on traces is provided here for a better understanding of the required configuration settings.

•	Mapping Samples to sweep Points with the Trace Detector	464
•	Analyzing Several Traces - Trace Mode	467
	How Many Traces are Averaged - Sweep Count + Sweep Mode	
•	How Trace Data is Averaged - the Averaging Mode	469
	Combining Several Trace Results - Trace Math Evaluation	
	Trace Smoothing	
	Working with Spectrograms.	

7.3.1.1 Mapping Samples to sweep Points with the Trace Detector

A trace displays the values measured at the sweep points. The number of samples taken during a sweep can be much larger than the number of sweep points that are displayed in the measurement trace.

Example:

Assume the following measurement parameters:

• Sample rate: 32 MSamples / s

sweep points: 1000sweep time: 100 ms

Span: 5 GHz

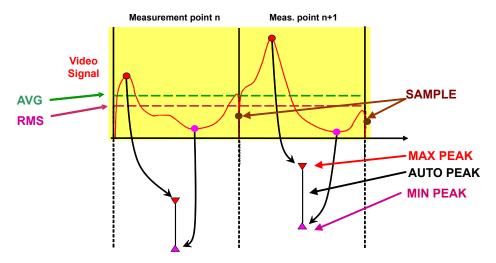
During a single sweep, 3.2 * 10⁶ samples are collected and distributed to 1000 sweep points, i.e. 3200 samples are collected per sweep point. For each sweep point, the measured data for a frequency span of 5 MHz (span/<sweep points>) is analyzed.

Note that if you increase the number of sweep points, the frequency span analyzed for each point in the trace decreases, making the result more stable.

See also Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418.

Obviously, a data reduction must be performed to determine which of the samples are displayed for each sweep point. This is the trace detector's task.

The trace detector can analyze the measured data using various methods:



The detector activated for the specific trace is indicated in the corresponding trace information by an abbreviation.

Table 7-1: Detector types

Detector	Abbrev.	Description
Positive Peak	Pk	Determines the largest of all positive peak values of the levels measured at the individual frequencies which are displayed in one sample point
Negative Peak	Mi	Determines the smallest of all negative peak values of the levels measured at the individual frequencies which are displayed in one sample point
Auto Peak	Ар	Combines the peak detectors; determines the maximum and the minimum value of the levels measured at the individual frequencies which are displayed in one sample point
		(not available for SEM)
RMS	Rm	Calculates the root mean square of all samples contained in a sweep point.
		To this effect, R&S FSW uses the linear voltage after envelope detection. The sampled linear values are squared, summed and the sum is divided by the number of samples (= root mean square). For logarithmic display, the logarithm is formed from the square sum. For linear display, the root mean square value is displayed. Each sweep point thus corresponds to the power of the measured values summed up in the sweep point.
		The RMS detector supplies the power of the signal irrespective of the wave- form (CW carrier, modulated carrier, white noise or impulsive signal). Correc- tion factors as needed for other detectors to measure the power of the different signal classes are not required.
Average	Av	Calculates the linear average of all samples contained in a sweep point.
		To this effect, R&S FSW uses the linear voltage after envelope detection. The sampled linear values are summed up and the sum is divided by the number of samples (= linear average value). For logarithmic display, the logarithm is formed from the average value. For linear display, the average value is displayed. Each sweep point thus corresponds to the average of the measured values summed up in the sweep point.
		The average detector supplies the average value of the signal irrespective of the waveform (CW carrier, modulated carrier, white noise or impulsive signal).
Sample	Sa	Selects the last measured value of the levels measured at the individual frequencies which are displayed in one sample point; all other measured values for the frequency range are ignored
Quasi Peak	QP	Resembles the behavior of an analog voltmeter by analyzing the measured values for a sample point. The quasipeak detector is especially designed for the requirements of EMI measurements and is used for analyzing pulse-shaped spurious. This detector is only available if the R&S FSW EMI measurement option (K54) is installed.

The result obtained from the selected detector for a sweep point is displayed as the value at this frequency point in the trace.

You can define the trace detector to be used for the individual traces manually, or the R&S FSW can select the appropriate detector automatically.

The detectors of the R&S FSW are implemented as pure digital devices. All detectors work in parallel in the background, which means that the measurement speed is independent of the detector combination used for different traces.

RMS detector and VBW

If the RMS detector is selected, the video bandwidth in the hardware is bypassed. Thus, duplicate trace averaging with small VBWs and RMS detector no longer occurs. However, the VBW is still considered when calculating the sweep time. This leads to a longer sweep time for small VBW values. Thus, you can reduce the VBW value to achieve more stable trace curves even when using an RMS detector. Normally, if the RMS detector is used, the sweep time should be increased to get more stable traces.

Auto detector

If the R&S FSW is set to define the appropriate detector automatically, the detector is set depending on the selected trace mode:

Trace mode	Detector
Clear Write	Auto Peak
Max Hold	Positive Peak
Min Hold	Negative Peak
Average	Sample Peak
View	-
Blank	-

7.3.1.2 Analyzing Several Traces - Trace Mode

If several sweep are performed one after the other, or continuous sweep are performed, the trace mode determines how the data for subsequent traces is processed. After each sweep, the trace mode determines whether:

- The data is frozen (View)
- The data is hidden (Blank)
- The data is replaced by new values (Clear Write)
- The data is replaced selectively (Max Hold, Min Hold, Average)

Each time the trace mode is changed, the selected trace memory is cleared.

The trace mode also determines the detector type if the detector is set automatically, see Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464.

The R&S FSW supports the following trace modes:

Table 7-2: Overview of available trace modes

Trace Mode	Description		
Blank	Hides the selected trace.		
Clear Write	Overwrite mode: the trace is overwritten by each sweep. This is the default setting. All available detectors can be selected.		
Max Hold	The maximum value is determined over several measurements and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is greater than the previous one.		
	This mode is especially useful with modulated or pulsed signals. The signal spectrum is filled up upon each sweep until all signal components are detected in a kind of envelope.		
	This mode is not available for statistics measurements.		
Min Hold	The minimum value is determined from several measurements and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is lower than the previous one.		
	This mode is useful for example for making an unmodulated carrier in a composite signal visible. Noise, interference signals or modulated signals are suppressed, whereas a CW signal is recognized by its constant level.		
	This mode is not available for statistics measurements.		
Average	The average is formed over several measurements and displayed. The Sweep / Average Count determines the number of averaging procedures. This mode is not available for statistics measurements.		
View	The current contents of the trace memory are frozen and displayed.		

If a trace is frozen ("View" mode), the measurement settings, apart from scaling settings, can be changed without impact on the displayed trace. The fact that the displayed trace no longer matches the current measurement settings is indicated by a yellow asterisk on the tab label.

If you change any parameters that affect the scaling of the diagram axes, the R&S FSW automatically adapts the trace data to the changed display range. This allows you to zoom into the diagram after the measurement to show details of the trace.

7.3.1.3 How Many Traces are Averaged - Sweep Count + Sweep Mode

In "Average" trace mode, the sweep count and sweep mode determine how many traces are averaged. The more traces are averaged, the smoother the trace is likely to become.

The algorithm for averaging traces depends on the sweep mode and sweep count.

- sweep count = 0 (default)
 - In "Continuous" sweep mode, a continuous average is calculated for 10 sweeps, according to the following formula:

$$Trace = \frac{9 * Trace_{old} + MeasValue}{10}$$

Figure 7-5: Equation 1

Due to the weighting between the current trace and the average trace, past values have practically no influence on the displayed trace after about ten sweeps. With this setting, signal noise is effectively reduced without need for restarting the averaging process after a change of the signal.

In "Single" sweep mode, the current trace is averaged with the previously stored averaged trace. No averaging is carried out for the first sweep but the measured value is stored in the trace memory. The next time a sweep is performed, the trace average is calculated according to the following formula:

$$Trace = \frac{Trace_{old} + MeasValue}{2}$$

The averaged trace is then stored in the trace memory.

• sweep count = 1

The currently measured trace is displayed and stored in the trace memory. No averaging is performed.

sweep count > 1

For both **"Single"** sweep mode and **"Continuous"** sweep mode, averaging takes place over the selected number of sweeps. In this case the displayed trace is determined during averaging according to the following formula:

$$Trace_n = \frac{1}{n} \cdot \left[\sum_{i=1}^{n-1} (T_i) + MeasValue_n \right]$$

Figure 7-6: Equation 2

Where n is the number of the current sweep ($n = 2 \dots$ Sweep Count).

No averaging is carried out for the first sweep but the measured value is stored in the trace memory. With increasing n, the displayed trace is increasingly smoothed since there are more individual sweeps for averaging.

After the selected number of sweeps, the average trace is saved in the trace memory. Until this number of sweeps is reached, a preliminary average is displayed. When the averaging length defined by the "Sweep Count" is attained, averaging is continued in continuous sweep mode or for "Continue Single Sweep" according to the following formula:

$$Trace = \frac{(N-1)*Trace_{old} + MeasValue}{N}$$

Where N is the sweep count

7.3.1.4 How Trace Data is Averaged - the Averaging Mode

When the trace is averaged over several sweeps (Trace mode: "Average"), different methods are available to determine the trace average.

With logarithmic averaging, the dB values of the display voltage are averaged or subtracted from each other with trace mathematical functions.

With linear averaging, the level values in dB are converted into linear voltages or powers before averaging. Voltage or power values are averaged or offset against each other and reconverted into level values.

For stationary signals, the two methods yield the same result.

Logarithmic averaging is recommended if sinewave signals are to be clearly visible against noise since with this type of averaging noise suppression is improved while the sinewave signals remain unchanged.

For noise or pseudo-noise signals, the positive peak amplitudes are decreased in logarithmic averaging due to the characteristic involved. The negative peak values are increased relative to the average value. If the distorted amplitude distribution is averaged, a value is obtained that is smaller than the actual average value. The difference is -2.5 dB.

This low average value is usually corrected in noise power measurements by a 2.5 dB factor. Therefore the R&S FSW offers the selection of linear averaging. The trace data is linearized before averaging, then averaged and logarithmized again for display on the screen. The average value is always displayed correctly irrespective of the signal characteristic.

7.3.1.5 Combining Several Trace Results - Trace Math Evaluation

If you have several traces with different modes, for example an average trace and a maximum trace, it may be of interest to compare the results of both traces. In this example, you could analyze the maximum difference between the average and maximum values. To analyze the span of result values, you could subtract the minimum trace from the maximum trace. For such tasks, mathematical functions on trace results are provided.

7.3.1.6 Trace Smoothing

A Video Bandwidth Filter (VBW) is a hardware-based method of smoothing the trace (see also Chapter 6.5.1.2, "Smoothing the Trace Using the Video Bandwidth", on page 414). However, other sweep and bandwidth settings may be coupled to the VBW, and for some signals, a VBW may not be freely selectable to obtain the required smoothing effect. Therefore, a software-based trace smoothing function is also available.

(Software-based) **smoothing** is a way to visually remove anomalies in the trace that may distort the results. The smoothing process is based on a moving average over the complete measurement range. The number of samples included in the averaging process (the *aperture* size) is variable and is a percentage of all samples that the trace consists of.

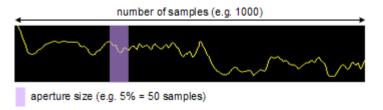


Figure 7-7: Sample size included in trace smoothing

Effects of smoothing on post-processing functions

Note that in Spectrum mode, all functions performed after the sweep, such as limit checks, markers, or channel power measurements, are based on the smoothed trace data. Thus, the results differ from results based on the original trace.

You can turn trace smoothing on and off for all traces individually and compare, for example, the raw and the smooth trace.

Linear smoothing is based on the following algorithm:

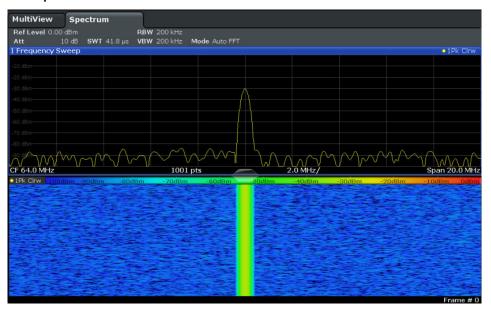
$$y'(s) = \frac{1}{n} \left(\sum_{x=s-\frac{n-1}{2}}^{x=s+\frac{n-1}{2}} y(x) \right)$$

Equation 7-1: Linear trace smoothing

With:

s = sample number

x =sample offset from s


n = aperture size

7.3.1.7 Working with Spectrograms

In addition to the standard "level versus frequency" or "level versus time" traces, the R&S FSW also provides a spectrogram display of the measured data.

A spectrogram shows how the spectral density of a signal varies over time. The x-axis shows the frequency, the y-axis shows the time. A third dimension, the power level, is indicated by different colors. Thus you can see how the strength of the signal varies over time for different frequencies.

Example:

In this example, you see the spectrogram for the calibration signal of the R&S FSW, compared to the standard spectrum display. Since the signal does not change over time, the color of the frequency levels does not change over time, i.e. vertically. The legend above the spectrogram display describes the power levels the colors represent.

Result display

The spectrogram result can consist of the following elements:

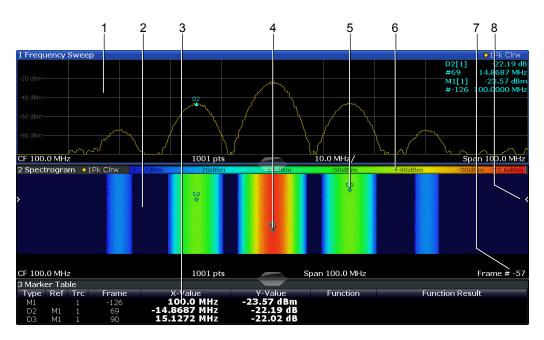


Figure 7-8: Screen layout of the spectrogram result display

- 1 = Spectrum result display
- 2 = Spectrogram result display
- 3 = Marker list
- 4 = Marker
- 5 = Delta marker
- 6 = Color map
- 7 = Timestamp / frame number
- 8 = Current frame indicator

For more information about spectrogram configuration, see Chapter 7.3.2.4, "Spectrogram Settings", on page 486.

Remote commands:

Activating and configuring spectrograms:

Chapter 11.8.2.2, "Configuring Spectrograms", on page 971

Storing results:

MMEMory:STORe<n>:SPECtrogram on page 1092

•	Time Frames	.472
	Color Maps	
	Markers in the Spectrogram.	

Time Frames

The time information in the spectrogram is displayed vertically, along the y-axis. Each line (or trace) of the y-axis represents one or more captured sweep and is called a **time frame** or simply "frame". As with standard spectrum traces, several measured values are combined in one sweep point using the selected detector.

(See Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464).

Frames are sorted in chronological order, beginning with the most recently recorded frame at the top of the diagram (frame number 0). With the next sweep, the previous frame is moved further down in the diagram, until the maximum number of captured frames is reached. The display is updated continuously during the measurement, and the measured trace data is stored. Spectrogram displays are continued even after single measurements unless they are cleared manually.

The maximum number of frames that you can capture is summarized in Table 7-3.

Table 7-3: Correlation between number of sweep points and number of frames stored in the history buffer

Sweep Points	Max. History Depth	
≤1250	20000	
2001	12488	
4001	6247	
8.001	3124	
16.001	1562	
32.001	781	

The scaling of the time axis (y-axis) is not configurable. However, you can enlarge the spectrogram display by maximizing the window using the "Split/Maximize" key.

Frame analysis - Frame count vs. sweep count

As described for standard spectrum sweeps, the sweep count defines how many sweeps are analyzed to create a single trace. Thus, for a trace in "Average" mode, for example, a sweep count of 10 means that 10 sweeps are averaged to create a single trace, or frame.

The frame count, on the other hand, determines how many frames are plotted during a single sweep measurement (as opposed to a continuous sweep). For a frame count of 2, for example, 2 frames will be plotted during each single sweep. For continuous sweep mode, the frame count is irrelevant; one frame is plotted per sweep until the measurement is stopped.

If you combine the two settings, 20 sweeps will be performed for each single sweep measurement. The first 10 will be averaged to create the first frame, the next 10 will be averaged to create the second frame.

As you can see, increasing the sweep count increases the accuracy of the individual traces, while increasing the frame count increases the number of traces in the diagram.

Especially for "Average" or "Min hold" and "Max hold" trace modes, the number of sweeps that are analyzed to create a single trace has an effect on the accuracy of the results. Thus, you can also define whether the results from frames in previous traces are considered in the analysis for each new trace ("Continue frame").

Tracking absolute time - timestamps

Alternatively to the frame count, the absolute time (that is: a *timestamp*) at which a frame was captured can be displayed. While the measurement is running, the timestamp shows the system time. In single sweep mode or if the sweep is stopped, the timestamp shows the time and date at the end of the sweep. Thus, the individual frames can be identified by their timestamp or their frame count.

When active, the timestamp replaces the display of the frame number in the diagram footer (see Figure 7-8).

Displaying individual frames

The spectrogram diagram contains all stored frames since it was last cleared. Arrows on the left and right border of the spectrogram indicate the currently selected frame. The spectrum diagram always displays the spectrum for the currently selected frame.

The current frame number is indicated in the diagram footer, or alternatively a time-stamp, if activated. The current frame, displayed at the top of the diagram, is frame number 0. Older frames further down in the diagram are indicated by a negative index, e.g."-10". You can display the spectrum diagram of a previous frame by changing the current frame number.

Color Maps

Spectrograms assign power levels to different colors to visualize them. The legend above the spectrogram display describes the power levels the colors represent.

The color display is highly configurable to adapt the spectrograms to your needs. You can define:

- Which colors to use (Color scheme)
- Which value range to apply the color scheme to
- How the colors are distributed within the value range, i.e where the focus of the visualization lies (shape of the color curve)

The individual colors are assigned to the power levels automatically by the R&S FSW.

The Color Scheme

You can select which colors are assigned to the measured values. Four different color ranges or "schemes" are available:

Hot

Uses a color range from blue to red. Blue colors indicate low levels, red colors indicate high ones.

Cold

Uses a color range from red to blue. Red colors indicate low levels, blue colors indicate high ones.

The "Cold" color scheme is the inverse "Hot" color scheme.

Radar

Uses a color range from black over green to light turquoise with shades of green in between. Dark colors indicate low levels, light colors indicate high ones.

Grayscale

Shows the results in shades of gray. Dark gray indicates low levels, light gray indicates high ones.

The Value Range of the Color Map

If the measured values only cover a small area in the spectrogram, you can optimize the displayed value range so it becomes easier to distinguish between values that are close together. Display only parts of interest.

The Shape and Focus of the Color Curve

The color mapping function assigns a specified color to a specified power level in the spectrogram display. By default, colors on the color map are distributed evenly. However, to visualize a certain area of the value range in greater detail than the rest, you can set the focus of the color mapping to that area. Changing the focus is performed by changing the shape of the color curve.

The color curve is a tool to shift the focus of the color distribution on the color map. By default, the color curve is linear. If you shift the curve to the left or right, the distribution becomes non-linear. The slope of the color curve increases or decreases. One end of the color palette then covers a large range of results, while the other end distributes several colors over a relatively small result range.

You can use this feature to put the focus on a particular region in the diagram and to be able to detect small variations of the signal.

Example:

In the color map based on the linear color curve, the range from -100 dBm to -60 dBm is covered by blue and a few shades of green only. The range from -60 dBm to -20 dBm is covered by red, yellow and a few shades of green.

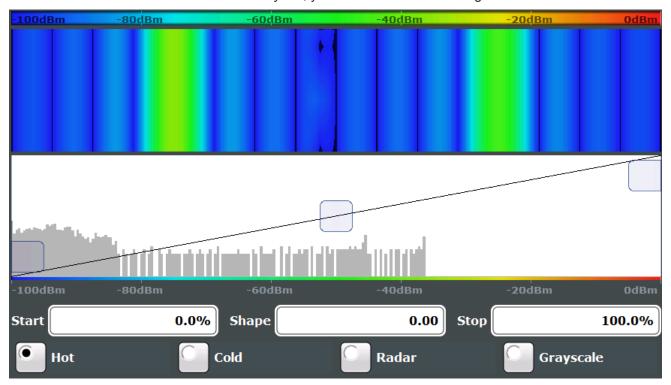


Figure 7-9: Spectrogram with (default) linear color curve shape = 0

The sample spectrogram is dominated by blue and green colors. After shifting the color curve to the left (negative value), more colors cover the range from -100 dBm to -60 dBm (blue, green and yellow). This range occurs more often in the example. The range from -60 dBm to -20 dBm, on the other hand, is dominated by various shades of red only.

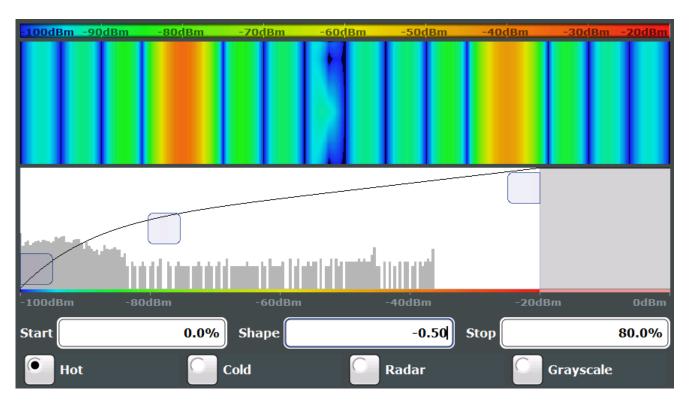
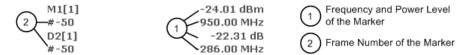



Figure 7-10: Spectrogram with non-linear color curve (shape = -0.5)

Markers in the Spectrogram

Markers and delta markers are shaped like diamonds in the spectrogram. They are only displayed in the spectrogram if the marker position is inside the visible area of the spectrogram. If more than two markers are active, the marker values are displayed in a separate marker table.

In the spectrum result display, the markers and their frequency and level values (1) are displayed as usual. Additionally, the frame number is displayed to indicate the position of the marker in time (2).

In the spectrogram result display, you can activate up to 16 markers or delta markers at the same time. Each marker can be assigned to a different frame. Therefore, in addition to the frequency you also define the frame number when activating a new marker. If no frame number is specified, the marker is positioned on the currently selected frame. All markers are visible that are positioned on a visible frame. Special search functions are provided for spectrogram markers.

In the spectrum result display, only the markers positioned on the currently selected frame are visible. In "Continuous Sweep" mode, this means that only markers positioned on frame 0 are visible. To view markers that are positioned on a frame other than frame 0 in the spectrum result display, you must stop the measurement and select the corresponding frame.

7.3.2 Trace Configuration

Trace configuration includes the following settings and functions:

•	Trace Settings	.478
	Trace Math	
•	Trace / Data Export Configuration	.484
	Spectrogram Settings.	

7.3.2.1 Trace Settings

Access: "Overview" > "Analysis" > "Traces"

Or: TRACE > "Trace Config"

You can configure the settings for up to 6 individual traces.

For settings on spectrograms, see Chapter 7.3.2.4, "Spectrogram Settings", on page 486.

Trace data can also be exported to an ASCII file for further analysis. For details see Chapter 7.3.2.3, "Trace / Data Export Configuration", on page 484.

Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6	479
Trace Mode	479
Detector	479
Hold	480
Smoothing	480
Average Mode	
Average Count	

Predefined Trace Settings - Quick Config	481
Trace 1/Trace 2/Trace 3/Trace 4 (Softkeys)	482
Copy Trace	482

Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6

Selects the corresponding trace for configuration. The currently selected trace is highlighted.

For details see Chapter 7.3.3.1, "How to Configure a Standard Trace", on page 490.

Remote command:

Selected via numeric suffix of:TRACe<1...6> commands DISPlay[:WINDow<n>]:TRACe<t>[:STATe] on page 967

Trace Mode

Defines the update mode for subsequent traces.

For details, see Chapter 7.3.1.2, "Analyzing Several Traces - Trace Mode", on page 467.

"Clear Write" Overwrite mode: the trace is overwritten by each sweep. This is the

default setting.

The "Detector" is automatically set to "Auto Peak".

"Max Hold" The maximum value is determined over several sweeps and dis-

played. The R&S FSW saves each trace point in the trace memory

only if the new value is greater than the previous one. The "Detector" is automatically set to "Positive Peak". This mode is not available for statistics measurements.

"Min Hold" The minimum value is determined from several measurements and

displayed. The R&S FSW saves each trace point in the trace memory

only if the new value is lower than the previous one. The "Detector" is automatically set to "Negative Peak". This mode is not available for statistics measurements.

"Average" The average is formed over several sweeps.

The Sweep / Average Count determines the number of averaging

procedures.

The "Detector" is automatically set to "Sample".

This mode is not available for statistics measurements.

"View" The current contents of the trace memory are frozen and displayed.

"Blank" Removes the selected trace from the display.

Remote command:

DISPlay[:WINDow<n>]:TRACe<t>:MODE on page 965

Detector

Defines the trace detector to be used for trace analysis.

For details see Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464.

Note: For EMI measurements, the trace detector is used for the initial peak search only, not for the final test. The detector for the final test is configured in the EMI marker settings, see Chapter 5.13.4.1, "EMI Marker Configuration", on page 306.

"Auto" Selects the optimum detector for the selected trace and filter mode.

This is the default setting.

"Type" Defines the selected detector type.

Note: If the EMI (R&S FSW-K54) measurement option is installed and the filter type "CISPR" is selected, additional detectors are availa-

ble, even if EMI measurement is not active.

For details see Chapter 5.13.3.2, "Detectors and Dwell Time",

on page 298.

Remote command:

```
[SENSe:][WINDow<n>:]DETector<t>[:FUNCtion] on page 969
[SENSe:][WINDow<n>:]DETector<t>[:FUNCtion]:AUTO on page 970
```

Hold

If activated, traces in "Min Hold", "Max Hold" and "Average" mode are not reset after specific parameter changes have been made.

Normally, the measurement is started again after parameter changes, before the measurement results are analyzed (e.g. using a marker). In all cases that require a new measurement after parameter changes, the trace is reset automatically to avoid false results (e.g. with span changes). For applications that require no reset after parameter changes, the automatic reset can be switched off.

The default setting is off.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:MODE:HCONtinuous on page 966
```

Smoothing

If enabled, the trace is smoothed by the specified value (between 1 % and 50 %). The smoothing value is defined as a percentage of the display width. The larger the smoothing value, the greater the smoothing effect.

Note: Effects of smoothing on post-processing functions. Note that in Spectrum mode, all functions performed after the sweep, such as limit checks, markers, or channel power measurements, are based on the smoothed trace data. Thus, the results will differ from results based on the original trace.

For more information see Chapter 7.3.1.6, "Trace Smoothing", on page 470.

Remote command:

```
DISPlay[:WINDow<n>]:TRACe<t>:SMOothing[:STATe] on page 968
DISPlay[:WINDow<n>]:TRACe<t>:SMOothing:APERture on page 967
```

Average Mode

Defines the mode with which the trace is averaged over several sweeps. A different averaging mode can be defined for each trace.

This setting is only applicable if trace mode "Average" is selected.

How many sweeps are averaged is defined by the "Sweep / Average Count" on page 423.

For details see Chapter 7.3.1.4, "How Trace Data is Averaged - the Averaging Mode", on page 469.

"Linear" The power level values are converted into linear units prior to averag-

ing. After the averaging, the data is converted back into its original

unit.

"Logarithmic" For logarithmic scaling, the values are averaged in dBm. For linear

scaling, the behavior is the same as with linear averaging.

"Power" Activates linear power averaging.

The power level values are converted into unit Watt prior to averaging. After the averaging, the data is converted back into its original

unit.

Use this mode to average power values in Volts or Amperes cor-

rectly.

Remote command:

[SENSe:] AVERage<n>: TYPE on page 969

Average Count

Determines the number of averaging or maximum search procedures If the trace modes "Average", "Max Hold" or "Min Hold" are set.

In continuous sweep mode, if sweep count = 0 (default), averaging is performed over 10 sweeps. For sweep count =1, no averaging, Max Hold or Min Hold operations are performed.

This value is identical to the Sweep / Average Count setting in the "Sweep" settings.

Remote command:

[SENSe:]AVERage<n>:COUNt on page 968

Predefined Trace Settings - Quick Config

Commonly required trace settings have been predefined and can be applied very quickly by selecting the appropriate button.

Function	on Trace Settings	
Preset All Traces	Trace 1:	Clear Write Auto Detector (Auto Peak)
	Traces 2-6:	Blank Auto Detector
Set Trace Mode Max Avg Min	Trace 1:	Max Hold Auto Detector (Positive Peak)
	Trace 2:	Average Auto Detector (Sample)
	Trace 3:	Min Hold Auto Detector (Negative Peak)
	Traces 4-6:	Blank Auto Detector
Set Trace Mode Max ClrWrite Min	Trace 1:	Max Hold Auto Detector (Positive Peak)

Trace Configuration

Function	Trace Settings	S
	Trace 2:	Clear Write Auto Detector (Auto Peak)
	Trace 3:	Min Hold Auto Detector (Negative Peak)
	Traces 4-6:	Blank Auto Detector

Trace 1/Trace 2/Trace 3/Trace 4 (Softkeys)

Displays the "Traces" settings and focuses the "Mode" list for the selected trace.

For details see Chapter 7.3.3.1, "How to Configure a Standard Trace", on page 490.

Remote command:

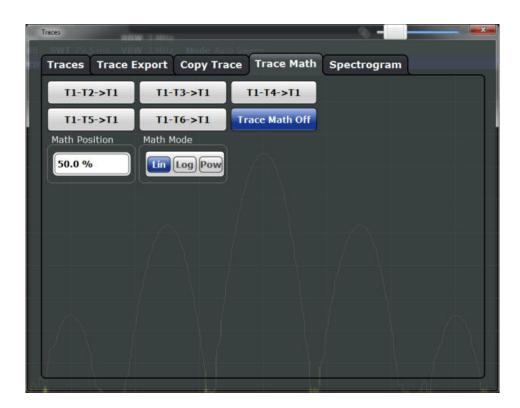
DISPlay[:WINDow<n>]:TRACe<t>[:STATe] on page 967

Copy Trace

Access: "Overview" > "Analysis" > "Traces" > "Copy Trace"

Or: TRACE > "Copy Trace"

Copies trace data to another trace.


The first group of buttons (labeled "Trace 1" to "Trace 6") selects the source trace. The second group of buttons (labeled "Copy to Trace 1" to "Copy to Trace 6") selects the destination.

Remote command:

TRACe<n>: COPY on page 970

7.3.2.2 Trace Math

Access: TRACE > "Trace Math"

I race I	Math Function	483
Trace N	Math Off	483
	Math Position	
Trace N	Math Mode	484

Trace Math Function

Defines which trace is subtracted from trace 1. The result is displayed in trace 1 and refers to the zero point defined with the Trace Math Position setting. The following subtractions can be performed:

"T1-T2 -> T1"	Subtracts trace 2 from trace 1.
"T1-T3 -> T1"	Subtracts trace 3 from trace 1
"T1-T4 -> T1"	Subtracts trace 4 from trace 1
"T1-T5 -> T1"	Subtracts trace 5 from trace 1
"T1-T6 -> T1"	Subtracts trace 6 from trace 1

To switch off the trace math, use the Trace Math Off button.

Remote command:

CALCulate<n>:MATH[:EXPression][:DEFine] on page 977 CALCulate<n>:MATH:STATe on page 979

Trace Math Off

Deactivates any previously selected trace math functions.

Remote command:

CALC:MATH:STAT OFF, see CALCulate<n>:MATH:STATe on page 979

Trace Configuration

Trace Math Position

Defines the zero point on the y-axis of the resulting trace in % of the diagram height. The range of values extends from -100 % to +200 %.

Remote command:

CALCulate<n>:MATH:POSition on page 978

Trace Math Mode

Defines the mode for the trace math calculations.

"Lin"

Activates linear subtraction, which means that the power level values are converted into linear units prior to subtraction. After the subtraction, the data is converted back into its original unit.

This setting takes effect if the grid is set to a linear scale. In this case, subtraction is done in two ways (depending on the set unit):

- The unit is set to either W or dBm: the data is converted into W prior to subtraction, i.e. averaging is done in W.
- The unit is set to either V, A, dBmV, dBµV, dBµA or dBpW: the data is converted into V prior to subtraction, i.e. subtraction is done in V.

"Log" Activates logarithmic subtraction.

This subtraction method only takes effect if the grid is set to a logarithmic scale, i.e. the unit of the data is dBm. In this case the values are subtracted in dBm. Otherwise (i.e. with linear scaling) the behavior is the same as with linear subtraction.

"Power" Activates linear power subtraction.

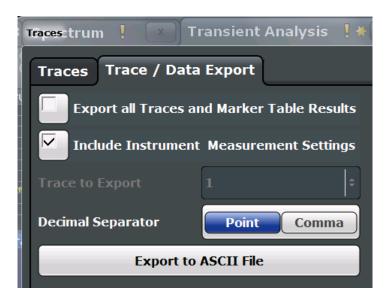
The power level values are converted into unit Watt prior to subtraction. After the subtraction, the data is converted back into its original ...

Unlike the linear mode, the subtraction is always done in W.

Remote command:

CALCulate<n>:MATH:MODE on page 978

7.3.2.3 Trace / Data Export Configuration


Access: "Save" > "Export" > "(Trace) Export Config"

Or: TRACE > "Trace Config" > "Trace/Data Export"

The R&S FSW provides various evaluation methods for the results of the performed measurements. However, you may want to evaluate the data with other, external applications. In this case, you can export the measurement data to an ASCII file.

The standard data management functions (e.g. saving or loading instrument settings) that are available for all R&S FSW applications are not described here.

Export all Traces and all Table Results	485
Include Instrument Measurement Settings	485
Trace to Export	
Decimal Separator	
Export Trace to ASCII File	

Export all Traces and all Table Results

Selects all displayed traces and result tables (e.g. Result Summary, marker table etc.) in the current application for export to an ASCII file.

Alternatively, you can select one specific trace only for export (see Trace to Export).

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Remote command:

FORMat: DEXPort: TRACes on page 1091

Include Instrument Measurement Settings

Includes additional instrument and measurement settings in the header of the export file for result data.

See Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570 for details.

Remote command:

FORMat: DEXPort: HEADer on page 1090

Trace to Export

Defines an individual trace that will be exported to a file.

This setting is not available if Export all Traces and all Table Results is selected.

Decimal Separator

Defines the decimal separator for floating-point numerals for the data export files. Evaluation programs require different separators in different languages.

Remote command:

FORMat: DEXPort: DSEParator on page 1064

Trace Configuration

Export Trace to ASCII File

Opens a file selection dialog box and saves the selected trace in ASCII format (.dat) to the specified file and directory.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

If the spectrogram display is selected when you perform this function, the entire histogram buffer with all frames is exported to a file. The data for a particular frame begins with information about the frame number and the time that frame was recorded. For large history buffers the export operation may take some time.

For details on the file format in the Spectrum application, see Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570.

Note: Secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

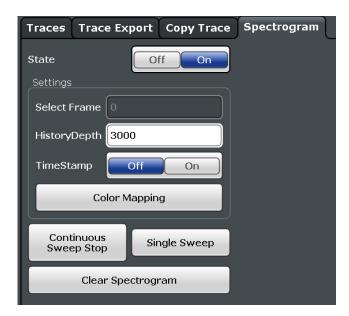
Remote command:

MMEMory:STORe<n>:TRACe on page 1093
MMEMory:STORe<n>:SPECtrogram on page 1092

7.3.2.4 Spectrogram Settings

Access: TRACE > "Spectrogram Config"

The individual settings available for spectrogram display are described here. For settings on color mapping, see "Color Map Settings" on page 489.


Settings concerning the frames and how they are handled during a sweep are provided as additional sweep settings for spectrogram display, see "Spectrogram Frames" on page 426.

Search functions for spectrogram markers are described in "Marker Search Settings for Spectrograms" on page 516.

•	General Spectrogram Settings	486
•	Color Map Settings	489

General Spectrogram Settings

This section describes general settings for spectrogram display. They are available when you press the TRACE key and then select the "Spectrogram Config" softkey.

State	487
Selecting a frame to display	487
History Depth	
Timestamp	
Color Mapping	
Continuous Sweep/RUN CONT	
Single Sweep/ RUN SINGLE	
Clear Spectrogram.	

State

Activates and deactivates the spectrogram result display

Remote command:

CALCulate<n>:SPECtrogram[:STATe] on page 975

Selecting a frame to display

Selects a specific frame, loads the corresponding trace from the memory, and displays it in the Spectrum window.

Note that activating a marker or changing the position of the active marker automatically selects the frame that belongs to that marker.

This function is only available in single sweep mode or if the sweep is stopped, and only if a spectrogram is selected.

The most recent frame is number 0, all previous frames have a negative number.

For more details see "Time Frames" on page 472.

Remote command:

CALCulate<n>:SPECtrogram:FRAMe:SELect on page 973

History Depth

Sets the number of frames that the R&S FSW stores in its memory.

The maximum number of frames depends on the Sweep Points. For an overview of the maximum number of frames depending on the number of sweep points, see Table 7-3.

Trace Configuration

If the memory is full, the R&S FSW deletes the oldest frames stored in the memory and replaces them with the new data.

Remote command:

CALCulate<n>:SPECtrogram:HDEPth on page 973

Timestamp

Activates and deactivates the timestamp. The timestamp shows the system time while the measurement is running. In single sweep mode or if the sweep is stopped, the timestamp shows the time and date of the end of the sweep.

When active, the timestamp replaces the display of the frame number.

Remote command:

```
CALCulate<n>:SPECtrogram:TSTamp[:STATe] on page 974
CALCulate<n>:SPECtrogram:TSTamp:DATA? on page 974
```

Color Mapping

Opens the "Color Map" dialog.

For details see "Color Maps" on page 474.

Continuous Sweep/RUN CONT

After triggering, starts the sweep and repeats it continuously until stopped. This is the default setting.

While the measurement is running, the "Continuous Sweep" softkey and the RUN CONT key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again. The results are not deleted until a new measurement is started.

Note: Sequencer. If the Sequencer is active, the "Continuous Sweep" softkey only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a channel-defined sequence. In this case, a channel in continuous sweep mode is swept repeatedly.

Furthermore, the RUN CONT key controls the Sequencer, not individual sweeps. RUN CONT starts the Sequencer in continuous mode.

For details on the Sequencer, see Chapter 4.4.1, "The Sequencer Concept", on page 110.

Remote command:

INITiate<n>:CONTinuous on page 728

Single Sweep/ RUN SINGLE

After triggering, starts the number of sweeps set in "Sweep Count". The measurement stops after the defined number of sweeps has been performed.

While the measurement is running, the "Single Sweep" softkey and the RUN SINGLE key are highlighted. The running measurement can be aborted by selecting the highlighted softkey or key again.

Note: Sequencer. If the Sequencer is active, the "Single Sweep" softkey only controls the sweep mode for the currently selected channel. However, the sweep mode only takes effect the next time the Sequencer activates that channel, and only for a chan-

nel-defined sequence. In this case, the Sequencer sweeps a channel in single sweep mode only once.

Furthermore, the RUN SINGLE key controls the Sequencer, not individual sweeps. RUN SINGLE starts the Sequencer in single mode.

If the Sequencer is off, only the evaluation for the currently displayed measurement channel is updated.

For details on the Sequencer, see Chapter 4.4.1, "The Sequencer Concept", on page 110.

Remote command:

INITiate<n>[:IMMediate] on page 729
CALCulate<n>:SPECtrogram:CONT on page 972

Clear Spectrogram

Resets the spectrogram result display and clears the history buffer.

This function is only available if a spectrogram is selected.

Remote command:

CALCulate<n>:SPECtrogram:CLEar[:IMMediate] on page 972

Color Map Settings

Access: "Overview" > "Analysis" > "Traces" > "Spectrogram" > "Color Mapping"

or: TRACE > "Spectrogram Config" > "Color Mapping"

For more information on color maps see "Color Maps" on page 474.

For details on changing color mapping settings see "How to Configure the Color Mapping" on page 493.

In addition to the available color settings, the dialog box displays the current color map and provides a preview of the display with the current settings.

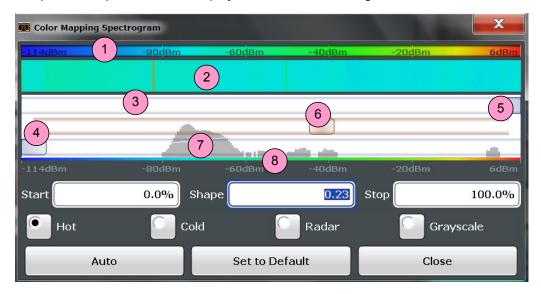


Figure 7-11: Color Mapping dialog box

Trace Configuration

- 1 = Color map: shows the current color distribution
- 2 = Preview pane: shows a preview of the spectrogram with any changes that you make to the color scheme
- 3 = Color curve pane: graphical representation of all settings available to customize the color scheme
- 4/5 = Color range start and stop sliders: define the range of the color map or amplitudes for the spectrogram
- 6 = Color curve slider: adjusts the focus of the color curve
- 7 = Histogram: shows the distribution of measured values
- 8 = Scale of the horizontal axis (value range)

Start / Stop

Defines the lower and upper boundaries of the value range of the spectrogram.

Remote command:

```
DISPlay[:WINDow<n>]:SPECtrogram:COLor:LOWer on page 976
DISPlay[:WINDow<n>]:SPECtrogram:COLor:UPPer on page 976
```

Shape

Defines the shape and focus of the color curve for the spectrogram result display.

"-1 to <0" More colors are distributed among the lower values
"0" Colors are distributed linearly among the values
">0 to 1" More colors are distributed among the higher values

Remote command:

DISPlay[:WINDow<n>]:SPECtrogram:COLor:SHAPe on page 976

Hot/Cold/Radar/Grayscale

Sets the color scheme for the spectrogram.

Remote command:

```
DISPlay[:WINDow<n>]:SPECtrogram:COLor[:STYLe] on page 977
```

Auto

Defines the color range automatically according to the existing measured values for optimized display.

Set to Default

Sets the color mapping to the default settings.

Remote command:

```
DISPlay[:WINDow<n>]:SPECtrogram:COLor:DEFault on page 975
```

7.3.3 How to Configure Traces

The following step-by-step procedures describe the following tasks:

•	How to Configure a Standard Trace	490
•	How to Display and Configure a Spectrogram	491
•	How to Copy Traces	496

7.3.3.1 How to Configure a Standard Trace

Step-by-step instructions on configuring the trace settings are provided here.

For details on individual functions and settings see Chapter 7.3.2.1, "Trace Settings", on page 478.

The remote commands required to perform these tasks are described in Chapter 11.8.2, "Configuring the Trace Display and Retrieving Trace Data", on page 964.

Trace settings are configured in the "Traces" dialog box.

To display the "Traces" dialog box, do one of the following:

- Press the TRACE key and then select the "Trace Config" softkey.
- Select "Analysis" from the "Overview", then select the "Traces" tab.
- 1. For each trace, select the "Trace Mode" and "Trace Detector". Traces with the trace mode "Blank" are not displayed.
- 2. To configure several traces to predefined display modes in one step, press the button for the required function:
 - "Preset All Traces"
 - "Set Trace Mode Avg | Max | Min"
 - "Set Trace Mode Max | ClrWrite | Min"

For details see Chapter 7.3.2.1, "Trace Settings", on page 478.

- For "Average" trace mode, define the number of sweeps to be averaged in the "Count" field.
- 4. If linear scaling is used, select the "Average Mode: Linear".
- 5. To improve the trace stability, increase the number of "Sweep Points" or the "Sweep Time" (in the "Sweep" settings).

All configured traces (not set to "Blank") are displayed after the next sweep.

How to Copy Traces

- 1. A trace copy function is provided in a separate tab of the "Traces" dialog box. To display this tab do one of the following:
 - Select the TRACE key and then the "Trace Copy" softkey.
 - Select "Analysis" from the "Overview", then select the "Trace Copy" tab.
- 2. Select the "Source" trace to be copied.
- 3. Select the "Copy to trace..." button for the trace to which the settings are to be applied.

The settings from the source trace are applied to the destination trace. The newly configured trace (if not set to "Blank") is displayed after the next sweep.

7.3.3.2 How to Display and Configure a Spectrogram

Step-by-step instructions on how to display and configure a spectrogram are provided here. For details on individual functions and settings see Chapter 7.3.2.4, "Spectrogram Settings", on page 486.

The remote commands required to perform these tasks are described in Chapter 11.8.2.2, "Configuring Spectrograms", on page 971.

The following tasks are described here:

- "To display a spectrogram" on page 492
- "To remove the spectrogram display" on page 492
- "To set a marker in the spectrogram" on page 492
- "To configure a spectrogram" on page 493
- "To select a color scheme" on page 493
- "To set the value range graphically using the color range sliders" on page 494
- "To set the value range of the color map numerically" on page 494
- "To set the color curve shape graphically using the slider" on page 495
- "To set the color curve shape numerically" on page 495

To display a spectrogram

 In the "Overview", select "Display", then drag the evaluation type "Spectrogram" to the diagram area.

Alternatively:

- a) Select the TRACE key and then the "Spectrogram Config" softkey.
- b) Toggle "Spectrogram" to "ON".
- 2. To clear an existing spectrogram display, select "Clear Spectrogram".
- 3. Start a new measurement using RUN SINGLE or RUN CONT.

The spectrogram is updated continuously with each new sweep.

- 4. To display the spectrum diagram for a specific time frame:
 - a) Stop the continuous measurement or wait until the single sweep is completed.
 - b) Select the frame number in the diagram footer.
 - Enter the required frame number in the edit dialog box.
 Note that the most recent sweep is frame number 0, all previous frames have negative numbers.

To remove the spectrogram display

- 1. Select the TRACE key and then the "Spectrogram Config" softkey.
- 2. Toggle "Spectrogram" to "OFF".

The standard spectrum display is restored.

To set a marker in the spectrogram

- 1. While a spectrogram is displayed, select the MARKER key.
- Select a "Marker" softkey.
- 3. Enter the frequency or time (x-value) of the marker or delta marker.

4. Enter the frame number for which the marker is to be set, for example 0 for the current frame, or -2 for the second to last frame. Note that the frame number is always 0 or a negative value!

The marker is only visible in the spectrum diagram if it is defined for the currently selected frame. In the spectrogram result display all markers are visible that are positioned on a visible frame.

To configure a spectrogram

- 1. Configure the spectrogram frames:
 - a) Select the SWEEP key.
 - b) Select the "Sweep Config" softkey.
 - c) In the "Sweep/Average Count" field, define how many sweeps are to be analyzed to create a single frame.
 - d) In the "Frame Count" field, define how many frames are to be plotted during a single sweep measurement.
 - e) To include frames from previous sweeps in the analysis of the new frame (for "Max Hold", "Min Hold" and "Average" trace modes only), select "Continue Frame" = "ON".
- 2. Define how many frames are to be stored in total:
 - a) Select the TRACE key and then the "Spectrogram Config" softkey.
 - b) Select the "History Depth" softkey.
 - c) Enter the maximum number of frames to store.
- 3. Optionally, replace the frame number by a time stamp by toggling the "Timestamp" softkey to "On".
- 4. If necessary, adapt the color mapping for the spectrogram to a different value range or color scheme as described in "How to Configure the Color Mapping" on page 493.

How to Configure the Color Mapping

The color display is highly configurable to adapt the spectrogram to your needs.

The settings for color mapping are defined in the "Color Mapping" dialog box. To display this dialog box, do one of the following:

- Select the color map in the window title bar of the Spectrogram result display.
- Select the "Color Mapping" softkey in the "Spectrogram" menu.

To select a color scheme

You can select which colors are assigned to the measured values.

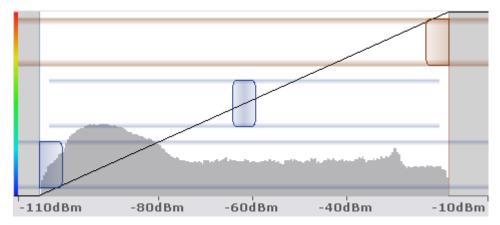
▶ In the "Color Mapping" dialog box, select the option for the color scheme to be used.

Trace Configuration

Editing the value range of the color map

The distribution of the measured values is displayed as a histogram in the "Color Mapping" dialog box. To cover the entire measurement value range, make sure the first and last bar of the histogram are included.

To ignore noise in a spectrogram, for example, exclude the lower power levels from the histogram.



The value range of the color map must cover at least 10% of the value range on the horizontal axis of the diagram, that means, the difference between the start and stop values must be at least 10%.

The value range of the color map can be set numerically or graphically.

To set the value range graphically using the color range sliders

- 1. Select and drag the bottom color curve slider (indicated by a gray box at the left of the color curve pane) to the lowest value you want to include in the color mapping.
- 2. Select and drag the top color curve slider (indicated by a gray box at the right of the color curve pane) to the highest value you want to include in the color mapping.

To set the value range of the color map numerically

- 1. In the "Start" field, enter the percentage from the left border of the histogram that marks the beginning of the value range.
- 2. In the "Stop" field, enter the percentage from the right border of the histogram that marks the end of the value range.

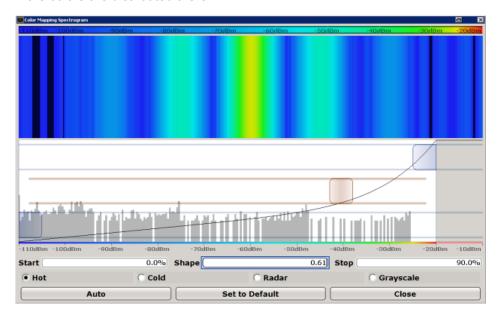
Example:

The color map starts at -110 dBm and ends at -10 dBm (that is: a range of 100 dB). In order to suppress the noise, you only want the color map to start at -90 dBm. Thus, you enter 10% in the "Start" field. The R&S FSW shifts the start point 10% to the right, to -90 dBm.

Trace Configuration

Adjusting the reference level and level range

Since the color map is configured using percentages of the total value range, changing the reference level and level range of the measurement (and thus the power value range) also affects the color mapping in the spectrogram.


Editing the shape of the color curve

The color curve is a tool to shift the focus of the color distribution on the color map. By default, the color curve is linear, i.e. the colors on the color map are distributed evenly. If you shift the curve to the left or right, the distribution becomes non-linear. The slope of the color curve increases or decreases. One end of the color palette then covers a large number of results, while the other end distributes several colors over a relatively small result range.

The color curve shape can be set numerically or graphically.

To set the color curve shape graphically using the slider

➤ Select and drag the color curve shape slider (indicated by a gray box in the middle of the color curve) to the left or right. The area beneath the slider is focused, i.e. more colors are distributed there.

To set the color curve shape numerically

- ▶ In the "Shape" field, enter a value to change the shape of the curve:
 - A negative value (-1 to <0) focuses the lower values
 - 0 defines a linear distribution
 - A positive value (>0 to 1) focuses the higher values

7.3.3.3 How to Copy Traces

You can copy the trace settings from one trace to another in the "Copy Trace" tab of the "Traces" dialog box.

► Select the "Source" trace and then the button for the "Copy to" trace.

Remote command:

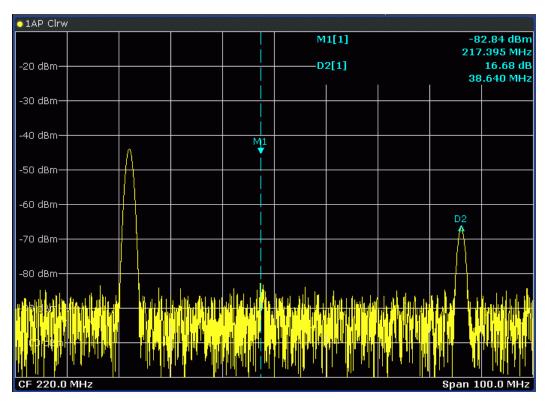
TRACe<n>: COPY on page 970

7.4 Marker Usage

Markers help you analyze your measurement results by determining particular values in the diagram. Thus you can extract numeric values from a graphical display both in the time and frequency domain. In addition to basic markers, sophisticated marker functions are provided for special results such as noise or demodulation.

Markers in Spectrogram Displays

In the spectrogram result display, you can activate up to 16 markers or delta markers at the same time. Each marker can be assigned to a different frame. Therefore, in addition to the frequency you also define the frame number when activating a new marker. If no frame number is specified, the marker is positioned on the currently selected frame. All markers are visible that are positioned on a visible frame.


•	Basics on Markers and Marker Functions	496
•	Marker Configuration	508
	Marker Function Configuration	
	How to Work With Markers	
	Measurement Example: Measuring Harmonics Using Marker Functions	

7.4.1 Basics on Markers and Marker Functions

Some background knowledge on marker settings and functions is provided here for a better understanding of the required configuration settings.

Markers are used to mark points on traces, to read out measurement results and to select a display section quickly. R&S FSW provides 16 markers per display window. In the Spectrum application, the same markers are displayed in all windows.

The easiest way to work with markers is using the touch screen. Simply drag the
marker and drop it at the required position. When a marker label is selected, a vertical line is displayed which indicates the marker's current x-value.

- Alternatively, change the position of the selected marker using the rotary knob. By default, the marker is moved from one pixel to the next. If you need to position the marker more precisely, change the step size to move from one sweep point to the next (General Marker Setting).
- You can also set an active marker to a new position by defining its x-position numerically. When you select the softkey for a marker, an edit dialog box is displayed.
- The most commonly required marker settings and functions are also available as softkeys or via the context menu. Tap the marker on the touch screen and hold your finger for about 2 seconds until the context menu is opened, then select the required entry.
- Softkeys for active markers (displayed on the screen) are highlighted blue. The softkey for the currently selected marker (for which functions are performed) is highlighted orange.
- To set individual markers very quickly, use the softkeys in the "Marker" menu.
- To set up several markers at once, use the "Marker" dialog box.
- To position the selected marker to a special value, use the softkeys in the "Marker To" menu.
- To determine more sophisticated marker results, use the special functions in the "Marker Function" dialog box.

In addition to basic markers, sophisticated marker functions are provided for special results such as noise or demodulation.

•	Marker Types	498
	Activating Markers	
	Marker Results	
•	Searching for Signal Peaks	499
	Performing a Highly Accurate Frequency Measurement (Signal Count)	
•	Defining a Fixed Reference Marker	502
•	Measuring Noise Density	502
•	Measuring Phase Noise	503
•	Measuring Characteristic Bandwidths (n dB Down Marker)	504
•	Measuring the Power in a Channel (Band)	506
	Demodulating Marker Values and Providing Audio Output	

7.4.1.1 Marker Types

All markers can be used either as normal markers or delta markers. A normal marker indicates the absolute signal value at the defined position in the diagram. A delta marker indicates the value of the marker relative to the specified reference marker (by default marker 1).

In addition, special functions can be assigned to the individual markers. The availability of special marker functions depends on whether the measurement is performed in the frequency or time domain, and on the type of measurement.

Temporary markers are used in addition to the markers and delta markers to analyze the measurement results for special marker functions. They disappear when the associated function is deactivated.

7.4.1.2 Activating Markers

Only active markers are displayed in the diagram and in the marker table.

Active markers are indicated by a highlighted softkey.

By default, marker 1 is active and positioned on the maximum value (peak) of trace 1 as a normal marker. If several traces are displayed, the marker is set to the maximum value of the trace which has the lowest number and is not frozen (View mode). The next marker to be activated is set to the frequency of the next lower level (next peak) as a delta marker; its value is indicated as an offset to marker 1.

A marker can only be activated when at least one trace in the corresponding window is visible. If a trace is switched off, the corresponding markers and marker functions are also deactivated. If the trace is switched on again, the markers along with coupled functions are restored to their original positions, provided the markers have not been used on another trace.

7.4.1.3 Marker Results

Normal markers point to a sweep point on the time or frequency axis and display the associated numeric value for that sweep point. Delta markers indicate an offset between the level at the delta marker position and the level at the position of the assigned reference marker, in dB.

Signal count markers determine the frequency of a signal at the marker position very accurately.

The results can be displayed directly within the diagram area or in a separate table. By default, the first two active markers are displayed in the diagram area. If more markers are activated, the results are displayed in a marker table.

Marker information in diagram area

By default, the results of the last two markers or delta markers that were activated are displayed in the diagram area.

The following information is displayed there:

- The marker type (M for normal, D for delta, or special function name)
- The marker number (1 to 16)
- The assigned trace number in square brackets []
- The marker value on the y-axis, or the result of the marker function
- The marker position on the x-axis

For n dB down markers, additional information is displayed, see Chapter 7.4.1.9, "Measuring Characteristic Bandwidths (n dB Down Marker)", on page 504.

Marker information in marker table

In addition to the marker information displayed within the diagram area, a separate marker table may be displayed beneath the diagram. This table provides the following information for all active markers:

Туре	Marker type: N (normal), D (delta), T (temporary, internal) and number	
Ref	Reference marker for delta markers	
Trc	Trace to which the marker is assigned	
Frame	Spectrogram frame the marker is positioned in. Displayed only when the Spectrogram is displayed.	
X-value	X-value of the marker	
Y-value	Y-value of the marker	
Function	Activated marker or measurement function	
Function Result	Result of the active marker or measurement function	

7.4.1.4 Searching for Signal Peaks

A common measurement task is to determine peak values, i.e. maximum or minimum signal levels. The R&S FSW provides various peak search functions and applications:

- Setting a marker to a peak value once (Peak Search)
- Searching for a peak value within a restricted search area (Search Limits)
- Creating a marker table with all or a defined number of peak values for one sweep (Marker Peak List)
- Updating the marker position to the current peak value automatically after each sweep (Auto Peak Search)
- Creating a fixed reference marker at the current peak value of a trace (Fixed Reference)

Peak search limits

The peak search can be restricted to a search area. The search area is defined by limit lines which are also indicated in the diagram. In addition, a minimum value (threshold) can be defined as a further search condition.

When is a peak a peak? - Peak excursion

During a peak search, for example when a marker peak table is displayed, noise values may be detected as a peak if the signal is very flat or does not contain many peaks. Therefore, you can define a relative threshold ("Peak excursion"). The signal level must increase by the threshold value before falling again before a peak is detected. To avoid identifying noise peaks as maxima or minima, enter a peak excursion value that is higher than the difference between the highest and the lowest value measured for the displayed inherent noise.

Effect of peak excursion settings (example)

The following figure shows a trace to be analyzed.

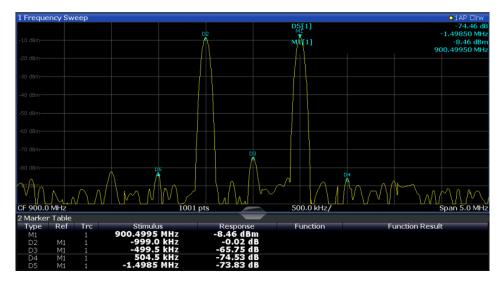


Figure 7-12: Trace example

The following table lists the peaks as indicated by the marker numbers in the diagram above, as well as the minimum decrease in amplitude to either side of the peak:

Marker #	Min. amplitude decrease to either side of the signal
1	30 dB
2	29.85 dB
3	20 dB
4	10 dB
5	18 dB

In order to eliminate the smaller peaks M3,M4 and M5 in the example above, a peak excursion of at least 20 dB is required. In this case, the amplitude must rise at least 20 dB before falling again before a peak is detected.

Marker peak list

The marker peak list determines the frequencies and levels of peaks in the spectrum. It is updated automatically after each sweep. How many peaks are displayed can be defined, as well as the sort order. In addition, the detected peaks can be indicated in the diagram. The peak list can also be exported to a file for analysis in an external application.

Automatic peak search

A peak search can be repeated automatically after each sweep in order to keep the maximum value as the reference point for a phase noise measurement. This is useful to track a drifting source. The delta marker 2, which shows the phase noise measurement result, keeps the delta frequency value. Therefore the phase noise measurement leads to reliable results in a certain offset although the source is drifting.

Using a peak as a fixed reference marker

Some results are analyzed in relation to a peak value, for example a carrier frequency level. In this case, the maximum level can be determined by an initial peak search and then be used as a reference point for further measurement results.

7.4.1.5 Performing a Highly Accurate Frequency Measurement (Signal Count)

A normal marker determines the position of the point on the trace and indicates the signal frequency at this position. The trace, however, contains only a limited number of points. Depending on the selected span, each trace point can contain many measurement values. Thus, the frequency resolution of each trace point is limited (see also Chapter 6.5.1.8, "How Much Data is Measured: Sweep Points and Sweep Count", on page 418). Frequency resolution is further restricted by the RBW and sweep time settings.

To determine the frequency of a signal point accurately without changing the sweep settings, the R&S FSW is equipped with a signal counter. The signal counter sets the RF to the current marker position, then counts the zero crossings of the IF (thus the term signal *counter*) and derives the precise frequency value.

Signal counting can be performed explicitly at the current marker position ("Signal Count" marker function), or implicitly by the R&S FSW for certain functions.

Signal counting is only possible while the instrument is not sweeping. Thus, to perform a signal count for a marker, the sweep is stopped at the marker position. The frequency is determined with the desired resolution and then the sweep is allowed to continue.

Remote commands:

```
CALCulate<n>:MARKer<m>:COUNt on page 1032

CALCulate<n>:MARKer<m>:COUNt:RESolution on page 1033
```

7.4.1.6 Defining a Fixed Reference Marker

Access: "Overview" > "Analysis" > "Marker Functions" > "Reference Fixed"

Or: MKR FUNC > "Select Marker Function" > "Reference Fixed"

Instead of using a reference marker that can vary its position depending on the measurement results, a fixed reference marker can be defined for trace analysis. Once positioned, the reference marker does not move during subsequent sweeps unless you explicitly move it manually.

Remote commands:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] on page 1017

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X on page 1016

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y on page 1017
```

7.4.1.7 Measuring Noise Density

Using the noise measurement marker function, the noise power density is measured at the position of the marker. In the time domain mode, all points of the trace are used to determine the noise power density. When measurements are performed in the frequency domain, two points to the right and left of the marker are used for the measurement to obtain a stable result.

Result display

Noise density is the noise referred to a bandwidth of 1 Hz. With logarithmic amplitude units (dBm, dBmV, dBm μ V, dB μ A), the noise power density is output in dBm/Hz, i.e. as the level in 1 Hz bandwidth with reference to 1 mW. With linear amplitude units (V, A, W), the noise voltage density is analyzed in μ V/ ν Hz; the noise current density in μ A/ ν Hz; the noise power density in μ B/ ν Hz.

The result is indicated as the function result in the Marker Table.

Prerequisite settings

The following settings are required to obtain correct values:

- Detector: Sample or RMS
- Video bandwidth:
 - ≤ 0.1 resolution bandwidth with sample detector ≥ 3 x resolution bandwidth with RMS detector
- Trace averaging:

In the default setting, the R&S FSW uses the sample detector for the noise function. With the sample detector, the trace can additionally be set to "Average" mode to stabilize the measured values. When the RMS detector is used, trace averaging should not be used since in this case it produces too low noise levels which cannot be corrected. Instead, the sweep time can be increased to obtain stable measurement results.

Correction factors

The R&S FSW uses the following correction factors to analyze the noise density from the marker level:

- Since the noise power is indicated with reference to 1 Hz bandwidth, the bandwidth correction value is deducted from the marker level. It is 10 x lg (1 Hz/BWNoise), where BWNoise is the noise or power bandwidth of the set resolution filter (RBW).
- RMS detector: With the exception of bandwidth correction, no further corrections are required since this detector already indicates the power for each point of the trace.
- Sample detector: As a result of video filter averaging and trace averaging, 1.05 dB is added to the marker level. This is the difference between the average value and the RMS value of white noise. With a logarithmic level axis, 1.45 dB is added additionally. Logarithmic averaging is thus fully taken into account, which yields a value that is 1.45 dB lower than that of linear averaging.
- To allow for a more stable noise display, the adjacent (symmetric to the measurement frequency) points of the trace are averaged.
- For span > 0, the measured values are averaged versus time (after a sweep).

The R&S FSW noise figure can be calculated from the measured power density level. It is calculated by deducting the set RF attenuation (RF Att) from the displayed noise level and adding 174 to the result.

Remote commands:

CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] on page 1022 CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult? on page 1021

7.4.1.8 Measuring Phase Noise

Phase noise is unintentional modulation of a carrier; it creates frequencies next to the carrier frequency. A phase noise measurement consists of noise density measurements at defined offsets from the carrier; the results are given in relation to the carrier level (dBc). The phase noise marker function measures the noise power at the delta markers referred to 1 Hz bandwidth. Marker 1 is used as the reference for the phase

noise measurement. By default, the current frequency and level of marker 1 are used as the fixed reference marker. However, a peak search can be started to use the current signal peak as the reference point, or a reference point can be defined manually.

Since the reference point is fixed, the reference level or the center frequency can be set so that the carrier is outside the displayed frequency range after phase noise measurement is started. Or a notch filter can be switched on to suppress the carrier.

Alternatively, the reference point can be determined automatically by a peak search after each sweep. This function can be used to track a drifting source during a phase noise measurement. The delta marker 2, which shows the phase noise measurement result, keeps the delta frequency value. Therefore the phase noise measurement leads to reliable results in a certain offset although the source is drifting. Only if the marker 2 reaches the border of the span, the delta marker value is adjusted to be within the span. In these cases, select a larger span.

The result of the phase noise measurement is the difference in level between the reference point and the noise power density. It is indicated as the function result of the phase noise marker in the Marker Table.

The sample detector is automatically used and the video bandwidth set to 0.1 times the resolution bandwidth (RBW). The two settings are taken into account in the correction values used for the noise power measurement. To obtain stable results, two pixels on the right and the left of the delta marker position are taken for the measurement.

The procedure for determining the noise power is identical to the method used for the noise power measurement (see Chapter 7.4.1.7, "Measuring Noise Density", on page 502).

Remote commands:

```
CALCulate<n>:MARKer<m>:FUNCtion:PNOise[:STATe] on page 1025

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] on page 1024

CALCulate<n>:MARKer<m>:FUNCtion:PNOise:RESult? on page 1024

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult? on page 1023
```

7.4.1.9 Measuring Characteristic Bandwidths (n dB Down Marker)

```
Access: "Overview" > "Analysis" > "Marker Functions" > "n dB Down"
```

Or: MKR FUNC > "Select Marker Function" > "n dB Down"

When characterizing the shape of a signal, the bandwidth at a specified offset from its peak level is often of interest. The offset is specified as a relative decrease in amplitude of n dB. To measure this bandwidth, you could use several markers and delta markers and determine the bandwidth manually. However, using the n dB down marker function makes the task very simple and quick.

The n dB down marker function uses the current value of marker 1 as the reference point. It activates two temporary markers T1 and T2 located on the signal, whose level is n dB below the level of the reference point. Marker T1 is placed to the left and

marker T2 to the right of the reference marker. The default setting for n is 3 dB, but it can be changed.

If a positive offset is entered, the markers T1 and T2 are placed below the active reference point. If a negative value is entered (for example for notch filter measurements), the markers T1 and T2 are placed above the active reference point.

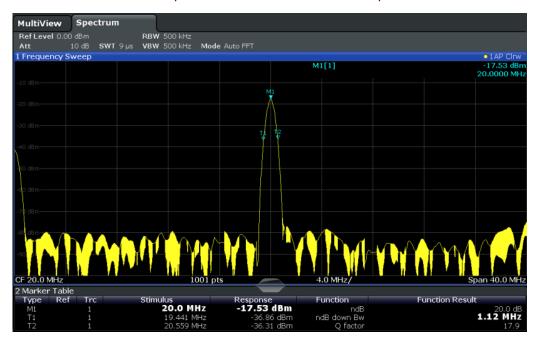


Figure 7-13: n dB down marker function

The following marker function results are displayed:

Table 7-4: n dB down marker function results

Label	Description	
M1	Current position and level of marker 1	
ndB	Offset value (n dB down)	
ndB down Bw / PWid	Determined bandwidth or pulse width (zero span) at the offset	
Q-factor	Quality factor of the determined bandwidth (characteristic of damping or resonance)	
T1, T2	Current position and level of the temporary markers	

If the required position for the temporary markers cannot be determined uniquely, for example due to noise, dashes are displayed as a result.

Remote commands:

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:STATe on page 1031

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:RESult? on page 1030

7.4.1.10 Measuring the Power in a Channel (Band)

To determine the noise power in a transmission channel, you could use a noise marker and multiply the result with the channel bandwidth. However, the results would only be accurate for flat noise.

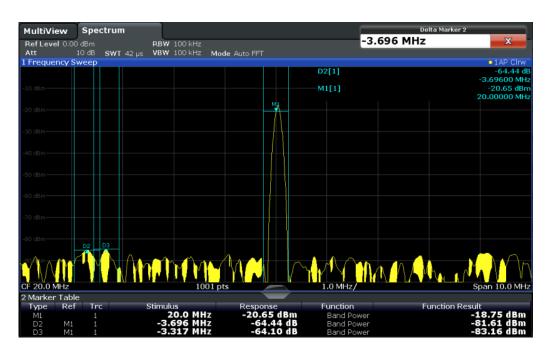
Band power markers allow you to measure the integrated power for a defined span (band) around a marker (similar to ACP measurements). By default, 5 % of the current span is used. The span is indicated by limit lines in the diagram. The results can be displayed either as a power (dBm) or density (dBm/Hz) value and are indicated in the marker table for each band power marker.

Relative band power markers

The results for band power markers which are defined as *delta* markers and thus have a reference value can also be calculated as reference power values (in dB).

In this case, the result of the band power deltamarker is the difference between the absolute power in the band around the delta marker and the absolute power for the reference marker. The powers are subtracted logarithmically, so the result is a dB value.

[Relative band power (Delta2) in dB] = [absolute band power (Delta2) in dBm] - [absolute (band) power of reference marker in dBm]


The measured power for the reference marker may be an absolute power at a single point (if the reference marker is not a band power marker), or the power in a band (if the reference marker is a band power marker itself).

If the reference marker for the band power marker is also a delta marker, the absolute power level for the reference marker is used for calculation.

Band power markers are only available for standard frequency measurements (not zero span) in the Spectrum application.

The entire band must lie within the display. If it is moved out of the display, the result cannot be calculated (indicated by "- - -" as the "Function Result"). However, the width of the band is maintained so that the band power can be calculated again when it returns to the display.

All markers can be defined as band power markers, each with a different span. When a band power marker is activated, if no marker is active yet, marker 1 is activated. Otherwise, the currently active marker is used as a band power marker (all other marker functions for this marker are deactivated).

If the detector mode for the marker trace is set to "Auto", the RMS detector is used.

Remote commands:

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] on page 1026
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult? on page 1026

7.4.1.11 Demodulating Marker Values and Providing Audio Output

The R&S FSW provides demodulators for AM, FM and PM signals. The demodulation marker function sends the demodulated data at the current marker frequency to the audio output. Thus, a displayed signal can be identified acoustically with the help of the internal loudspeaker or with headphones.

This function is not available for Spectrum Emission Mask measurements.

The sweep stops at the frequency determined by marker 1 for the selected time and the RF signal is demodulated in a bandwidth that corresponds to the RBW. Alternatively, demodulation can be activated continuously, i.e. audio output occurs regardless of the marker position and the marker stop time. For measurements in the time domain (zero span), demodulation is always continuous.

Optionally, a minimum level ("Squelch level") can be defined so that the signal is only demodulated when it exceeds the set level. This is useful during continuous demodulation to avoid listening to noise.

The squelch function activates the video trigger function (see "Video" on page 439) and deactivates any other trigger or gating settings. The squelch level and trigger level are set to the same value. The trigger source in the channel bar is indicated as "SQL" for squelch. The squelch level is indicated by a red line in the diagram.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation[:STATe] on page 1035

7.4.2 Marker Configuration

When working with markers, the following configuration settings and functions are available:

7.4.2.1 Marker Settings

Or: MKR > "Marker Config"

The remote commands required to define these settings are described in Chapter 11.8.3.1, "Setting Up Individual Markers", on page 986.

Individual Marker Setup

Up to 17 markers or delta markers can be activated for each window simultaneously. Initial marker setup is performed using the "Marker" dialog box.

The markers are distributed among 3 tabs for a better overview. By default, the first marker is defined as a normal marker, whereas all others are defined as delta markers with reference to the first marker. All markers are assigned to trace 1, but only the first marker is active.

Selected Marker	509
Marker State	509
Marker Position (X-value)	510
Frame (Spectrogram only)	
Marker Type	510
Reference Marker	510
Linking to Another Marker	510
Assigning the Marker to a Trace	511
Select Marker	511
All Markers Off	511

Selected Marker

Marker name. The marker which is currently selected for editing is highlighted orange.

Remote command:

Marker selected via suffix <m> in remote commands.

Marker State

Activates or deactivates the marker in the diagram.

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989

Marker Position (X-value)

Defines the position (x-value) of the marker in the diagram. For normal markers, the absolute position is indicated. For delta markers, the position relative to the reference marker is provided.

Remote command:

```
CALCulate<n>:MARKer<m>:X on page 991
CALCulate<n>:DELTamarker<m>:X on page 989
```

Frame (Spectrogram only)

Spectrogram frame the marker is assigned to.

Remote command:

```
CALCulate<n>:MARKer<m>:SPECtrogram:FRAMe on page 1007
CALCulate<n>:DELTamarker<m>:SPECtrogram:FRAMe on page 1012
```

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

"Normal" A normal marker indicates the absolute value at the defined position

in the diagram.

"Delta" A delta marker defines the value of the marker relative to the speci-

fied reference marker (marker 1 by default).

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989
```

Reference Marker

Defines a marker as the reference marker which is used to determine relative analysis results (delta marker values).

If the reference marker is deactivated, the delta marker referring to it is also deactivated.

If a fixed reference point is configured (see "Defining a Fixed Reference" on page 513), the reference point ("FXD") can also be selected instead of another marker.

Remote command:

```
CALCulate<n>:DELTamarker<m>:MREF on page 988
```

Linking to Another Marker

Links the current marker to the marker selected from the list of active markers. If the x-axis value of the initial marker is changed, the linked marker follows to the same position on the x-axis. Linking is off by default.

Using this function you can set two markers on different traces to measure the difference (e.g. between a max hold trace and a min hold trace or between a measurement and a reference trace).

Remote command:

```
CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> on page 990

CALCulate<n>:DELTamarker<m>:LINK:TO:MARKer<m> on page 987

CALCulate<n>:DELTamarker<m>:LINK on page 987
```

Assigning the Marker to a Trace

The "Trace" setting assigns the selected marker to an active trace. The trace determines which value the marker shows at the marker position. If the marker was previously assigned to a different trace, the marker remains on the previous frequency or time, but indicates the value of the new trace.

If a trace is turned off, the assigned markers and marker functions are also deactivated.

Remote command:

CALCulate<n>:MARKer<m>:TRACe on page 991

Select Marker

The "Select Marker" function opens a dialog box to select and activate or deactivate one or more markers quickly.

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989
```

All Markers Off

Deactivates all markers in one step.

Remote command:

CALCulate<n>:MARKer<m>:AOFF on page 990

General Marker Settings

Some general marker settings allow you to influence the marker behavior for all markers.

Marker Table Display	512
Marker Info	
Marker Stepsize	512
Defining a Fixed Reference	513

Marker Table Display

Defines how the marker information is displayed.

"On" Displays the marker information in a table in a separate area beneath

the diagram.

"Off" Displays the marker information within the diagram area. No separate

marker table is displayed.

"Auto" (Default) Up to two markers are displayed in the diagram area. If

more markers are active, the marker table is displayed automatically.

Remote command:

DISPlay: MTABle on page 992

Marker Info

Turns the marker information displayed in the diagram on and off.

Remote command:

DISPlay:MINFo[:STAT] on page 992

Marker Stepsize

Defines the size of the steps that the marker position is moved using the rotary knob.

"Standard" The marker position is moved in steps of (Span/1000), which corre-

sponds approximately to the number of pixels for the default display of 1001 sweep points. This setting is most suitable to move the

marker over a larger distance.

"Sweep Points" The marker position is moved from one sweep point to the next. This setting is required for a very precise positioning if more sweep points are collected than the number of pixels that can be displayed on the

screen. It is the default mode.

Remote command:

CALCulate<n>:MARKer<m>:X:SSIZe on page 993

Defining a Fixed Reference

Instead of using a reference marker that may vary its position depending on the measurement results, a fixed reference marker can be defined for trace analysis.

When you set the "State" to "On", a vertical and a horizontal red display line are displayed, marked as "FXD". The normal marker 1 is activated and set to the peak value of the trace assigned to marker 1, and a delta marker to the next peak. The fixed reference marker is set to the position of marker 1 at the peak value. The delta marker refers to the fixed reference marker.

If activated, the fixed reference marker ("FXD") can also be selected as a "Reference Marker" instead of another marker.

The "Level" and "Frequency" or "Time" settings define the position and value of the reference marker.

Alternatively, a **Peak Search** can be performed to set the current maximum value of the trace assigned to marker 1 as the fixed reference marker.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] on page 1017
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y on page 1017
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X on page 1016
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]
on page 1016
```

7.4.2.2 Marker Search Settings and Positioning Functions

Access: "Overview" > "Analysis" > "Marker" > "Search"

or: MKR TO

Several functions are available to set the marker to a specific position very quickly and easily, or to use the current marker position to define another characteristic value. In order to determine the required marker position, searches may be performed. The search results can be influenced by special settings.

For more information on searching for signal peaks see Chapter 7.4.1.4, "Searching for Signal Peaks", on page 499.

The remote commands required to define these settings are described in Chapter 11.8.3.4, "Positioning the Marker", on page 997.

	Marker Search Settings	.514
	Marker Search Settings for Spectrograms	
•	Positioning Functions.	519

Marker Search Settings

Access: MKR TO > "Search Config"

Markers are commonly used to determine peak values, i.e. maximum or minimum values, in the measured signal. Configuration settings allow you to influence the peak search results.

For Spectrograms, special marker settings are available, see "Marker Search Settings for Spectrograms" on page 516.

Search Mode for Next Peak	514
Exclude LO	515
Peak Excursion	515
Auto Max / Min Peak Search	515
Search Limits	515
L Search Limits (Left / Right)	515
L Search Threshold	516
L Using Zoom Limits	516
L Deactivating All Search Limits	

Search Mode for Next Peak

Selects the search mode for the next peak search.

"Left" Determines the next maximum/minimum to the left of the current

peak.

"Absolute" Determines the next maximum/minimum to either side of the current

peak.

"Right" Determines the next maximum/minimum to the right of the current

peak.

Remote command:

Chapter 11.8.3.4, "Positioning the Marker", on page 997

Exclude LO

If activated, restricts the frequency range for the marker search functions.

"ON" The minimum frequency included in the peak search range is ≥ 5 ×

resolution bandwidth (RBW).

Due to the interference by the first local oscillator to the first intermediate frequency at the input mixer, the LO is represented as a signal at 0 Hz. To avoid the peak marker jumping to the LO signal at 0 $\,$

Hz, this frequency is excluded from the peak search.

"OFF" No restriction to the search range. The frequency 0 Hz is included in

the marker search functions.

Remote command:

CALCulate<n>:MARKer<m>:LOEXclude on page 994

Peak Excursion

Defines the minimum level value by which a signal must rise or fall so that it is identified as a maximum or a minimum by the search functions.

Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see Chapter 7.4.1.4, "Searching for Signal Peaks", on page 499.

Remote command:

CALCulate<n>:MARKer<m>:PEXCursion on page 994

Auto Max / Min Peak Search

If activated, a maximum or minimum peak search is performed automatically for marker 1 after each sweep.

For spectrogram displays, define which frame the peak is to be searched in.

For EMI measurements, these functions are not available; use Automatic Peak Search instead (see Chapter 5.13.4.2, "EMI Final Measurement Configuration", on page 309).

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:AUTO on page 997 CALCulate<n>:MARKer<m>:MINimum:AUTO on page 999
```

Search Limits

The search results can be restricted by limiting the search area or adding search conditions.

Search Limits (Left / Right) ← Search Limits

If activated, limit lines are defined and displayed for the search. Only results within the limited search range are considered.

For details on limit lines for searches see "Peak search limits" on page 500.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 995
CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 995
```

Search Threshold ← Search Limits

Defines an absolute threshold as an additional condition for the peak search. Only peaks that exceed the threshold are detected.

Remote command:

CALCulate<n>: THReshold on page 996

Using Zoom Limits ← Search Limits

If activated, the peak search is restricted to the active zoom area defined for a single zoom.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits:ZOOM[:STATe] on page 996

Deactivating All Search Limits ← Search Limits

Deactivates the search range limits.

Remote command:

CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994 CALCulate<n>:THReshold:STATe on page 997

Marker Search Settings for Spectrograms

Access: "Overview" > "Analysis" > "Markers" > "Search"

or: MKR TO > "Search Config"

Spectrograms show not only the current sweep results, but also the sweep history. Thus, when searching for peaks, you must define the search settings within a single time frame (x-direction) and within several time frames (y-direction).

These settings are only available for spectrogram displays.

Search Mode for Next Peak in X Direction	517
Search Mode for Next Peak in Y Direction	517
Marker Search Type	518
Marker Search Area	518

Exclude LO	518
Peak Excursion.	
Auto Max / Min Peak Search	
Search Limits	519
L Search Limits (Left / Right)	519
L Search Threshold	519
L Using Zoom Limits	519
L Deactivating All Search Limits	519
Search Mode for Next Peak in X Direction	
Selects the search mode for the next peak search within the	currently selected frame.

"Left" Determines the next maximum/minimum to the left of the current

peak.

"Absolute" Determines the next maximum/minimum to either side of the current

"Right" Determines the next maximum/minimum to the right of the current

peak.

Remote command:

Chapter 11.8.3.4, "Positioning the Marker", on page 997

Search Mode for Next Peak in Y Direction

Selects the search mode for the next peak search within all frames at the current marker position.

"Up" Determines the next maximum/minimum above the current peak (in

more recent frames).

"Absolute" Determines the next maximum/minimum above or below the current

peak (in all frames).

"Down" Determines the next maximum/minimum below the current peak (in

older frames).

Remote command:

```
CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:ABOVe on page 1008
CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:ABOVe
```

on page 1013

CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:BELow on page 1009

CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:BELow

on page 1014

CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:NEXT on page 1009 CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:NEXT

on page 1014

CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:ABOVe on page 1010 CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:ABOVe

CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:BELow on page 1010

CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:BELow

on page 1015

CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:NEXT on page 1010 CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:NEXT on page 1015

Marker Search Type

Defines the type of search to be performed in the spectrogram.

"X-Search" Searches only within the currently selected frame.

"Y-Search" Searches within all frames but only at the current frequency position.

"XY-Search" Searches in all frames at all positions.

Remote command:

Defined by the search function, see Chapter 11.8.3.6, "Marker Search (Spectrograms)", on page 1006

Marker Search Area

Defines which frames the search is performed in.

"Visible" Only the visible frames are searched.

"Memory" All frames stored in the memory are searched.

Remote command:

CALCulate<n>:MARKer<m>:SPECtrogram:SARea on page 1007 CALCulate<n>:DELTamarker<m>:SPECtrogram:SARea on page 1012

Exclude LO

If activated, restricts the frequency range for the marker search functions.

"ON" The minimum frequency included in the peak search range is ≥ 5 ×

resolution bandwidth (RBW).

Due to the interference by the first local oscillator to the first intermediate frequency at the input mixer, the LO is represented as a signal at 0 Hz. To avoid the peak marker jumping to the LO signal at 0 $\,$

Hz, this frequency is excluded from the peak search.

"OFF" No restriction to the search range. The frequency 0 Hz is included in

the marker search functions.

Remote command:

CALCulate<n>:MARKer<m>:LOEXclude on page 994

Peak Excursion

Defines the minimum level value by which a signal must rise or fall so that it is identified as a maximum or a minimum by the search functions.

Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see Chapter 7.4.1.4, "Searching for Signal Peaks", on page 499.

Remote command:

CALCulate<n>:MARKer<m>:PEXCursion on page 994

Marker Usage

Auto Max / Min Peak Search

If activated, a maximum or minimum peak search is performed automatically for marker 1 after each sweep.

For spectrogram displays, define which frame the peak is to be searched in.

For EMI measurements, these functions are not available; use Automatic Peak Search instead (see Chapter 5.13.4.2, "EMI Final Measurement Configuration", on page 309).

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:AUTO on page 997 CALCulate<n>:MARKer<m>:MINimum:AUTO on page 999
```

Search Limits

The search results can be restricted by limiting the search area or adding search conditions.

Search Limits (Left / Right) ← Search Limits

If activated, limit lines are defined and displayed for the search. Only results within the limited search range are considered.

For details on limit lines for searches see "Peak search limits" on page 500.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 995
CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 995
```

Search Threshold ← Search Limits

Defines an absolute threshold as an additional condition for the peak search. Only peaks that exceed the threshold are detected.

Remote command:

```
CALCulate<n>: THReshold on page 996
```

Using Zoom Limits ← Search Limits

If activated, the peak search is restricted to the active zoom area defined for a single zoom.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits:ZOOM[:STATe] on page 996
```

Deactivating All Search Limits ← Search Limits

Deactivates the search range limits.

Remote command:

```
CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
CALCulate<n>:THReshold:STATe on page 997
```

Positioning Functions

Access: MKR ->

The following functions set the currently selected marker to the result of a peak search or set other characteristic values to the current marker value.

Marker Usage

Peak Search	520
Search Next Peak	520
Search Minimum	
Search Next Minimum	520
Center Frequency = Marker Frequency	521
	521

Peak Search

Sets the selected marker/delta marker to the maximum of the trace. If no marker is active, marker 1 is activated.

For spectrogram displays, define which frame the peak is to be searched in.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 998

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 1001
```

Search Next Peak

Sets the selected marker/delta marker to the next (lower) maximum of the assigned trace. If no marker is active, marker 1 is activated.

For spectrogram displays, define which frame the next peak is to be searched in.

Remote command:

```
CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 998

CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 999

CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 998

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 1001

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 1002

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 1001
```

Search Minimum

Sets the selected marker/delta marker to the minimum of the trace. If no marker is active, marker 1 is activated.

For spectrogram displays, define which frame the minimum is to be searched in.

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 1000 CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 1003
```

Search Next Minimum

Sets the selected marker/delta marker to the next (higher) minimum of the selected trace. If no marker is active, marker 1 is activated.

For spectrogram displays, define which frame the next minimum is to be searched in.

Remote command:

```
CALCulate<n>:MARKer<m>:MINimum:NEXT on page 1000

CALCulate<n>:MARKer<m>:MINimum:LEFT on page 999

CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 1000

CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 1002

CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 1002

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt on page 1003
```

Center Frequency = Marker Frequency

Sets the center frequency to the selected marker or delta marker frequency. A peak can thus be set as center frequency, for example to analyze it in detail with a smaller span.

This function is not available for zero span measurements.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:CENTer on page 881

Reference Level = Marker Level

Sets the reference level to the selected marker level.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:REFerence on page 896

7.4.3 Marker Function Configuration

Access: "Overview" > "Analysis" > "Marker Functions"

The remote commands required to define these settings are described in Chapter 11.8.3, "Working with Markers", on page 986.

Precise Frequency (Signal Count) Marker	521
Noise Measurement Marker	
Phase Noise Measurement Marker	524
n dB Down Marker	526
Reference Fixed	527
Band Power Marker	527
Marker Demodulation	529
Marker Peak List Configuration	531
Deactivating All Marker Functions	532

7.4.3.1 Precise Frequency (Signal Count) Marker

Access: "Overview" > "Analysis" > "Marker Functions" > "Select Marker Function" > "Signal Count" > "Signal Count Config"

Or: MKR FUNC > "Select Marker Function" > "Signal Count" > "Signal Count Config"

A special marker can be used to determine a particular frequency or time in a measured signal very accurately. Signal counters are configured in the "Signal Count Config" dialog box.

For details see Chapter 7.4.1.5, "Performing a Highly Accurate Frequency Measurement (Signal Count)", on page 501. A measurement example is described in Chapter 5.2.2.2, "Measuring the Signal Frequency Using the Signal Counter", on page 122.

Signal counters are not available for measurements on I/Q-based data.

Signal Count Marker State	522
Resolution	522

Signal Count Marker State

Activates or deactivates the special signal count marker function.

When activated, the sweep stops at the reference marker until the signal counter has delivered a result.

Remote command:

CALCulate<n>:MARKer<m>:COUNt on page 1032
CALCulate<n>:MARKer<m>:COUNt:FREQuency? on page 1033

Resolution

Defines the resolution with which the signal is analyzed around the reference marker 1.

CALCulate<n>:MARKer<m>:COUNt:RESolution on page 1033

7.4.3.2 Noise Measurement Marker

Remote command:

Access: "Overview" > "Analysis" > "Marker Functions" > "Select Marker Function" > "Noise Measurement" > "Noise Meas Config"

Or: MKR FUNC > "Select Marker Function" > "Noise Measurement" > "Noise Meas Config"

For each of the 16 markers noise measurement can be activated. Noise measurement markers are configured in the "Noise Measurement Config" dialog box, using the "Noise Measurement" function.

The individual marker settings correspond to those defined in the "Marker" dialog box (see "Individual Marker Setup" on page 508). Any settings to the marker state or type

changed in the "Marker Function" dialog box are also changed in the "Marker" dialog box and vice versa.

For details see Chapter 7.4.1.7, "Measuring Noise Density", on page 502.

Marker State5)23
Marker Type5	523
Noise Measurement State5	
Switching All Noise Measurements Off	524

Marker State

Activates or deactivates the marker in the diagram.

Remote command:

CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989

Marker Type

Toggles the marker type.

The type for marker 1 is always "Normal", the type for delta marker 1 is always "Delta". These types cannot be changed.

Note: If normal marker 1 is the active marker, switching the "Mkr Type" activates an additional delta marker 1. For any other marker, switching the marker type does not activate an additional marker, it only switches the type of the selected marker.

"Normal" A normal marker indicates the absolute value at the defined position

in the diagram.

"Delta" A delta marker defines the value of the marker relative to the speci-

fied reference marker (marker 1 by default).

Marker Usage

Remote command:

```
CALCulate<n>:MARKer<m>[:STATe] on page 991
CALCulate<n>:DELTamarker<m>[:STATe] on page 989
```

Noise Measurement State

Activates or deactivates noise measurement for the marker in the diagram.

This function is only available for normal markers.

If activated, the marker displays the noise power density measured at the position of the marker.

For details see Chapter 7.4.1.7, "Measuring Noise Density", on page 502.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] on page 1022 CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult? on page 1021
```

Switching All Noise Measurements Off

Deactivates noise measurement for all markers.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] on page 1022
```

7.4.3.3 Phase Noise Measurement Marker

Access: "Overview" > "Analysis" > "Marker Functions" > "Phase Noise" > "Phase Noise Config"

Or: MKR FUNC > "Select Marker Function" > "Phase Noise" > "Phase Noise Config"

For each of the 16 markers phase noise measurement can be activated.

The individual marker settings correspond to those defined in the "Marker" dialog box. Any settings to the marker state or type changed in the "Marker Function" dialog box are also changed in the "Marker" dialog box and vice versa.

For more information see Chapter 7.4.1.8, "Measuring Phase Noise", on page 503.

Phase Noise Measurement State	525
Defining a Reference Point	525
Switching All Phase Noise Measurements Off	526

Phase Noise Measurement State

Activates or deactivates phase noise measurement for the reference point in the diagram.

This function is only available for delta markers.

If activated, the delta markers display the phase noise measured at defined offsets from the reference position.

Remote command:

```
CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] on page 1024 CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult? on page 1023
```

Defining a Reference Point

Instead of using marker 1 as the reference marker, a fixed reference marker can be defined for phase noise measurement.

The "Level" and "Frequency" or "Time" settings define the position and value of the reference point.

Alternatively, a **Peak Search** can be performed to set the maximum value of the selected trace as the reference point.

If "Automatic Peak Search" is activated, a peak search is started automatically after each sweep and the result is used as the reference point.

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y on page 1017
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X on page 1016
CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]
on page 1016

CALCulate<n>: DELTamarker<m>: FUNCtion: PNOise: AUTO on page 1023

Switching All Phase Noise Measurements Off

Deactivates phase noise measurement for all markers.

Remote command:

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] on page 1024

7.4.3.4 n dB Down Marker

Access: "Overview" > "Analysis" > "Marker Functions" > "n dB down" > "n dB Down Config"

Or: MKR FUNC > "Select Marker Function" > "n dB down" > "n dB down Config"

A special marker can be defined to determine a characteristic bandwidth or time span in a measured signal.

For details see Chapter 7.4.1.9, "Measuring Characteristic Bandwidths (n dB Down Marker)", on page 504.

n dB down Marker State	526
n dB down Delta Value	526

n dB down Marker State

Activates or deactivates the special n dB down marker function.

Remote command:

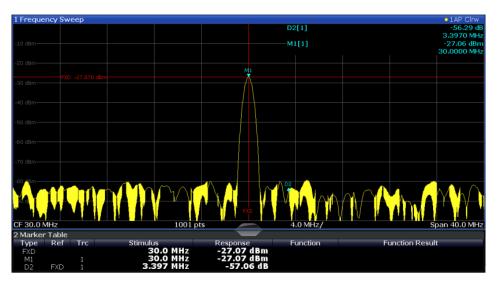
CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:STATe on page 1031 CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:RESult? on page 1030

n dB down Delta Value

Defines the delta level from the reference marker 1 used to determine the bandwidth or time span.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:FREQuency? on page 1029 CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:TIME? on page 1031


7.4.3.5 Reference Fixed

Access: "Overview" > "Analysis" > "Marker Functions" > "Reference Fixed"

Or: MKR FUNC > "Select Marker Function" > "Reference Fixed"

Instead of using a reference marker that may vary its position depending on the measurement results, a fixed reference marker can be defined for trace analysis. Once positioned, the reference marker does not move during subsequent sweeps unless you explicitly move it manually.

When you select this marker function, a vertical and a horizontal red display line are displayed, marked as "FXD". A normal marker is activated and set to the peak value and a delta marker to the next peak. The fixed reference marker is set to the position of the normal marker at the peak value. The delta marker refers to the fixed reference marker.

You can move the position of the fixed reference marker graphically by dragging the display lines, or numerically by entering values for the marker position and level.

For more information see Chapter 7.4.1.6, "Defining a Fixed Reference Marker", on page 502.

7.4.3.6 Band Power Marker

Access: "Overview" > "Analysis" > "Marker Functions" > "Band Power" > "Band Power Config"

or: MKR FUNC > "Select Marker Function" > "Band Power"

For each of the 16 markers band power measurement can be activated.

The individual marker settings correspond to those defined in the "Marker" dialog box (see "Individual Marker Setup" on page 508). Any settings to the marker state or type changed in the "Marker Function" dialog box are also changed in the "Marker" dialog box and vice versa.

For more information see Chapter 7.4.1.10, "Measuring the Power in a Channel (Band)", on page 506.

Band Power Measurement State	528
Span	528
Power Mode.	528
Switching All Band Power Measurements Off	

Band Power Measurement State

Activates or deactivates band power measurement for the marker in the diagram.

Band power markers are only available for standard frequency measurements (not zero span) in the Spectrum application.

If activated, the markers display the power or density measured in the band around the current marker position.

For details see Chapter 7.4.1.10, "Measuring the Power in a Channel (Band)", on page 506.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] on page 1026
CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe] on page 1028
```

Span

Defines the span (band) around the marker for which the power is measured. The span is indicated by lines in the diagram.

Remote command:

```
CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:SPAN on page 1026
CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN on page 1028
```

Power Mode

Defines the mode of the power measurement result.

"Power" The result is an absolute power level. The power unit depends on the Unit setting.

Marker Usage

"Relative This setting is only available for a delta band power marker.

Power" The result is the difference between the absolute power in the band

around the delta marker and the absolute power for the reference marker (see "Reference Marker" on page 307). The powers are sub-

tracted logarithmically, so the result is a dB value.

[Relative band power (Delta2) in dB] = [absolute band power (Delta2)

in dBm] - [absolute (band) power of reference marker in dBm] For details see "Relative band power markers" on page 506

"Density" The result is a power level in relation to the bandwidth, displayed in

dBm/Hz.

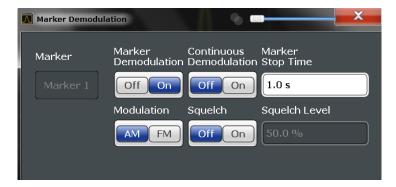
Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:MODE on page 1025 CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:MODE on page 1027

Switching All Band Power Measurements Off

Deactivates band power measurement for all markers.

Remote command:


CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] on page 1026
CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe] on page 1028

7.4.3.7 Marker Demodulation

Access: "Overview" > "Analysis" > "Marker Functions" > "Select Marker Function" > "Marker Demodulation" > "Marker Demod Config"

Or: MKR FUNC > "Select Marker Function" > "Marker Demodulation" > "Marker Demod Config"

A special marker can be used to demodulate the signal at a particular position and send the result to the audio output. Marker Demodulation is configured in the "Marker Demod Config" dialog box, using the "Marker Demodulation" function.

This function is not available for Spectrum Emission Mask measurements or measurements on I/Q-based data.

For details see Chapter 7.4.1.11, "Demodulating Marker Values and Providing Audio Output", on page 507.

Marker Usage

Marker Demodulation State	530
Continuous Demodulation	530
Marker Stop Time	
Modulation	
Squelch	530
Squelch level	

Marker Demodulation State

Activates or deactivates the demodulation output.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation[:STATe] on page 1035

Continuous Demodulation

If activated, the signal is demodulated continuously (not only at the marker position) and sent to the audio output. This allows you to monitor the frequency range acoustically (assuming the sweep time is long enough).

For zero span and EMI measurements, demodulation is always active continuously.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous
on page 1034

Marker Stop Time

Defines how long the sweep is stopped at the marker position to output the demodulated signal.

For zero span measurements, demodulation is always active continuously, regardless of the marker stop time.

For EMI measurements, the duration of the demodulation at each marker position is limited by the dwell time of the EMI measurement marker (see "Dwell Time" on page 310).

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff on page 1034

Modulation

Defines the demodulation mode for output (AM/FM). The default setting is AM.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:SELect on page 1035

Squelch

Activates or deactivates the squelch function. If activated, the audible AF is cut off below a defined threshold level. Thus, you avoid hearing noise at the audio output when no signal is available.

The squelch function activates the video trigger function (see "Video" on page 439) and deactivates any other trigger or gating settings. The squelch level and trigger level are set to the same value.

The trigger source in the channel bar is indicated as "SQL" for squelch. The squelch level is indicated by a red line in the diagram.

Remote command:

[SENSe:] DEMod:SQUelch[:STATe] on page 1036

Squelch level

Defines the level threshold below which the audible AF is cut off if squelching is enabled. The video trigger level is set to the same value.

The squelch level is indicated by a red line in the diagram.

Remote command:

[SENSe:] DEMod:SQUelch:LEVel on page 1035

7.4.3.8 Marker Peak List Configuration

Access: "Overview" > "Analysis" > "Marker Functions" > "Marker Peak List"

Or: MKR FUNC > "Marker Peak List"

The marker peak list provides an overview of all marker peaks in the measurement. You can define search and sort criteria to influence the results of the analysis. The general marker search settings also apply to the marker peak list.

For more information see Chapter 7.4.1.4, "Searching for Signal Peaks", on page 499 and "Marker Search Settings" on page 514.

Peak List State	531
Sort Mode	532
Maximum Number of Peaks	532
Peak Excursion	532
Displaying Marker Numbers	532
Exporting the Peak List	532

Peak List State

Activates/deactivates the marker peak list. If activated, the peak list is displayed and the peaks are indicated in the trace display.

Marker Usage

For each listed peak the frequency/time ("X-value") and level ("Y-value") values are given.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:STATe on page 1020

Sort Mode

Defines whether the peak list is sorted according to the x-values or y-values. In either case the values are sorted in ascending order.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SORT on page 1020

Maximum Number of Peaks

Defines the maximum number of peaks to be determined and displayed.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE on page 1020

Peak Excursion

Defines the minimum level value by which a signal must rise or fall so that it is identified as a maximum or a minimum by the search functions.

Entries from 0 dB to 80 dB are allowed; the resolution is 0.1 dB. The default setting for the peak excursion is 6 dB.

For more information see Chapter 7.4.1.4, "Searching for Signal Peaks", on page 499.

Remote command:

CALCulate<n>:MARKer<m>:PEXCursion on page 994

Displaying Marker Numbers

By default, the marker numbers are indicated in the diagram so you can find the peaks from the list. However, for large numbers of peaks the marker numbers may decrease readability; in this case, deactivate the marker number display.

Remote command:

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:ANNotation:LABel[:STATe]
on page 1018

Exporting the Peak List

The peak list can be exported to an ASCII file (.DAT) for analysis in an external application.

Remote command:

```
MMEMory:STORe<n>:PEAK on page 1092
FORMat:DEXPort:DSEParator on page 1064
```

7.4.3.9 Deactivating All Marker Functions

Access: "Overview" > "Analysis" > "Marker Functions" > "All Functions Off"

Or: MKR FUNC > "All Functions Off"

All special marker functions can be deactivated in one step.

7.4.4 How to Work With Markers

The following step-by-step instructions demonstrate in detail how to work with markers.

•	How to Analyze a Signal Point in Detail	533
	How to Use a Fixed Reference Marker	
	How to Output the Demodulated Signal Accoustically	534

7.4.4.1 How to Analyze a Signal Point in Detail

Step-by-step instructions on working with markers are provided here. For details on individual functions and settings see Chapter 7.4.2.1, "Marker Settings", on page 508.

The remote commands required to perform these tasks are described in Chapter 11.8.3, "Working with Markers", on page 986.

When you need to analyze a characteristic point in the signal in more detail, the following procedure can be helpful:

- 1. Perform a peak search to determine the characteristic point roughly by pressing the PEAK SEARCH key.
- 2. If the required signal point is not the maximum, continue the peak search to one of the subsequent maxima or minima:
 - a) Press the MKR -> key.
 - b) Select the "Next Peak" or "Next Min" key.
 - c) If necessary, change the search settings by selecting the "Search Config" soft-key.
- 3. Center the display around the determined signal point by setting the marker value to the center frequency. Select the "Center = Mkr Freq" softkey.
- 4. Determine the precise frequency of the signal point:
 - a) Select the "Select Marker Function" softkey.
 - b) Select the "Signal Count" button.
 - c) Select the "Signal Count Resolution" softkey.
 - d) Select the resolution depending on how precise the result needs to be.

7.4.4.2 How to Use a Fixed Reference Marker

By default, delta markers refer to marker 1. However, they can also refer to a fixed reference marker.

How to Define and Move a Fixed Reference Marker

- 1. To display a fixed reference marker, do one of the following:
 - Press the MKR FUNC key, then select the "Reference Fixed" marker function.

• In the "Marker" dialog box, in the "Reference Fixed" area of the "Marker Config" tab, set the "State" to "On".

A vertical and a horizontal red display line are displayed, marked as "FXD". The normal marker 1 is activated and set to the peak value of the trace assigned to marker 1, and a delta marker to the next peak. The fixed reference marker is set to the position of marker 1 at the peak value.

- 2. To move the fixed reference marker, do one of the following:
 - Change the "Level" and "Frequency" of the reference point in the "Marker Config" tab of the "Marker" dialog box, . By default, the current peak value of trace
 1 is set.
 - Set the fixed reference marker to the current peak value by selecting the "Peak Search" button in the "Marker Config" tab of the "Marker" dialog box.
 - Move the "FXD" display lines that define the position of the fixed reference marker by dragging them on the screen.

How to Assign a Fixed Reference Marker to Delta Markers

- 1. In the "Marker" dialog box, select the horizontal "Markers" tab.
- 2. For the active delta marker that is to refer to the fixed reference marker, select "FXD" from the "Ref. Marker" list.

The delta marker indicates the offset of the current trace value at the marker position from the fixed reference value.

7.4.4.3 How to Output the Demodulated Signal Accoustically

For long sweep times you may wish to monitor a measurement accoustically rather than visually to determine when a certain signal level is reached.

A CAUTION

Risk of hearing damage

To protect your hearing, make sure that the volume setting is not too high before putting on the headphones.

- 1. Set marker 1 to the signal level you want to monitor.
- 2. Press the MKR FUNCT key.
- 3. Select the "Select Marker Function" softkey.
- 4. Select the "Marker Demodulation" button.
- 5. Select the "Marker Demod Config" softkey.

The marker function results are determined immediately according to the default settings.

- 6. Define how long you want to hear the output signal when the marker value is reached by entering the duration in the "Marker Stop Time" field.
 Alternatively, the audio signal can be output continuously, regardless of the marker value; in this case, set "Continuous Demodulation" to "On".
- 7. Select the modulation type (AM/FM/PM) of the signal.
- 8. To avoid listening to noise during continuous output, set "Squelch" to "On" and define the signal level below which the signal is ignored ("Squelch level").
- 9. Set "Marker Demodulation" to "On".
- 10. Plug your headphones into the PHONES connector on the front panel of the R&S FSW.
- 11. Adjust the volume using the rotary knob next to the PHONES connector.

During the next or currently running measurement, when the sweep reaches the marker position, the demodulated signal is output as an audio signal via the headphones for the given duration. Or, depending on the configuration, the demodulated signal is continuously output via the headphones, if the signal level exceeds the squelch level.

7.4.5 Measurement Example: Measuring Harmonics Using Marker Functions

This measurement example describes how to measure harmonics using the provided marker functions. Note that this task can be performed much simpler using the Harmonic Distortion measurement (see Chapter 5.10, "Harmonic Distortion Measurement", on page 277).

Signal generator settings (e.g. R&S FSW SMW):

Frequency:	128 MHz
Level:	- 25 dBm

Procedure:

- 1. Preset the R&S FSW.
- 2. Set the center frequency to 128 MHz.
- 3. Set the span to 100 kHz.

The R&S FSW displays the reference signal with a span of 100 kHz and resolution bandwidth of 1 kHz.

- Switch on the marker by pressing the MKR key.The marker is positioned on the trace maximum.
- 5. Set the measured signal frequency and the measured level as reference values:
 - a) Press the MKR FUNC key

b) Press the "Reference Fixed" softkey.

The position of the marker becomes the reference point. The reference point level is indicated by a horizontal line, the reference point frequency with a vertical line. At the same time, the delta marker 2 is switched on.

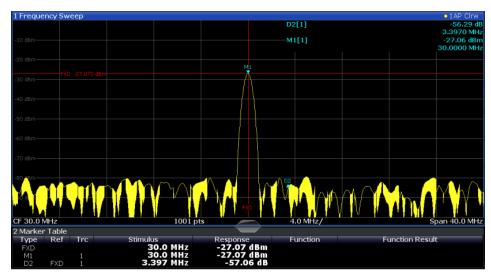


Figure 7-14: Fundamental wave and the frequency and level reference point

6. Make the step size for the center frequency correspond to the signal frequency: in the "Frequency" configuration dialog box, select "Center Frequency Stepsize = Marker".

The step size for the center frequency is now equal to the marker frequency.

7. Move the center frequency to the 2nd harmonic of the signal by pressing the UP (**①**) key.

The center frequency is set to the 2nd harmonic.

8. Place the delta marker on the 2nd harmonic: in the "Marker To" menu, select the "Peak" softkey.

The delta marker moves to the maximum of the 2nd harmonic. The displayed level result is relative to the reference point level (= fundamental wave level).

The other harmonics are measured by repeating steps step 7 and step 8, with the center frequency being incremented or decremented in steps of 128 MHz using the UP or DOWN keys.

7.5 Display and Limit Lines

Display and limit lines help you analyze a measurement trace.

•	Basics on Display Lines	. 537
•	Basics on Limit Lines	537
•	Settings and Functions for Display and Limit Lines	541
•	How to Work with Display and Limit Lines.	548

7.5.1 Basics on Display Lines

Display lines help you analyze a trace – as do markers. The function of a display line is comparable to that of a ruler that can be shifted on the trace in order to mark absolute values. They are used exclusively to visually mark relevant frequencies or points in time (zero span), as well as constant level values. It is not possible to check automatically whether the points are below or above the marked level values - use limit lines for that task (see Chapter 7.5.2, "Basics on Limit Lines", on page 537).

Two different types of display lines are provided:

the diagram and can be shifted in x direction.

- Two horizontal level lines for marking levels Display Line 1 and 2
 The level lines are continuous horizontal lines across the entire width of a diagram and can be shifted in y direction.
- Two vertical frequency or time lines for marking frequencies or points in time Frequency/Time Line 1 and 2
 The frequency or time lines are continuous vertical lines across the entire height of

Lables

Each line is identified by one of the following abbreviations in the diagrams:

- D1: Display Line 1
- D2: Display Line 2
- F1: Frequency Line 1
- F2: Frequency Line 2
- T1: Time Line 1
- T2: Time Line 2

7.5.2 Basics on Limit Lines

Limit lines are used to define amplitude curves or spectral distribution boundaries in the result diagram which are not to be exceeded. They indicate, for example, the upper limits for interference radiation or spurious waves which are allowed from a device under test (DUT). When transmitting information in TDMA systems (e.g. GSM), the amplitude of the bursts in a time slot must adhere to a curve that falls within a specified tolerance band. The lower and upper limits may each be specified by a limit line. Then, the amplitude curve can be controlled either visually or automatically for any violations of the upper or lower limits (GO/NOGO test).

The R&S FSW supports limit lines with a maximum of 200 data points. Eight of the limit lines stored in the instrument can be activated simultaneously. The number of limit lines stored in the instrument is only limited by the capacity of the storage device used.

Compatibility

Limit lines are compatible with the current measurement settings, if the following applies:

- The x unit of the limit line has to be identical to the current setting.
- The y unit of the limit line has to be identical to the current setting with the exception of dB based units; all dB based units are compatible with each other.

Validity

Only limit lines that fulfill the following conditions can be activated:

- Each limit line must consist of a minimum of 2 and a maximum of 200 data points.
- The frequencies/times for each data point must be defined in ascending order; however, for any single frequency or time, two data points may be entered (to define a vertical segment of a limit line).
- Gaps in frequency or time are not allowed. If gaps are desired, two separate limit lines must be defined and then both enabled.
- The entered frequencies or times need not necessarily be selectable in R&S FSW.
 A limit line may also exceed the specified frequency or time range. The minimum frequency for a data point is -200 GHz, the maximum frequency is 200 GHz. For the time range representation, negative times may also be entered. The allowed range is -1000 s to +1000 s.

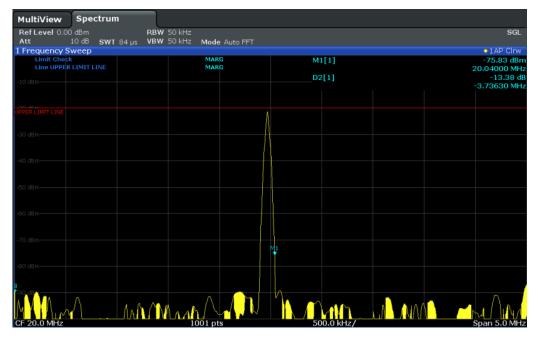
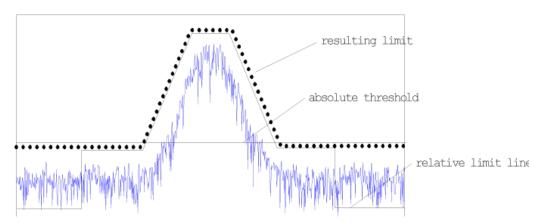


Figure 7-15: Example for an upper limit line

Limits and Margins

Limit lines define strict values that must not be exceeded by the measured signal. A **margin** is similar to a limit, but less strict and it still belongs to the valid data range. It can be used as a warning that the limit is almost reached. The margin is not indicated

by a separate line in the display, but if it is violated, a warning is displayed. Margins are defined as lines with a fixed distance to the limit line.


To check the signal for maximum levels you must define an **upper limit**, whereas to check the signal for minimum levels you must define a **lower limit**.

Limits can be defined relative to the reference level, the beginning of the time scale, or the center frequency, or as absolute values.

Relative scaling is suitable, for example, if masks for bursts are to be defined in zero span, or if masks for modulated signals are required in the frequency domain.

Thresholds

If the y-axis for the limit line data points uses relative scaling, an additional absolute **threshold** can be defined for the limit check. In this case, both the threshold value and the relative limit line must be exceeded before a violation occurs.

Offsets and Shifting

A configured limit line can easily be moved vertically or horizontally. Two different methods to do so are available:

- An offset moves the entire line in the diagram without editing the configured values or positions of the individual data points. This option is only available if relative scaling is used.
 - Thus, a new limit line can be easily generated based upon an existing limit line which has been shifted horizontally or vertically.
- Defining a shift width for the values or position of the individual data points changes the line configuration, thus changing the position of the line in the diagram.

Limit Check Results

A limit check is automatically performed as soon as any of the limit lines is activated ("Visibility" setting). Only the specified "Traces to be Checked" are compared with the active limit lines. The status of the limit check for each limit line is indicated in the diagram. If a violation occurs, the limit check status is set to "MARG" for a margin violation, or to "FAIL" for a limit violation.

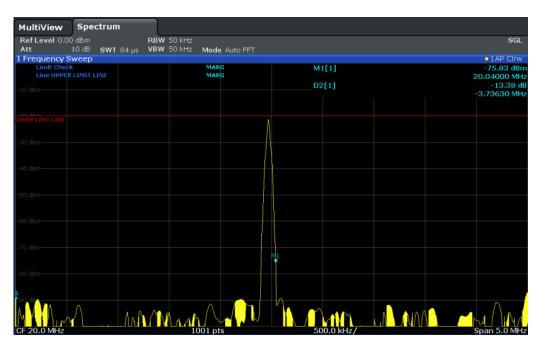


Figure 7-16: Margin violation for limit check

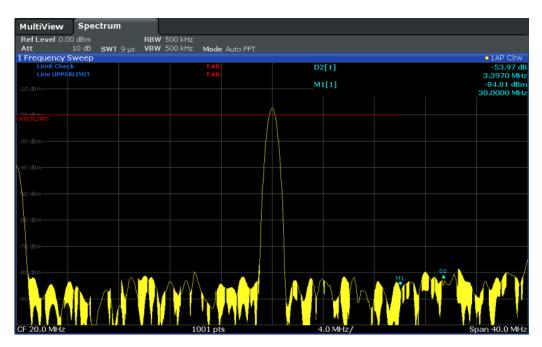


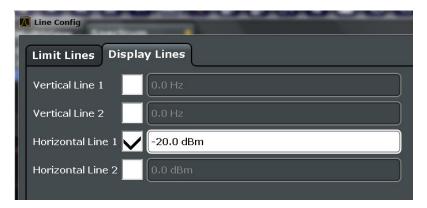
Figure 7-17: Limit violation for limit check

Storing and Recalling Limit Lines

Limit lines can be stored with the configuration settings so they can be recalled for other measurements at a later time (see Chapter 8.3, "Storing and Recalling Instrument Settings and Measurement Data", on page 555). Note, however, that any changes made to the limit lines *after* storing the configuration file cannot be restored and will be overwritten by the stored values when the configuration file is recalled. Always remember to store the settings again after changing the limit line values.

After recalling measurement settings, the limit line values applied to the measurement may be different to those displayed in the "Limit Lines" dialog box; see "Saving and recalling transducer and limit line settings" on page 556.

7.5.3 Settings and Functions for Display and Limit Lines


Access: "Overview" > "Analysis" > "Lines"

For remote operation, see Chapter 11.8.4, "Configuring Display and Limit Lines", on page 1045.

7.5.3.1 Display Line Settings

Access: "Overview" > "Analysis" > "Lines" > "Display Lines"

Two vertical and two horizontal lines can be defined in the display.

Vertical Line 1/2	541
Horizontal Line 1/2	542

Vertical Line 1/2

Activates a vertical display line (F1/F2 or T1/T2) in the diagram at the specified frequency or point in time, depending on the frequency span.

Remote command:

CALCulate<n>:FLINe<k> on page 1046 CALCulate<n>:FLINe<k> on page 1046

CALCulate<n>:TLINe<k> on page 1046 CALCulate<n>:TLINe<k> on page 1046

Horizontal Line 1/2

Activates a horizontal display line (D1/D2) in the diagram at the specified level.

Remote command:

CALCulate<n>:DLINe<k> on page 1045 CALCulate<n>:DLINe<k> on page 1045

7.5.3.2 Limit Line Settings and Functions

Access: "Overview" > "Analysis" > "Lines"

or: LINES > "Line Config"

Up to 8 limit lines can be displayed simultaneously in the R&S FSW. Many more can be stored on the instrument.

Stored limit line settings

When storing and recalling limit line settings, consider the information provided in "Saving and recalling transducer and limit line settings" on page 556.

When storing and recalling limit line settings, consider the information provided in the Data Management chapter of the R&S FSW User Manual.

Limit Line Management

Access: "Overview" > "Analysis" > "Lines" > "Limit Lines"

or: LINES > "Line Config" > "Limit Lines"

For the limit line overview, the R&S FSW searches for all stored limit lines with the file extension .LIN in the limits subfolder of the main installation folder. The overview allows you to determine which limit lines are available and can be used for the current measurement.

For details on settings for individual lines see "Limit Line Details" on page 545.

For more basic information on limit lines see Chapter 7.5.2, "Basics on Limit Lines", on page 537.

Name	543
Unit	543
Compatibility	544
Visibility	
Traces to be Checked	544
Comment	544
Included Lines in Overview (View Filter)	544
L Show lines for all modes	544
X-Offset	544
Y-Offset	545
Create New Line	545
Edit Line	545
Copy Line	545
Delete Line	
Disable All Lines	545

Name

The name of the stored limit line.

Unit

The unit in which the y-values of the data points of the limit line are defined.

Compatibility

Indicates whether the limit line definition is compatible with the current measurement settings.

For more information on which conditions a limit line must fulfill to be compatible, see "Compatibility" on page 538.

Visibility

Displays or hides the limit line in the diagram. Up to 8 limit lines can be visible at the same time. Inactive limit lines can also be displayed in the diagram.

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:STATe on page 1052
CALCulate<n>:LIMit<k>:UPPer:STATe on page 1056
CALCulate<n>:LIMit<k>:ACTive? on page 1057
```

Traces to be Checked

Defines which traces are automatically checked for conformance with the limit lines. As soon as a trace to be checked is defined, the assigned limit line is active. One limit line can be activated for several traces simultaneously. If any of the "Traces to be Checked" violate any of the active limit lines, a message is indicated in the diagram.

Remote command:

```
CALCulate<n>:LIMit<k>:TRACe<t>:CHECk on page 1058
```

Comment

An optional description of the limit line.

Included Lines in Overview (View Filter)

Defines which of the stored lines are included in the overview.

"Show compat- Only compatible lines

ible" Whether a line is compatible or not is indicated in the Compatibility

setting.

"Show all" All stored limit lines with the file extension .LIN in the limits sub-

folder of the main installation folder (if not restricted by "Show lines

for all modes" setting).

Show lines for all modes ← Included Lines in Overview (View Filter)

If activated (default), limit lines from all applications are displayed. Otherwise, only lines that were created in the Spectrum application are displayed.

Note that limit lines from some applications may include additional properties that are lost when the limit lines are edited in the Spectrum application. In this case a warning is displayed when you try to store the limit line.

X-Offset

Shifts a limit line that has been specified for relative frequencies or times (x-axis) horizontally.

This setting does not have any effect on limit lines that are defined by absolute values for the x-axis.

Remote command:

CALCulate<n>:LIMit<k>:CONTrol:OFFSet on page 1049

Y-Offset

Shifts a limit line that has relative values for the y-axis (levels or linear units such as volt) vertically.

This setting does not have any effect on limit lines that are defined by absolute values for the y-axis.

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:OFFSet on page 1051
CALCulate<n>:LIMit<k>:UPPer:OFFSet on page 1055
```

Create New Line

Creates a new limit line.

Edit Line

Edit an existing limit line configuration.

Copy Line

Copy the selected limit line configuration to create a new line.

Remote command:

```
CALCulate<n>:LIMit<k>:COPY on page 1057
```

Delete Line

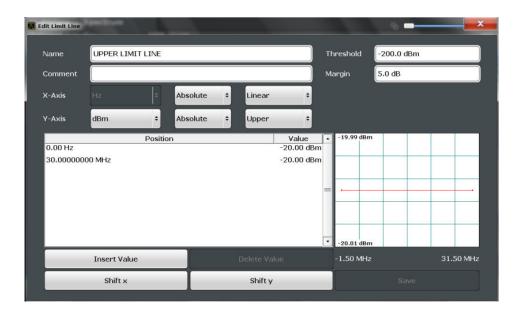
Delete the selected limit line configuration.

Remote command:

CALCulate<n>:LIMit<k>:DELete on page 1058

Disable All Lines

Disable all limit lines in one step.


Remote command:

CALCulate<n>:LIMit<k>:STATe on page 1058

Limit Line Details

```
Access: "Overview" > "Analysis" > "Lines" > "Limit Lines" > "New" / "Edit" / "Copy To"

or: LINES > "Line Config" > "Limit Lines" > "New" / "Edit" / "Copy To"
```


Name	546
Comment	546
Threshold	546
Margin	
X-Axis	547
Y-Axis	547
Data points	547
Insert Value	548
Delete Value	548
Shift x	548
Shift y	
Save	

Name

Defines the limit line name. All names must be compatible with Windows conventions for file names. The limit line data is stored under this name (with a .LIN extension).

Remote command:

CALCulate<n>:LIMit<k>:NAME on page 1053

Comment

Defines an optional comment for the limit line. The text may contain up to 40 characters.

Remote command:

CALCulate<n>:LIMit<k>:COMMent on page 1048

Threshold

Defines an absolute threshold value (only for relative scaling of the y-axis).

For details on thresholds see "Thresholds" on page 539.

Remote command:

CALCulate<n>:LIMit<k>:LOWer:THReshold on page 1053 CALCulate<n>:LIMit<k>:UPPer:THReshold on page 1056

Margin

Defines a margin for the limit line. The default setting is 0 dB (i.e. no margin).

For details on margins see "Limits and Margins" on page 538.

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:MARGin on page 1050 CALCulate<n>:LIMit<k>:UPPer:MARGin on page 1054
```

X-Axis

Describes the horizontal axis on which the data points of the limit line are defined. Includes the following settings:

- Domain:
 - "Hz": for frequency domain
 - "s": for time domain
 - Scaling mode: absolute or relative (Hz/s/%) values
 For relative values, the frequencies are referred to the currently set center frequency. In the zero span mode, the left boundary of the diagram is used as the reference.
- Scaling: linear or logarithmic

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:SPACing on page 1052
CALCulate<n>:LIMit<k>:UPPer:SPACing on page 1056
CALCulate<n>:LIMit<k>:LOWer:MODE on page 1051
CALCulate<n>:LIMit<k>:UPPer:MODE on page 1054
CALCulate<n>:LIMit<k>:CONTrol:DOMain on page 1048
```

Y-Axis

Describes the vertical axis on which the data points of the limit line are defined. Includes the following settings:

- Level unit
- Scaling mode: absolute or relative (dB/%) values Relative limit values refer to the reference level.
- Limit type: upper or lower limit; values must stay above the lower limit and below the upper limit to pass the limit check

Remote command:

```
CALCulate<n>:LIMit<k>:UNIT on page 1053

CALCulate<n>:LIMit<k>:LOWer:SPACing on page 1052

CALCulate<n>:LIMit<k>:UPPer:SPACing on page 1056
```

Data points

Each limit line is defined by a minimum of 2 and a maximum of 200 data points. Each data point is defined by its position (x-axis) and value (y-value). Data points must be defined in ascending order. The same position can have two different values.

Remote command:

```
CALCulate<n>:LIMit<k>:CONTrol[:DATA] on page 1048 CALCulate<n>:LIMit<k>:LOWer[:DATA] on page 1050 CALCulate<n>:LIMit<k>:UPPer[:DATA] on page 1054
```

Insert Value

Inserts a data point in the limit line above the selected one in the "Edit Limit Line" dialog box.

Delete Value

Deletes the selected data point in the "Edit Limit Line" dialog box.

Shift x

Shifts the x-value of each data point horizontally by the defined shift width (as opposed to an additive offset defined for the entire limit line, see "X-Offset" on page 544).

Remote command:

```
CALCulate<n>:LIMit<k>:CONTrol:SHIFt on page 1049
```

Shift y

Shifts the y-value of each data point vertically by the defined shift width (as opposed to an additive offset defined for the entire limit line, see "Y-Offset" on page 545).

Remote command:

```
CALCulate<n>:LIMit<k>:LOWer:SHIFt on page 1052
CALCulate<n>:LIMit<k>:UPPer:SHIFt on page 1055
```

Save

Saves the currently edited limit line under the name defined in the "Name" field.

7.5.4 How to Work with Display and Limit Lines

Step-by-step instructions on configuring display and limit lines are provided here. For details on individual functions and settings see Chapter 7.5.3, "Settings and Functions for Display and Limit Lines", on page 541.

The remote commands required to perform these tasks are described in Chapter 11.8.4, "Configuring Display and Limit Lines", on page 1045.

7.5.4.1 Defining Display Lines

- 1. Display lines are configured in the "Lines Config" dialog box. To display this dialog box, press the LINES key and then "Lines Config".
- 2. Select the "Display Lines" tab.
- 3. To define a vertical line, select "Vertical Line 1" or 2 and enter the x-value at which the line is to be displayed.

To define a horizontal line, select "Horizontal Line 1" or 2 and enter the y-value at which the line is to be displayed.

7.5.4.2 Defining Limit Lines

Access: "Overview" > "Analysis" > "Lines" > "Limit Lines"

or: LINES > "Line Config" > "Limit Lines"

Limit lines for spurious and SEM measurements

Note that for spurious and SEM measurements, special limit lines can be defined for each frequency range, see Chapter 5.6.4.2, "Limit Lines in SEM Measurements", on page 208 and Chapter 5.7.3.2, "Limit Lines in Spurious Measurements", on page 248. It is strongly recommended that you define limits only via the "Sweep list" dialog for these measurements, not using the LINES key.

Any changes to the special limit lines are automatically overwritten when the sweep list settings are changed.

The following tasks are described here:

- "How to find compatible limit lines" on page 549
- "How to activate and deactivate a limit check" on page 549
- "How to edit existing limit lines" on page 550
- "How to copy an existing limit line" on page 550
- "How to delete an existing limit line" on page 550
- "How to configure a new limit line" on page 550
- "How to move the limit line vertically or horizontally" on page 551

How to find compatible limit lines

▶ In the "Line Config" dialog box, select the "View filter" option: "Show compatible".

All stored limit lines with the file extension .LIN in the limits subfolder of the main installation folder of the instrument that are compatible to the current measurement settings are displayed in the overview.

How to activate and deactivate a limit check

A limit check is automatically performed as soon as any of the limit lines is activated.

- 1. To activate a limit check:
 - Select the "Check Traces" setting for a limit line in the overview and select the trace numbers to be included in the limit check. One limit line can be assigned to several traces.
 - The specified traces to be checked are compared with the active limit lines. The status of the limit check is indicated in the diagram.
- To deactivate a limit line, deactivate all "Traces to check" for it.To deactivate all limit lines at once, select the "Disable All Lines" button.
 - The limit checks for the deactivated limit lines are stopped and the results are removed form the display.

How to edit existing limit lines

Existing limit line configurations can be edited.

- 1. In the "Line Config" dialog box, select the limit line.
- 2. Select the "Edit" button.
- Edit the line configuration as described in "How to configure a new limit line" on page 550.
- 4. Save the new configuration by selecting the "Save" button.

If the limit line is active, the edited limit line is displayed in the diagram.

How to copy an existing limit line

- 1. In the "Line Config" dialog box, select the limit line.
- 2. Select the "Copy To" button.
- 3. Define a new name to create a new limit with the same configuration as the source line.
- Edit the line configuration as described in "How to configure a new limit line" on page 550.
- 5. Save the new configuration by selecting the "Save" button.

The new limit line is displayed in the overview and can be activated.

How to delete an existing limit line

- 1. In the "Line Config" dialog box, select the limit line.
- 2. Select the "Delete" button.
- 3. Confirm the message.

The limit line and the results of the limit check are deleted.

How to configure a new limit line

- 1. In the "Line Config" dialog box, select the "New" button.
 - The "Edit Limit Line" dialog box is displayed. The current line configuration is displayed in the preview area of the dialog box. The preview is updated after each change to the configuration.
- 2. Define a "Name" and, optionally, a "Comment" for the new limit line.
- 3. Define the x-axis configuration:
 - Time domain or frequency domain
 - Absolute or relative limits
 - · Linear or logarithmic scaling
- Define the y-axis configuration:
 - Level unit

- Absolute or relative limits
- Upper or lower limit line
- 5. Define the data points: minimum 2, maximum 200:
 - a) Select "Insert Value".
 - b) Define the x-value ("Position") and y-value ("Value") of the first data point.
 - c) Select "Insert Value" again and define the second data point.
 - d) Repeat this to insert all other data points.
 - To insert a data point before an existing one, select the data point and then "Insert Value".
 - To insert a new data point at the end of the list, move the focus to the line after the last entry and then select "Insert Value".
 - To delete a data point, select the entry and then "Delete Value".
- 6. Check the current line configuration in the preview area of the dialog box. If necessary, correct individual data points or add or delete some.
 - If necessary, shift the entire line vertically or horizontally by selecting the "Shift x" or "Shift y" button and defining the shift width.
- Optionally, define a "Margin" at a fixed distance to the limit line.
 The margin must be within the valid value range and is not displayed in the diagram or preview area.
- 8. Optionally, if the y-axis uses relative scaling, define an absolute "Threshold" as an additional criteria for a violation.
- 9. Save the new configuration by selecting the "Save" button.

The new limit line is displayed in the overview and can be activated.

How to move the limit line vertically or horizontally

A configured limit line can easily be moved vertically or horizontally. Thus, a new limit line can be easily generated based upon an existing limit line which has been shifted horizontally.

- 1. In the "Line Config" dialog box, select the limit line.
- 2. To shift the complete limit line parallel in the horizontal direction, select the "X-Off-set" button and enter an offset value.
 - To shift the complete limit line parallel in the vertical direction, select the "Y-Offset" button and enter an offset value.
- 3. To shift the individual data points of a limit line by a fixed value (all at once):
 - a) Select the "Edit" button.
 - b) In the "Edit Limit Line" dialog box, select the "Shift x" or "Shift y" button and define the shift width.
 - c) Save the shifted data points by selecting the "Save" button.

If activated, the limit line is shifted in the diagram.

R&S®FSW Data Management

Restoring the Default Instrument Configuration (Preset)

8 Data Management

The R&S FSW allows you to store and load instrument settings, as well as import and export measurement data for analysis later. Finally, you can store or print the measurement results displayed on the screen.

General storage and import/export functions are available via the toolbar. Some special storage functions are (also) available via softkeys or dialog boxes in the corresponding menus, for example trace data export.

•	Restoring the Default Instrument Configuration (Preset)	552
	Protecting Data Using the Secure User Mode	
	Storing and Recalling Instrument Settings and Measurement Data	
	Importing and Exporting Measurement Results for Evaluation	
	Creating Screenshots of Current Measurement Results and Settings	

8.1 Restoring the Default Instrument Configuration (Preset)

When delivered, the R&S FSW has a default configuration. You can restore this defined initial state at any time as a known starting point for measurements. This is often recommendable as a first step in troubleshooting when unusual measurement results arise.

Factory default configuration

The factory default configuration is selected such that the RF input is always protected against overload, provided that the applied signal levels are in the allowed range for the instrument.

Alternatively to the factory default settings, you can define user-specific recall settings to be restored after a preset or reboot, see "To recall settings automatically after preset or reboot" on page 566.

To restore the default instrument configuration for all channels at once

Press the PRESET key.

Alternatively to the factory default settings, you can define user-specific recall settings to be restored after a preset or reboot, see "To recall settings automatically after preset or reboot" on page 566.

After you use the PRESET function, the history of previous actions is deleted, i.e. any actions performed previously cannot be undone or redone using the UNDO/REDO keys.

Remote command:

*RST or SYSTem: PRESet

R&S®FSW Data Management

Protecting Data Using the Secure User Mode

To restore the default configuration for a single channel

The default measurement settings can also be reset for an individual channel only, rather than resetting the entire instrument.

▶ In the "Overview", select the "Preset Channel" button.

The factory default settings are restored to the current channel. Note that a user-defined recall settings file is **NOT** restored.

Remote command:

SYSTem: PRESet: CHANnel [: EXECute] on page 1078

8.2 Protecting Data Using the Secure User Mode

During normal operation, the R&S FSW uses a solid-state drive to store its operating system, instrument firmware, instrument self-alignment data, and any user data created during operation. If necessary, the solid-state drive can be removed from the R&S FSW and locked in a secure place to protect any classified data it may contain.

Redirecting storage to volatile memory

Alternatively, to avoid storing any sensitive data on the R&S FSW permanently, the secure user mode was introduced (option R&S FSW-K33). In secure user mode the instrument's solid-state drive is write-protected so that no information can be written to memory permanently. Data that the R&S FSW normally stores on the solid-state drive is redirected to volatile memory instead, which remains available only until the instrument is switched off. This data includes:

- Windows 7 operating system files
- Firmware shutdown files containing information on last instrument state
- Self-alignment data
- General instrument settings such as the IP address
- Measurement settings
- User data created during operation (see also Table 8-1)
- Any data created by other applications installed on the R&S FSW, for example text editors (Notepad), the Clipboard, drawing tools, etc.

Users can access data that is stored in volatile memory just as in normal operation. However, when the instrument's power is switched off, all data in this memory is cleared. Thus, in secure user mode, the instrument always starts in a defined, fixed state when switched on.

To store data such as measurement results permanently, it must be stored to an external storage device, such as a memory stick.

Protecting Data Using the Secure User Mode

Limited storage space

The volatile memory used to store data in secure user mode is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

Storing required data permanently

Any data that is to be available for subsequent sessions with the R&S FSW must be stored on the instrument permanently, *before activating the secure user mode*. This includes predefined instrument settings, transducer factors and self-alignment data.

Self-alignment data

Note that self-alignment data becomes invalid with time and due to temperature changes. Therefore, to achieve optimal accuracy, it may be preferable to perform a new self-alignment at the start of each new session on the R&S FSW.

Restricted operation

Since permanent storage is not possible, the following functions are not available in secure user mode:

- Firmware update
- Activating a new option key

Furthermore, since the "SecureUser" used in secure user mode does not have administrator rights, **administrative tasks** such as LAN configuration and some general instrument settings are not available. Refer to the description of the basic instrument setup (SETUP menu) to find out which functions are affected.

Activating and deactivating secure user mode

Only a user with administrator rights can activate the secure user mode. Once activated, a restart is required. The special user "SecureUser" is then logged on to the R&S FSW automatically (using the automatic login function, see "The Automatic Login Function" on page 28). While the secure user mode is active, a message is displayed in the status bar at the bottom of the screen.

Secure Passwords

By default, the initial password for both the administrator account ("Instrument") and the "SecureUser" account is "894129". When the secure user mode is activated the first time after installation, you are prompted to change the passwords for all user accounts to improve system security. Although it is possible to continue without changing the passwords, it is strongly recommended that you do so.

You can change the password in Windows 7 for any user at any time via "Start > Control Panel > User Accounts".

To deactivate the secure user mode, the "SecureUser" must log off and the "Instrument" user (administrator) must log on.

Storing and Recalling Instrument Settings and Measurement Data

Switching users when using the automatic login function

In the "Start" menu, select the arrow next to the "Shut down" button and then "Log off". The "Login" dialog box is displayed, in which you can enter the different user account name and password.

The secure user mode setting and automatic login is automatically deactivated when the "Instrument" user logs on. The "SecureUser" is no longer available.

For administrators ("Instrument" user), the secure user mode setting is available in the general system configuration settings (see Chapter 9.3.4.5, "General Configuration Settings", on page 607).

Remote control

Initially after installation of the R&S FSW-K33 option, secure user mode must be enabled manually once before remote control is possible.

(See SYSTem: SECurity[:STATe].)

This is necessary to prompt for a change of passwords.

8.3 Storing and Recalling Instrument Settings and Measurement Data

Possibly you would like to restore or repeat a measurement you performed under specific conditions on the instrument. Or you want to evaluate imported data in another application on the R&S FSW and would like to restore the measurement settings applied during measurement. In these cases, you can store and recall instrument and measurement settings, and possibly other related measurement data.

Two different methods are available for managing instrument settings:

- Quick Save/Quick Recall a defined set of instrument or channel settings are stored or recalled quickly in just one step
- Configurable Save/Recall a user-defined set of instrument or channel settings are stored to a definable storage location

Restrictions when recalling measurement settings

When recalling a saved configuration file, the following restrictions apply:

- The R&S FSW must support the frequency range defined in the configuration file.
- Configuration files created on a R&S FSW with certain options in use do not work on an R&S FSW without these options.
- Files created with newer firmware versions may not work with a previous version.

Storing and Recalling Instrument Settings and Measurement Data

Saving instrument settings in secure user mode

Be sure to store instrument settings that you require beyond the current session before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Settings that are saved via QuickSave in secure user mode are only available during the current session. As soon as the power is switched off on the R&S FSW, the data is cleared

Saving and recalling transducer and limit line settings

If a transducer file was in use when the save set was stored (with the save item "Current Settings" only) the R&S FSW assumes that these transducer values should remain valid after every recall of that save set. Thus, even if the transducer file is changed and the original save set file is recalled later, the *originally stored* transducer values are recalled and applied to the measurement. In the "Edit transducer" dialog box, however, the *changed* transducer file values are displayed, as no updated transducer file was loaded.

The same applies to limit line settings.

If you want to apply the changed transducer values after recalling the save set, you must force the application to reload the transducer file. To do so, simply open the "Edit Transducer" dialog box (see Chapter 9.3.2, "Transducer Settings", on page 597) and toggle the "X-Axis" option from "lin" to "log" and back. Due to that change, the transducer file is automatically reloaded, and the changed transducer values are applied to the current measurement. Now you can create a new save set with the updated transducer values.

Similarly, if you want to apply the changed limit values after recalling the save set, you must force the application to reload the limit file. To do so, simply open the "Edit Limit Line" dialog box (see Chapter 7.5.3.2, "Limit Line Settings and Functions", on page 542) and toggle the "Y-Axis" unit. Due to that change, the limit line file is automatically reloaded, and the changed limit values are applied to the current measurement. Now a new save set with the updated limit values can be created.

•	Quick Save/Quick Recall	556
	Configurable Storage and Recall	
	How to Save and Load Instrument Settings	564

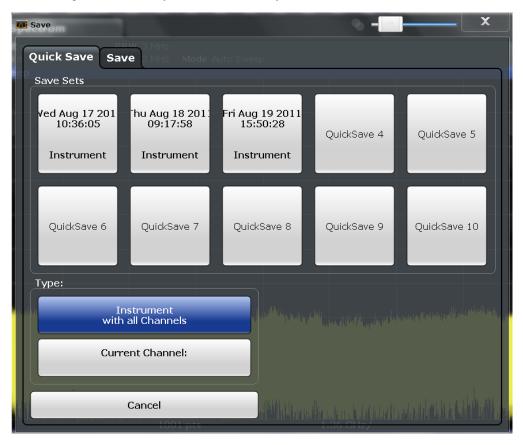
8.3.1 Quick Save/Quick Recall

The Quick Save and Quick Recall functions allow you to store instrument or channel settings very easily and quickly in one step. Up to ten different sets of settings can be stored to or recalled from "save sets". Each save set is identified by its storage date and type (instrument or specific channel) in the display. The save sets are stored in the C:\R_S\INSTR\USER\QuickSave directory, in files named QuickSave1.dfl to QuickSave10.dfl. The storage file names and locations cannot be changed. Only the current measurement settings are stored, not any additional data such as traces, limit line or transducer files (see Chapter 8.3.2.1, "Stored Data Types", on page 558).

Storing and Recalling Instrument Settings and Measurement Data

During recall, save sets of type "Instrument" replace the settings of the entire instrument. All other save sets start a new measurement channel with the stored settings.

If a measurement channel with the same name as the channel to be restored is already active, the channel name for the new channel is extended by a consecutive number:



8.3.1.1 Quick Save / Quick Recall Settings

Access: "Save"/ "Open" icon in the toolbar > "Quick Save" / "Quick Recall" Both dialog boxes are very similar and closely related.

QuickSave 1 / / QuickSave 10	557
Storage Type (Save only)	558
Recall	558

QuickSave 1 / ... / QuickSave 10

Selects one of the save sets to store the current settings in or to be recalled. At the time of storage, the "QuickSave 1 / ... / QuickSave 10" placeholder is replaced by a label indicating the storage date and time and the storage type.

Storing and Recalling Instrument Settings and Measurement Data

During recall, save sets of type "Instrument" replace the settings of the entire instrument. All other save sets start a new measurement channel with the stored settings.

Storage Type (Save only)

Defines which type of settings are stored in the save set.

"Instrument The instrument settings for all currently active channels are stored. with all chan-

nels"

"Current Chan- Only the instrument settings for the currently selected measurement channel are stored.

Recall

Restores the instrument settings as saved in the selected settings file. If the settings file contains settings for a specific channel only a new channel with the stored settings is activated, otherwise the entire instrument settings are loaded.

Note: After you use the "Recall" function, the history of previous actions is deleted, i.e. any actions performed previously cannot be undone or redone using the UNDO/REDO keys.

Note: If a measurement channel with the same name as the channel to be restored (in a new channel) is already active, the channel name for the new channel is extended by a consecutive number:

In remote commands, you must append this number to the channel name, as well.

Remote command:

MMEMory: LOAD: STATe on page 1074

8.3.2 Configurable Storage and Recall

The more sophisticated storage and recall functions allow you to define which settings are stored, and where the settings file is stored to. Any settings file can be selected for recall.

•	Stored Data Types	. 558
	Storage Location and File Name	
	Save and Recall Dialog Boxes	
	Startup Recall Settings.	

8.3.2.1 Stored Data Types

The following types of data can be stored to and loaded from files via the "Save" dialog box on the R&S FSW:

Storing and Recalling Instrument Settings and Measurement Data

Table 8-1: Items that can be stored to files

Item	Description
Current Settings	Current instrument and measurement settings
All Transducers	Transducer files for all active transducers
All Traces	All active traces;
All Limit Lines	All limit line files
Spectrograms	Spectrogram trace data (only available if spectrogram display is currently active)

8.3.2.2 Storage Location and File Name

The data is stored on the internal flash disk or, if selected, on a memory stick or network drive. The operating system, firmware and stored instrument settings are located on drive C. All other folders and drives can be used to store measurement data.

Saving instrument settings in secure user mode

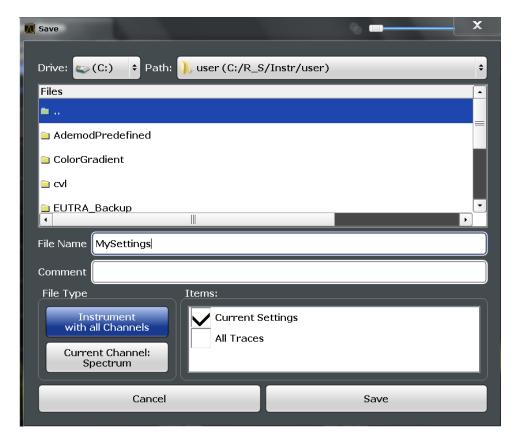
In secure user mode all data is stored to the SDRAM, and is only available during the current session. As soon as the power is switched off on the R&S FSW, the data is cleared (see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37).

Other storage locations cannot be selected in this mode.

The storage location and file name are selected in a file selection dialog box which is displayed when you perform a storage function.

By default, the name of a settings file consists of a base name followed by an underscore and three numbers, e.g. limit_lines_005. In the example, the base name is limit_lines. The base name can contain characters, numbers and underscores. The file extension dfl is added automatically. The default folder for settings files is C:\R S\INSTR\USER.

8.3.2.3 Save and Recall Dialog Boxes



Access: "Save"/ "Open" icon in the toolbar > "Save" / "Recall"

Both dialog boxes are very similar and closely related.

Storing and Recalling Instrument Settings and Measurement Data

Selecting the Storage Location - Drive/ Path/ Files	560
File Name	561
Comment	
File Type	
Items	
Save File	
Recall in New Channel / Recall in Current Channel	

Selecting the Storage Location - Drive/ Path/ Files

Select the storage location of the settings file on the instrument or an external drive.

The "Drive" indicates the internal (C:) or any connected external drives (e.g. a USB storage device).

The "Path" contains the drive and the complete file path to the currently selected folder

The "Files" list contains all subfolders and files of the currently selected path.

The default storage location for the SEM settings files is: C:\R S\instr\sem std.

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

Storing and Recalling Instrument Settings and Measurement Data

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

MMEMory: CATalog? on page 1064

File Name

Contains the name of the data file without the path or extension.

By default, the name of a settings file consists of a base name followed by an underscore. Multiple files with the same base name are extended by three numbers, e.g. limit lines 005.

For details on the file name and location, see Chapter 8.3.2.2, "Storage Location and File Name", on page 559.

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Comment

An optional description for the data file. A maximum of 60 characters can be displayed.

Remote command:

```
MMEMory: COMMent on page 1066
```

File Type

Determines whether the global instrument settings with all channels are stored or recalled, or the current channel settings only.

Items

Defines which data and settings are stored or are recalled. Depending on the "File Type", only channel settings or global settings are available. Which items are available also depends on the installed options (see also Chapter 8.3.2.1, "Stored Data Types", on page 558).

Remote command:

```
MMEMory:Select[:ITEM]:All on page 1070
MMEMory:Select[:ITEM]:Default on page 1071
MMEMory:Select[:ITEM]:HWSettings on page 1071
MMEMory:Select[:ITEM]:LINes:All on page 1071
MMEMory:Select[:ITEM]:NONE on page 1072
MMEMory:Select[:ITEM]:SGRam on page 1072
MMEMory:Select[:ITEM]:TRACe[:ACTive] on page 1072
MMEMory:Select[:ITEM]:TRANsducer:All on page 1072
```

Save File

Saves the settings file with the defined file name.

Storing and Recalling Instrument Settings and Measurement Data

Note: Secure user mode. In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

MMEMory:STORe<n>:STATe on page 1076
MMEMory:STORe<n>:STATe:NEXT on page 1076

Recall in New Channel / Recall in Current Channel

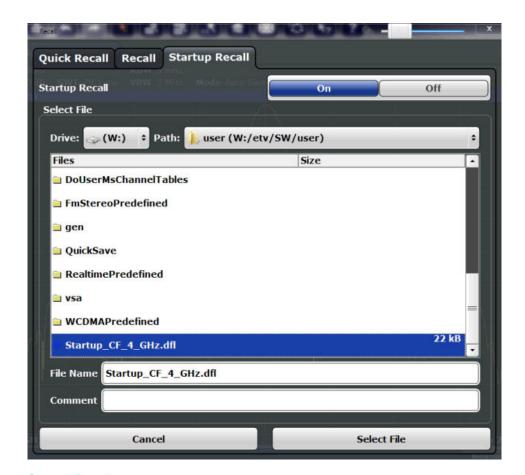
Restores the instrument settings as saved in the selected settings file. If the settings file contains settings for a specific channel only, select "Recall in New Channel" to activate a new channel with the stored settings. Select "Recall in Current Channel" to replace the current channel settings.

Note: After you use the "Recall" function, the history of previous actions is deleted, i.e. any actions performed previously cannot be undone or redone using the UNDO/REDO keys.

Note: If a measurement channel with the same name as the channel to be restored (in a new channel) is already active, the channel name for the new channel is extended by a consecutive number:

In remote commands, you must append this number to the channel name, as well.

Remote command:


MMEMory: LOAD: STATe on page 1074

8.3.2.4 Startup Recall Settings

F

Access: "Open" icon in the toolbar > "Startup Recall"

Storing and Recalling Instrument Settings and Measurement Data

Startup Recall	563
Selecting the Storage Location - Drive/ Path/ Files	563
File Name	
Comment	564

Startup Recall

Activates or deactivates the startup recall function. If activated, the settings stored in the selected file are loaded each time the instrument is started or preset. If deactivated, the default settings are loaded.

Note that only *instrument* settings files can be selected for the startup recall function, not channel settings files.

Remote command:

MMEMory:LOAD:AUTO on page 1074

Selecting the Storage Location - Drive/ Path/ Files

Select the storage location of the settings file on the instrument or an external drive.

The "Drive" indicates the internal (C:) or any connected external drives (e.g. a USB storage device).

The "Path" contains the drive and the complete file path to the currently selected folder.

The "Files" list contains all subfolders and files of the currently selected path.

Storing and Recalling Instrument Settings and Measurement Data

The default storage location for the SEM settings files is: C:\R S\instr\sem std.

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

MMEMory: CATalog? on page 1064

File Name

Contains the name of the data file without the path or extension.

By default, the name of a settings file consists of a base name followed by an underscore. Multiple files with the same base name are extended by three numbers, e.g. limit lines 005.

For details on the file name and location, see Chapter 8.3.2.2, "Storage Location and File Name", on page 559.

Note: Saving instrument settings in secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Comment

An optional description for the data file. A maximum of 60 characters can be displayed.

Remote command:

MMEMory: COMMent on page 1066

8.3.3 How to Save and Load Instrument Settings

Instrument settings can be saved to a file and loaded again later, so that you can repeat the measurement with the same settings. Optionally, user-defined measurement settings can automatically be restored each time you start or preset the instrument

To save and recall instrument settings using the Quick Save function

- 1. Select the "Save" icon from the toolbar.
- 2. Select whether the instrument settings for **all** channels are stored, or only those for the **current** channel.

Storing and Recalling Instrument Settings and Measurement Data

3. Select one of the save sets in which the settings are stored ("QuickSaveX").

The selected settings are stored to the file

C:\R S\INSTR\USERQuickSave\QuickSaveX.dfl.

Note: If you make any changes to the settings *after* storing the configuration file, remember to save the settings again. Otherwise those settings cannot be restored and will be overwritten by the stored values when the configuration file is recalled.

- 4. To restore the settings, select the Topen icon from the toolbar.
- Select the save set in which the settings were stored ("QuickSaveX").The selected settings are restored to the instrument or channel.

To save configurable instrument settings

- 1. Select the "Save" icon from the toolbar.
- 2. In the "Save" dialog box, switch to the "Save" tab.
- 3. In the file selection dialog box, select a file name and storage location for the settings file.
- 4. Optionally, define a comment to describe the stored settings.
- 5. Select whether the instrument settings for **all** channels are stored, or only those for the **current** channel.
- Select the items to be saved with the settings. Either the settings for the currently selected channel only, or the settings for all channels can be stored. Various other items, such as lines or traces etc., can be stored as well (see Chapter 8.3.2.1, "Stored Data Types", on page 558).
- 7. Select "Save".

A file with the defined name and path and the extension .dfl is created.

If you make any changes to the settings *after* storing the configuration file, remember to save the settings again. Otherwise those settings cannot be restored and will be overwritten by the stored values when the configuration file is recalled.

To recall configurable instrument settings

- 1. Select the "Open" icon from the toolbar.
- 2. In the "Recall" dialog box, switch to the "Recall" tab.
- 3. In the file selection dialog box, select the file name and storage location of the settings file.

Note: The "File Type" indicates whether the file contains instrument settings for **all** channels, or only those for the current channel.

4. If several items were saved, select which items are restored.

Importing and Exporting Measurement Results for Evaluation

- If channel settings were saved, select whether the settings will replace the settings in the current channel, or whether a new channel with the saved settings will be opened.
- 6. Select "Recall".

The settings and selected items from the saved measurement are restored and you can repeat the measurement with the same settings.

Note that any changes made to the settings *after* storing the configuration file will be overwritten by the stored values when the configuration file is recalled.

To recall settings automatically after preset or reboot

You can define the settings that are restored when you preset or reboot the instrument.

- Configure the settings as required and save them as described in "To save configurable instrument settings" on page 565.
- 2. In the "Save/Recall" menu, select the "Startup Recall" softkey.
- 3. If the file selection dialog box is not displayed automatically, select the "Select Dataset" softkey.
- 4. Select the recall settings to restore.
- 5. Select "Select".
- Toggle the "Startup Recall" softkey to "On".
 Now when you press the PRESET key or reboot the instrument, the defined settings will be restored.
- 7. To restore the factory preset settings, toggle the "Startup Recall" softkey to "Off".

8.4 Importing and Exporting Measurement Results for Evaluation

The R&S FSW provides various evaluation methods for the results of the performed measurements. However, you may want to evaluate the data with further, external applications. In this case, you can export the measurement data to a standard format file (ASCII or XML). Some of the data stored in these formats can also be re-imported to the R&S FSW for further evaluation later, for example in other applications.

The following data types can be exported:

- Trace data
- Table results, such as result summaries, marker peak lists etc.
- I/Q data

The following data types can be imported:

I/Q data

Importing and Exporting Measurement Results for Evaluation

I/Q data can only be imported and exported in applications that process I/Q data, such as the I/Q Analyzer or optional applications.

See the corresponding user manuals for those applications for details.

•	Import/Export Functions	567
	How to Export Trace Data and Numerical Results	
•	How to Export a Peak List	569
•	Reference: ASCII File Export Format.	570

8.4.1 Import/Export Functions

Access: "Save"/ "Open" icon in the toolbar > "Import" / "Export"

These functions are only available if no measurement is running.

In particular, if Continuous Sweep/RUN CONT is active, the import/export functions are not available.

For a description of the other functions in the "Save/Recall" menu, see the R&S FSW User Manual.

Import	567
Export	
L Export Trace to ASCII File	
L Trace Export Configuration	
L I/Q Export	

Import

Access: "Save/Recall" > Import

Provides functions to import data.

Currently, only I/Q data can be imported, and only by applications that process I/Q data.

See the R&S FSW I/Q Analyzer User Manual for more information.

Export

Access: "Save/Recall" > Export

Opens a submenu to configure data export.

Export Trace to ASCII File ← Export

Opens a file selection dialog box and saves the selected trace in ASCII format (.dat) to the specified file and directory.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Importing and Exporting Measurement Results for Evaluation

If the spectrogram display is selected when you perform this function, the entire histogram buffer with all frames is exported to a file. The data for a particular frame begins with information about the frame number and the time that frame was recorded. For large history buffers the export operation may take some time.

For details on the file format in the Spectrum application, see Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570.

Note: Secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

```
MMEMory:STORe<n>:TRACe on page 1093
MMEMory:STORe<n>:SPECtrogram on page 1092
```

Trace Export Configuration ← Export

Opens the "Traces" dialog box to configure the trace and data export settings.

See Chapter 7.3.2.3, "Trace / Data Export Configuration", on page 484.

I/Q Export ← Export

Opens a file selection dialog box to define an export file name to which the I/Q data is stored. This function is only available in single sweep mode.

It is not available in the Spectrum application, only in applications that process I/Q data, such as the I/Q Analyzer or optional applications.

For details, see the description in the R&S FSW I/Q Analyzer User Manual ("Importing and Exporting I/Q Data").

Note: Storing large amounts of I/Q data (several Gigabytes) can exceed the available (internal) storage space on the R&S FSW. In this case, it can be necessary to use an external storage medium.

Note: Secure user mode.

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

8.4.2 How to Export Trace Data and Numerical Results

The measured trace data and numerical measurement results in tables can be exported to an ASCII file. For each sweep point the measured trace position and value are

Importing and Exporting Measurement Results for Evaluation

output. The file is stored with a .DAT extension. For details on the storage format see Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570.

For the results of a Spectrum Emission Mask (SEM) or Spurious Emissions measurement, special file export functions are available, see Chapter 5.6.6.2, "How to Save SEM Result Files", on page 236(SEM) and "Saving the Evaluation List" on page 255 (Spurious).

To export trace data and table results

Trace data can be exported either from the "Trace" menu, or from the "Save/Recall" menu.

1. Press the TRACE key, then select the "Trace Config" softkey and switch to the "Trace/Data Export" tab.

Or:

Select the "Save" icon in the toolbar, then select the "Export" softkey.

- 2. Select the "Export Config" softkey to configure the export settings.
 - a) Select "Export all Traces and all Table Results" to export all available measurement result data for the current application, or select a specific "Trace to Export".
 - b) Optionally, select the "Include Instrument Measurement Settings" option to insert additional information in the export file header.
 - c) If necessary, change the decimal separator to be used for the ASCII export file.
- 3. Select the "Export Trace to ASCII file" button.
- 4. In the file selection dialog box, select the storage location and file name for the export file.
- 5. Select "Save" to close the dialog box and export the data to the file.

8.4.3 How to Export a Peak List

You can save the results of a marker peak list to an ASCII file.

- 1. Press the MKR FUNCT key.
- 2. Select the "Marker Peak List" softkey.
- 3. Configure the peak search and list settings as described in Chapter 7.4.3.8, "Marker Peak List Configuration", on page 531.
- 4. Set the marker peak list "State" to "On".
- Press the RUN SINGLE key to perform a single sweep measurement and create a marker peak list.
- Select the "Marker Peak List" softkey to display the "Marker Peak List" dialog box again.

Importing and Exporting Measurement Results for Evaluation

- 7. If necessary, change the decimal separator to be used for the ASCII export file.
- 8. Select the "Export Peak List" button.
- 9. In the file selection dialog box, select the storage location and file name for the export file.
- 10. Select "Save" to close the dialog box and export the peak list data to the file.

8.4.4 Reference: ASCII File Export Format

Trace data can be exported to a file in ASCII format for further evaluation in other applications. This reference describes in detail the format of the export files for result data.

(For details see Chapter 8.4.2, "How to Export Trace Data and Numerical Results", on page 568).

For a description of the file formats for spectrum emission mask (SEM) measurement settings and results, see Chapter 5.6.8, "Reference: SEM File Descriptions", on page 238.

The file format for Spurious Emissions measurement results is described in Chapter 5.7.6, "Reference: ASCII Export File Format (Spurious)", on page 256.

The file consists of the header containing important scaling parameters and a data section containing the trace data. Optionally, the header can be excluded from the file (see "Include Instrument Measurement Settings" on page 485).

The data of the file header consist of three columns, each separated by a semicolon: parameter name; numeric value; basic unit. The data section starts with the keyword "Trace <n>" (<n> = number of stored trace), followed by the measured data in one or several columns (depending on the measurement) which are also separated by a semicolon.

The results are output in the same order as they are displayed on the screen: window by window, trace by trace, and table row by table row.

Generally, the format of this ASCII file can be processed by spreadsheet calculation programs, e.g. MS-Excel. Different language versions of evaluation programs may require a different handling of the decimal point. Thus you can define the decimal separator to be used (decimal point or comma, see "Decimal Separator" on page 485).

If the spectrogram display is selected when you select the "ASCII Trace Export" soft-key, the entire histogram buffer with all frames is exported to a file. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded.

Table 8-2: ASCII file format for trace export in the Spectrum application

File contents	Description
Header data	
Type;R&S FSW;	Instrument model

Importing and Exporting Measurement Results for Evaluation

File contents	Description	
Version;1.00;	Firmware version	
Date;01.Oct 2006;	Date of data set storage	
Mode;ANALYZER;	Operating mode	
Preamplifier;OFF	Preamplifier status	
Transducer; OFF	Transducer status	
Center Freq;55000;Hz	Center frequency	
Freq Offset;0;Hz	Frequency offset	
Start;10000;Hz Stop;100000;Hz	Start/stop of the display range. Unit: Hz for span > 0, s for span = 0, dBm/dB for statistics measurements	
Span;90000;Hz	Frequency range (0 Hz in zero span and statistics measurements)	
Ref Level;-30;dBm	Reference level	
Level Offset;0;dB	Level offset	
Rf Att;20;dB	Input attenuation	
El Att;2.0;dB	Electrical attenuation	
RBW;100000;Hz	Resolution bandwidth	
VBW;30000;Hz	Video bandwidth	
SWT;0.005;s	Sweep time	
Sweep Count;20;	Number of sweeps set	
Ref Position;75;%	Position of reference level referred to diagram limits (0 % = lower edge)	
Level Range;100;dB	Display range in y direction. Unit: dB with x-axis LOG, % with x-axis LIN	
x-Axis;LIN;	Scaling of x-axis linear (LIN) or logarithmic (LOG)	
y-Axis;LOG;	Scaling of y-axis linear (LIN) or logarithmic (LOG)	
x-Unit;Hz;	Unit of x values: Hz with span > 0; s with span = 0; dBm/dB with statistics measurements	
y-Unit;dBm;	Unit of y values: dB*/V/A/W depending on the selected unit with y-axis LOG or % with y-axis LIN	
Data section for individual window		
Window;1;Frequency Sweep	Window number and name	
Trace 1;;	Selected trace	
Trace Mode;AVERAGE;	Display mode of trace: CLR/WRITE,AVER-AGE,MAXHOLD,MINHOLD	
Detector;AUTOPEAK;	Detector set: AUTOPEAK,MAXPEAK,MINPEAK,AVER-AGE,RMS,SAMPLE,QUASIPEAK	

Importing and Exporting Measurement Results for Evaluation

File contents	Description	
Values; 1001;	Number of measurement points	
10000;-10.3;-15.7 10130;-11.5;-16.9 10360;-12.0;-17.4 ;;	Measured values: <x value="">, <y1>, <y2>; <y2> being available only with detector AUTOPEAK and containing in this case the smallest of the two measured values for a measurement point.</y2></y2></y1></x>	
Data section for individual trace		
Trace 2;;	Next trace in same window	
Data section for individual window		
Window;2;	Name of next window	
Data section for individual trace		
Trace 1;;	First trace	

Table 8-3: ASCII file format for spectrogram trace export

File contents	Description
Header	
Type;R&S FSW;	Instrument model
Version;5.00;	Firmware version
Date;01.Oct 2006;	Date of data set storage
Mode;ANALYZER;SPECTROGRAM	Operating mode
Center Freq;55000;Hz	Center frequency
Freq Offset;0;Hz	Frequency offset
Span;90000;Hz	Frequency range (0 Hz in zero span and statistics measurements)
x-Axis;LIN;	Scaling of x-axis linear (LIN) or logarithmic (LOG)
Start;10000;Hz Stop;100000;Hz	Start/stop of the display range. Unit: Hz for span > 0, s for span = 0, dBm/dB for statistics measurements
Ref Level;-30;dBm	Reference level
Level Offset;0;dB	Level offset
Ref Position;75; %	Position of reference level referred to diagram limits (0 % = lower edge)
y-Axis;LOG;	Scaling of y-axis linear (LIN) or logarithmic (LOG)
Level Range;100;dB	Display range in y direction. Unit: dB with x-axis LOG, % with x-axis LIN
Rf Att;20;dB	Input attenuation

Creating Screenshots of Current Measurement Results and Settings

File contents	Description
RBW;100000;Hz	Resolution bandwidth
VBW;30000;Hz	Video bandwidth
SWT;0.005;s	Sweep time
Trace Mode;AVERAGE;	Display mode of trace: CLR/WRITE,AVER- AGE,MAXHOLD,MINHOLD
Detector;AUTOPEAK;	Detector set: AUTOPEAK,MAXPEAK,MINPEAK,AVER- AGE,RMS,SAMPLE,QUASIPEAK
Sweep Count;20;	Number of sweeps set
Data section	
Trace 1:;;	Selected trace
x-Unit;Hz;	Unit of x values: Hz with span > 0; s with span = 0; dBm/dB with statistics measurements
y-Unit;dBm;	Unit of y values: dB*/V/A/W depending on the selected unit with y-axis LOG or % with y-axis LIN
Values; 1001;	Number of measurement points
Frames;2;	Number of exported frames
Frame;0;	Most recent frame number
Timestamp;17.Mar 11;11:27:05.990	Timestamp of this frame
10000;-10.3;-15.7	Measured values, identical to spectrum data:
10130;-11.5;-16.9	<x value="">, <y1>, <y2>; <y2> being available only with detector</y2></y2></y1></x>
10360;-12.0;-17.4	AUTOPEAK and containing in this case the smallest of the two measured values for a measurement point.
;;	measured values for a measurement point.
Frame;-1;	Next frame
Timestamp;17.Mar 11;11:27:05.342	Timestamp of this frame

8.5 Creating Screenshots of Current Measurement Results and Settings

To document the graphical results and the most important settings for the currently performed measurement, you can create a screenshot of the current display. Screenshots can either be printed or stored to a file.

•	Print and Screenshot Settings	574
	How to Store or Print Screenshots of the Display	
	Example for Storing Multiple Measurement Results to a PDF File	

Creating Screenshots of Current Measurement Results and Settings

8.5.1 Print and Screenshot Settings

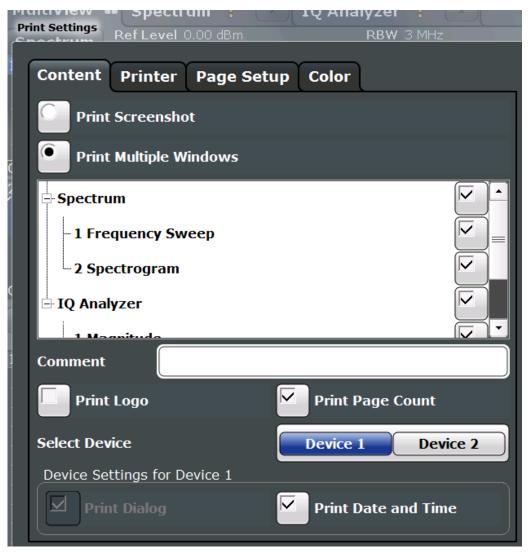
Access: "Print" icon in the toolbar

For step-by-step instructions, see Chapter 8.5.2, "How to Store or Print Screenshots of the Display", on page 584.

Remote commands for these settings are described in Chapter 11.9.4, "Storing or Printing Screenshots", on page 1078.

To print a screenshot of the current display with the current settings immediately, without switching to the "Print" menu, use the "Print immediately" icon at the right-hand side of the toolbar.

•	Print Content Settings	574
	Print Preview Functions.	
•	Printer Settings	.579
	Page Setup	
	Print Color Settings	


8.5.1.1 Print Content Settings

Access: "Print" > "Print Config" > "Content" tab

The content settings determine which data is included in the printout. Note that some content settings are independent of the selected printing device, others are printing device-specific.

Creating Screenshots of Current Measurement Results and Settings

Print Screenshot	575
Print Multiple Windows	576
Comment	576
Print Logo	576
Print Page Count	576
Select Device 1/2	576
Print Dialog	577
Print Date and Time	577

Print Screenshot

Selects all measurement results displayed on the screen for the current measurement channel (or "MultiView"): diagrams, traces, markers, marker lists, limit lines, etc., including the channel and status bars, for printout on a single page. Displayed items belonging to the software user interface (e.g. softkeys) are not included. The position and size of the elements in the printout is identical to the display.

This setting is independent of the printing device.

Creating Screenshots of Current Measurement Results and Settings

Remote command:

HCOP: CONT HCOP

Print Multiple Windows

Includes only the selected windows in the printout. All currently active windows for the current measurement channel (or "MultiView") are available for selection. How many windows are printed on a single page of the printout is user-definable (see "Windows per Page" on page 583).

This option is only available when printing on a printer or to a PDF file (see "Destination" on page 581). If the Destination is currently set to an image file or the clipboard for the selected printing device, it is automatically changed to be a PDF file.

The content setting is independent of the selected printing device.

Remote command:

HCOP:CONT WIND

HCOPy:PAGE:WINDow<device>:STATe on page 1088

HCOPy:PAGE:WINDow<device>:CHANnel:STATe on page 1086

Comment

Defines an optional comment to be included in the printout of the display. Maximum 120 characters are allowed. Up to 60 characters fit in one line. In the first line, a manual line-feed can be forced at any point by entering "@".

The comment is printed in the top left corner of each printout page. If a comment should not be printed, it must be deleted.

This setting is independent of the printing device.

Tip: The current date and time can be inserted automatically, see "Print Date and Time" on page 577.

Remote command:

HCOPy: ITEM: WINDow: TEXT on page 1084

Print Logo

Activates/deactivates the printout of the Rohde & Schwarz company logo in the upper right corner.

This setting is independent of the printing device.

Remote command:

DISPlay:LOGO on page 1079

Print Page Count

Includes the page number for printouts consisting of multiple windows ("Print Multiple Windows" on page 576).

This setting is independent of the printing device.

Remote command:

HCOPy: PAGE: COUN: STATe on page 1084

Select Device 1/2

Selects the printing device to be configured.

Creating Screenshots of Current Measurement Results and Settings

Two different printout devices can be configured, for example one for printing and one for storage to a file. When you execute the "Print immediately" function, the selected printing device and its settings determine the behavior of the R&S FSW.

Print Dialog

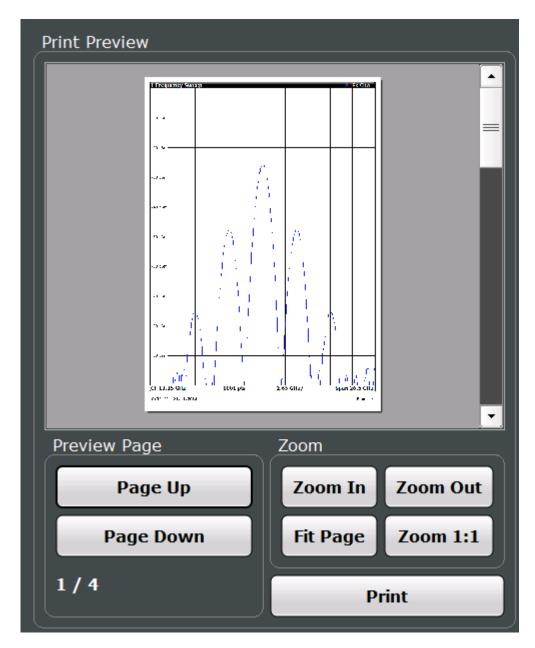
Includes any currently displayed dialog in the screenshot printout. This setting is (printing) device-specific and only available if Print Screenshot is selected.

Print Date and Time

Includes or removes the current date and time at the bottom of the printout. This setting is (printing) device-specific.

Remote command:

HCOPy:TDSTamp:STATe<device> on page 1089


8.5.1.2 Print Preview Functions

Access: "Print"

The "Print Preview" of the printout according to the current configuration is available in all "Print Settings" dialog tabs. The preview display (not the functions) is device-specific (see "Select Device 1/2" on page 576).

Creating Screenshots of Current Measurement Results and Settings

Zoom In / Zoom Out	578
Fit Page.	
Zoom 1:1	
Page Up / Page Down	
Print	

Zoom In / Zoom Out

Zooms into (enlarges) or zooms out of (decreases) the preview display. Note that the zoom functions affect only the preview, not the printout itself.

Creating Screenshots of Current Measurement Results and Settings

Fit Page

Adapts the preview display zoom factor so that one complete page is visible as large as possible in the available display space. Note that the zoom functions affect only the preview, not the printout itself.

Zoom 1:1

Displays the printout in its original size, as it will be printed.

Page Up / Page Down

Depending on the selected contents (see Chapter 8.5.1.1, "Print Content Settings", on page 574), the printout can consist of multiple pages. Use these functions to scroll within the preview to see the individual pages.

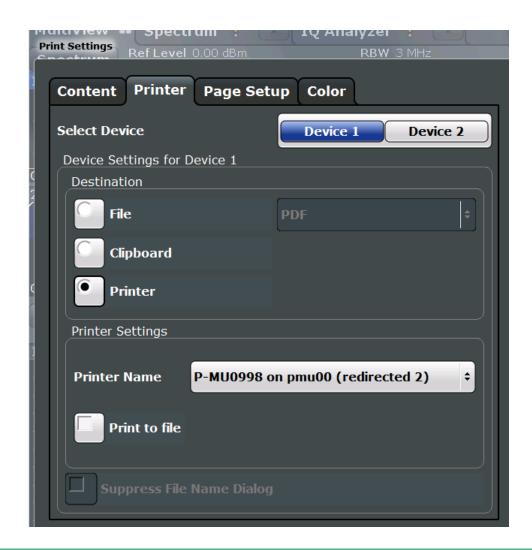
Print

Starts to print or store the selected screen contents to a file (see Chapter 8.5.1.1, "Print Content Settings", on page 574).

Whether the output is sent to the printer or stored in a file or the clipboard depends on the selected printing device and the printing device settings (see Chapter 8.5.1.3, "Printer Settings", on page 579).

If the output is stored to a file, a file selection dialog box is opened to select the file name and location. The default path is C:\R_S\INSTR\USER.

Remote command:


```
HCOPy[:IMMediate<device>] on page 1083
HCOPy[:IMMediate<device>]:NEXT on page 1083
```

8.5.1.3 Printer Settings

Access: "Print" > "Print Config" > "Printer" tab

Creating Screenshots of Current Measurement Results and Settings

Printer settings are (printing) device-specific. That means you can configure two different printing devices (for example, a printer and a file) and switch between configurations easily simply by selecting the appropriate device before printing.

Select Device 1/2	580
Destination	581
Suppress File Name Dialog	
Printer Name	
Print to File	581
Install Printer	

Select Device 1/2

Selects the printing device to be configured.

Two different printout devices can be configured, for example one for printing and one for storage to a file. When you execute the "Print immediately" function, the selected printing device and its settings determine the behavior of the R&S FSW.

Creating Screenshots of Current Measurement Results and Settings

Destination

Defines the medium to which the printout is output.

"File"

Stores the printout to a file in the selected format. The file name is queried at the time of storage, or a default name is used (see Suppress File Name Dialog).

Multiple windows can only be printed to a file in PDF format. If you select an image file format, the content setting is automatically set to Print Screenshot. Page settings are not available for image files; however, you can configure the colors used for the screenshot (see

Chapter 8.5.1.5, "Print Color Settings", on page 583).

"Clipboard"

Copies the printout to the clipboard. Since only single pages can be copied, only screenshots can be copied to this destination, not multi-

ple windows (see Chapter 8.5.1.1, "Print Content Settings",

on page 574). Page settings are not available; however, you can configure the colors used for the screenshot (see Chapter 8.5.1.5, "Print

Color Settings", on page 583).

If you select the clipboard as the printing destination, the content set-

ting is automatically set to Print Screenshot.

"Printer"

Sends the printout to the printer selected from the Printer Name list.

Remote command:

```
HCOPy:DESTination<device> on page 1082
HCOPy:DEVice:LANGuage<device> on page 1083
```

Suppress File Name Dialog

If the Destination is a file, the file selection dialog box is not displayed. Instead, the default storage location and file name are used (C:\R_S\INSTR\USER \FSW ScreenShot <date and time>).

Printer Name

Defines the printer to print to if a printer is selected as the Destination.

Any printers detected in the network are listed for selection.

Tip: the printout can also be stored in a print file using the selected printer driver, see Print to File.

Remote command:

```
SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]? on page 1089
SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt? on page 1089
SYSTem:COMMunicate:PRINter:SELect<device> on page 1090
```

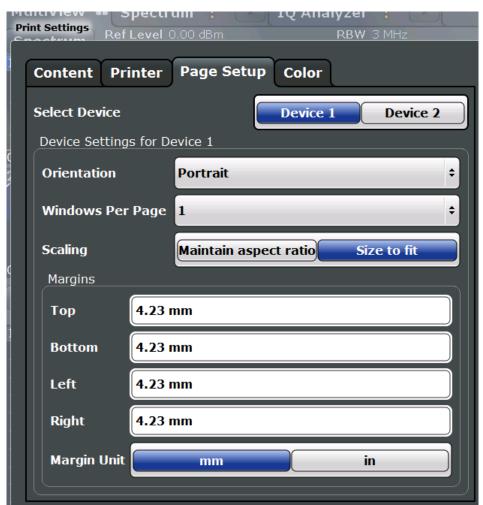
Print to File

If a printer is selected as the Destination, use this option to store the data in a .prn file using the selected printer driver.

Install Printer

This softkey opens the standard Windows dialog box to install a new printer. All printers that are already installed are displayed.

Only user accounts with administrator rights can install a printer.


For further information, refer to the Microsoft Windows documentation.

Creating Screenshots of Current Measurement Results and Settings

8.5.1.4 Page Setup

Access: "Print" > "Print Config" > "Page Setup" tab

Page settings are (printing) device-specific. That means you can configure two different printing devices (for example, a printer and a file) and switch between configurations easily simply by selecting the appropriate device before printing.

Page settings are only available when printing on a printer or to a PDF file (see "Destination" on page 581).

Select Device 1/2	582
Orientation	
Windows per Page	583
Scaling	
Margins	

Select Device 1/2

Selects the printing device to be configured.

Creating Screenshots of Current Measurement Results and Settings

Two different printout devices can be configured, for example one for printing and one for storage to a file. When you execute the "Print immediately" function, the selected printing device and its settings determine the behavior of the R&S FSW.

Orientation

Selects the page orientation of the printout: portrait or landscape.

Remote command:

HCOPy:PAGE:ORIentation<device> on page 1086

Windows per Page

Defines how many windows are displayed on a single page of the printout. This setting is only available if Print Multiple Windows is active (see Chapter 8.5.1.1, "Print Content Settings", on page 574).

If more than one window is printed on one page, each window is printed in equal size.

Remote command:

HCOPy:PAGE:WINDow<device>:COUN on page 1087

Scaling

Determines the scaling of the windows in the printout if Print Multiple Windows is active (see Chapter 8.5.1.1, "Print Content Settings", on page 574).

If more than one window is printed on one page (see Windows per Page), each window is printed in equal size.

"Maintain Each window is printed as large as possible while maintaining the

aspect ratio" aspect ratio of the original display.

"Size to fit" Each window is scaled to fit the page size optimally, not regarding the

aspect ratio of the original display.

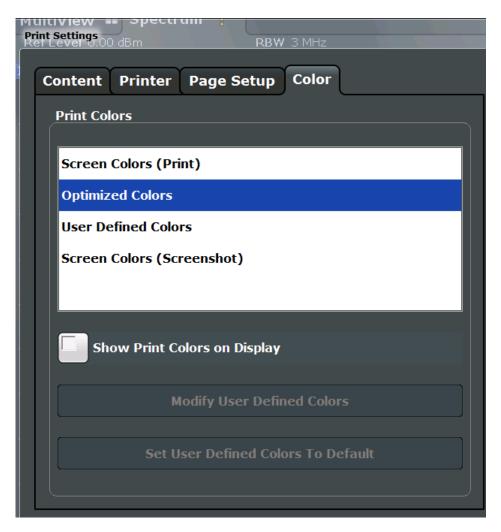
Remote command:

HCOPy: PAGE: WINDow < device >: SCAL on page 1087

Margins

Defines margins for the printout page on which no elements are printed. The margins are defined according to the selected unit.

Remote command:


```
HCOPy: PAGE: MARGin < device >: BOTTom on page 1084
HCOPy: PAGE: MARGin < device >: LEFT on page 1084
HCOPy: PAGE: MARGin < device >: RIGHt on page 1085
HCOPy: PAGE: MARGin < device >: TOP on page 1085
HCOPy: PAGE: MARGin < device >: UNIT on page 1085
```

8.5.1.5 Print Color Settings

Access: "Print" > "Print Config" > "Color" tab

Creating Screenshots of Current Measurement Results and Settings

The settings provided here are identical to those in the "Print colors" section of the "Display" > "Theme + Color" dialog box; see "Print colors" on page 624.

8.5.2 How to Store or Print Screenshots of the Display

The measurement results displayed on the screen can be printed or stored to a file very easily. Two different scenarios can be configured in parallel, assigned to different printing devices. You can then perform one or the other simply by selecting the corresponding printing device and the "Print" function.

To start printing or storing results to a file

▶ If the R&S FSW has already been set up according to your current requirements, simply press the "Print immediate" icon (at the far right end of the toolbar.

The current measurement display is printed or stored to a file, as configured.

To print a screenshot

This configuration assumes a printer has already been installed. To install a new printer, use the Install Printer function (common Microsoft Windows procedure).

- 1. Select the <a> "Printer" tool in the toolbar.
 - The "Print Settings" dialog box is displayed.
- 2. Select "Device 1" or "Device 2" to define which printing device you want to configure.
 - (Note: Some settings are independent of the printing-device.)
- 3. In the "Content" tab, define the elements of the screen and additional information to be included in the printout.
 - Select "Print Screenshot" to include all elements displayed on the screen in a single-page printout.
 - b) Optionally, add a comment to be printed at the top of the printout.
 - c) Optionally, activate the date and time or the logo so they are added to the printout.
 - d) Optionally, activate "Print Dialog" to include any dialog boxes currently displayed on the screen in the printout. This is useful, for example, to document the used settings for a particular result.
 - e) Check the "Print Preview" to make sure all relevant elements of the display are visible.
- 4. In the "Printer" tab, select "Printer" as the "Destination".
- 5. Select the "Printer Name" to print to from the list of installed printers.
- 6. In the "Page Setup" tab, configure the layout of the printout page.
 - a) Select the page orientation.
 - b) Define the page margins.
 - c) Check the "Print Preview" to make sure all relevant elements of the display are visible.
- 7. In the "Color" tab, define the colors to be used for the printout.
 - a) By default, "Optimized Colors" are used to improve the visibility of the colors. The background is always printed in white and the grid in black. For a printout that reflects exactly what you see on the screen, select "Screen Colors (Screenshot)".
 - b) Check the "Print Preview" to find out if the setting is appropriate.
- 8. Select "Print" to execute the print function.
 - The screenshot is printed on the printer as configured.
- 9. To print another screenshot using the same configuration any other time, simply press the "Print immediate" icon () at the far right end of the toolbar. If you use different printing scenarios alternately, perform the following steps to print another screenshot:
 - a) Select the "Printer" tool in the toolbar.

- b) Select "Device 1" or "Device 2" to select the configured printing device.
- c) Select "Print" to execute the print function.

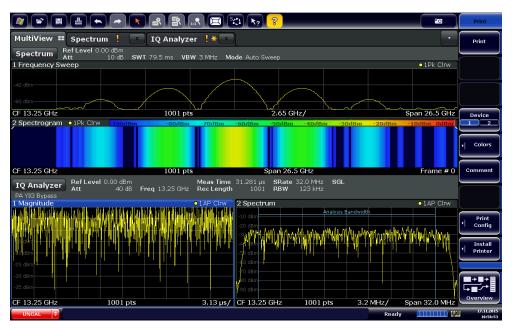
To store a printout containing multiple windows

- Select the "Printer" tool in the toolbar.
 - The "Print Settings" dialog box is displayed.
- 2. Select "Device 1" or "Device 2" to define which printing device you want to configure.
- 3. In the "Content" tab, define the elements of the screen and additional information to be included in the printout.
 - a) Select "Print Selected Windows" to include the selected windows in the printout, possibly on multiple pages.
 - b) Select the result displays in the currently selected measurement channel to be included in the printout.
 - **Tip**: Select the "MultiView" before configuring the printout to include result displays from any active measurement channel.
 - c) Optionally, add a comment to be printed at the top of each page of the printout.
 - d) Optionally, activate the date and time or the logo so they are added to the printout pages.
- 4. Check the "Print Preview" to make sure all required result displays are included.
 - Scroll through the individual pages of the printout using "Page Up" and "Page Down".
 - b) Use the zoom functions to make sure all relevant parts of the result display are visible.
- 5. In the "Printer" tab, select "File" as the "Destination".
- 6. Select the file format from the selection list.
- 7. By default, you define the file name individually for each print operation. To avoid having the "File Selection" dialog box being displayed for each print operation, select "Suppress File Name Dialog". In this case, the previously used or default storage location (C:\R_S\INSTR\USER) and file name
 - FSW ScreenShot <date and time> are used.
- 8. In the "Page Setup" tab, configure the layout of the printout page.
 - a) Select the page orientation.
 - b) Define the page margins.
 - c) Check the "Print Preview" to make sure all relevant elements of the display are visible.
- 9. In the "Color" tab, define the colors to be used for the printout.
 - a) By default, "Optimized Colors" are used to improve the visibility of the colors. The background is always printed in white and the grid in black. For a printout that reflects the colors you see on the screen, but with a white background, select "Screen Colors (Print)".

Creating Screenshots of Current Measurement Results and Settings

- b) Check the "Print Preview" to find out if the setting is appropriate.
- 10. Select "Print" to execute the print function.
- 11. If you did not select the option to suppress the dialog, enter a file name in the file selection dialog box.

The selected data elements are stored to the file as configured.


- 12. To store another file using the same configuration any other time, simply press the "Print immediate" icon () at the far right end of the toolbar.

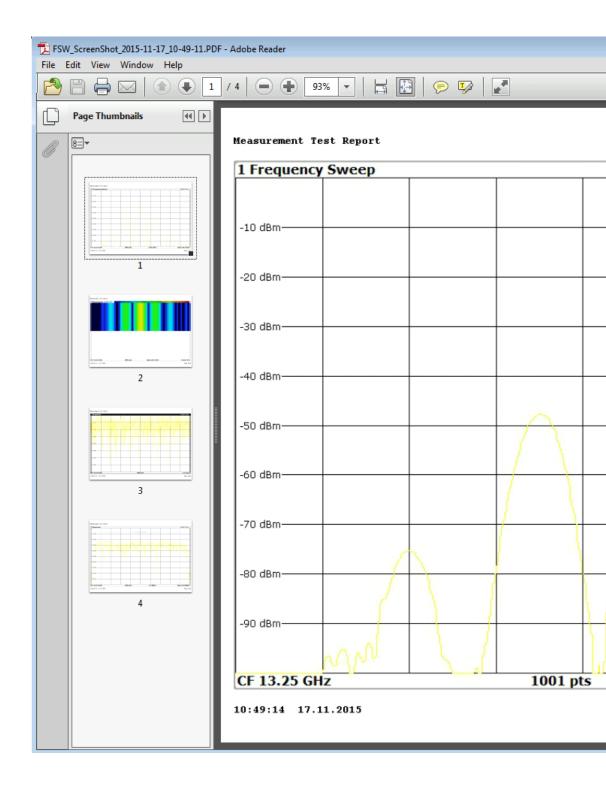
 If you use different printing scenarios alternately, perform the following steps to store another file:
 - a) Select the <a> "Printer" tool in the toolbar.
 - b) Select "Device 1" or "Device 2" to select the configured printing device.
 - c) Select "Print" to execute the print function.

8.5.3 Example for Storing Multiple Measurement Results to a PDF File

The following example describes the procedure to store results from measurements in the Spectrum application and the I/Q Analyzer to a single PDF file.

- 1. Configure and perform the measurements in the Spectrum application and I/Q Analyzer as required. Configure at least the following result displays:
 - Frequency Sweep, Spectrogram (Spectrum)
 - Magnitude, Spectrum (I/Q Analyzer)
- 2. Switch to the "MultiView" tab to display an overview of the result displays in all active measurement channels.

3. Select the "Printer" tool in the toolbar.


Creating Screenshots of Current Measurement Results and Settings

The "Print Settings" dialog box is displayed.

- 4. Select "Device 1" to configure the settings for this printing device.
- 5. In the "Content" tab, select "Print Selected Windows".
- 6. Select the result displays listed in step 1.
- 7. Enter the comment *Measurement Test Report* to be inserted at the top of each page.
- 8. Select "Print Page Count" and "Print Date and Time".
- 9. In the "Content" tab, select "Print Selected Windows".
- 10. In the "Printer" tab, select "File" as the "Destination".
- 11. Select "PDF" from the file format selection list.
- 12. Select "Suppress File Name Dialog".
- 13. In the "Page Setup" tab, select "Landscape" as the "Orientation".
- 14. Select "Windows per Page": 1 to print a single result display on each page.
- 15. Select the "Scaling" option "Size to fit" to maximize the result display on each page.
- 16. In the "Color" tab, select "Screen Colors (Print)" for a printout that reflects the colors you see on the screen, but with a white background.
- 17. Check the "Print Preview" to make sure all required result displays are included and all relevant data elements are visible.
 - a) Scroll through the individual pages of the printout using "Page Up" and "Page Down".
 - b) Use the zoom functions to make sure all relevant parts of the result display are visible.
- 18. Select "Print" to execute the print function.

The selected data elements are stored to the file C:\R_S\INSTR\USER \FSW ScreenShot <date and time>.PDF as configured.

Creating Screenshots of Current Measurement Results and Settings

9 General Instrument Setup

Some basic instrument settings can be configured independently of the selected operating mode or application. Usually, you will configure most of these settings initially when you set up the instrument according to your personal preferences or requirements and then only adapt individual settings to special circumstances when necessary. Some special functions are provided for service and basic system configuration.

•	Basics on Alignment	.590
	Basics on Transducer Factors	
•	General Instrument Settings	593
	Display Settings	
	External Monitor Settings	
	How to Configure the Basic Instrument Settings	

9.1 Basics on Alignment

When you put the instrument into operation for the first time or when strong temperature changes occur, it may be necessary to align the data to a reference source (see also "Temperature check" on page 591).

During instrument start, the installed hardware is checked against the current firmware version to ensure the hardware is supported. If not, an error message is displayed ("WRONG_FW") and you are asked to update the firmware. Until the firmware version is updated, self-alignment fails.

The correction data and characteristics required for the alignment are determined by comparison of the results at different settings with the known characteristics of the high-precision calibration signal source at 64 MHz.

If you start a self-alignment remotely, then select the "Local" softkey while the alignment is still running, the instrument only returns to the manual operation state after the alignment is completed.

Alignment results

The alignment results are displayed and contain the following information:

- date and time of last correction data record
- overall results of correction data record
- list of found correction values according to function/module

The results are classified as follows:

Basics on Transducer Factors

PASSED	Calibration successful without any restrictions
CHECK	Deviation of correction value larger than expected, correction could however be performed
FAILED	Deviations of correction value too large, no correction was possible. The found correction data is not applicable.

The results are available until the next self-alignment process is started or the instrument is switched off.

Temperature check

During self-alignment, the instrument's (frontend) temperature is also measured (as soon as the instrument has warmed up completely). This temperature is used as a reference for a continuous temperature check during operation. If the current temperature deviates from the stored self-alignment temperature by a certain degree, a warning is displayed in the status bar indicating the resulting deviation in the measured power levels. A status bit in the STATUs:QUEStionable:TEMPerature register indicates a possible deviation. The current temperature of the RF Frontend can be queried using a remote command (see SOURCe:TEMPerature:FRONtend? on page 1104).

Touchscreen alignment

When the device is delivered, the touchscreen is initially calibrated. However, to ensure that the touchscreen responds to the finger contact correctly, a touchscreen alignment is required.

Alignment of the touchscreen is useful:

- At first use
- After an image update or after exchanging a hard disk
- If you notice that touching a specific point on the screen does not achieve the correct response
- If the position of the instrument has been changed and you cannot look straight on the screen
- If another person operates the instrument

9.2 Basics on Transducer Factors

The transducer allows you to manipulate the trace at discrete trace points to correct the signal coming from an input device. Transducers are often used to correct the frequency response for antennas, for example. The transducer is configured by defining transducer factors for specific trace points. A set of transducer factors defines an interpolated transducer line and can be stored on the instrument.

In the Spectrum application, the correction factor from all active transducers is calculated for each displayed trace point once in advance and is added to the result of the level measurement during the sweep. If the sweep range changes, the correction values are calculated again. If several measured values are combined in one point, only

Basics on Transducer Factors

one value is taken into consideration. If the active transducer line is not defined for the entire sweep range, the missing values are replaced by zeroes.

When a transducer is used, the trace is shifted by a calculated factor. However, an upward shift reduces the dynamic range for the displayed values. Thus, the reference level can be adapted automatically to restore the original dynamic range. The reference level is shifted by the maximum transducer factor. By default, if transducers are active the reference level function is adapted automatically to obtain the best dynamic performance.

If a transducer factor is active, "TDF" is displayed in the channel bar.

Transducers can also be defined when an optional external mixer is used (R&S FSW-B21).

When using probes for RF input, transducers are automatically created according to the probe's detected characteristics as soon as the probe is connected (see Chapter 6.2.1.2, "RF Input from the Analog Baseband Connector", on page 321).

Y-Axis Unit

The individual transducer factors can be defined as absolute values or relative (dB) values. However, all factors for one transducer line use the same unit. As soon as a transducer is activated, the unit of the transducer is automatically used for all the level settings and outputs. The unit cannot be changed in the amplitude settings since the R&S FSW and the active transducer are regarded as one measuring instrument. Only for relative transducer factors (unit dB), the unit originally set on the instrument is maintained and can be changed.

When all transducers have been switched off, the R&S FSW returns to the unit that was used before a transducer was activated.

Configuration

The R&S FSW supports transducer lines with a maximum of 1001 data points. Eight of the transducer lines stored in the instrument can be activated simultaneously. The number of transducer lines stored in the instrument is only limited by the capacity of the storage device used.

A transducer line consists of the following data:

- A maximum of 1001 data points with a position and value
- A unit for the values
- A name to distinguish the transducer lines

Validity

The transducer factors must comply with the following rules to ensure correct operation:

The frequencies for the data points must always be defined in ascending order.
 Otherwise the entry will not be accepted and the an error message is displayed.

- The frequencies of the data points may exceed the valid frequency range of the R&S FSW since only the set frequency range is taken into account for measurements. The minimum frequency of a data point is 0 Hz, the maximum frequency 200 GHz.
- The value range for the transducer factor is ±200 dB.
- Gain has to be entered as a negative value, and attenuation as a positive value.

Storing transducer factors

Transducer factors can be stored with the configuration settings so they can be recalled for other measurements at a later time (see Chapter 8.3, "Storing and Recalling Instrument Settings and Measurement Data", on page 555). Note, however, that any changes made to the transducer factors *after* storing the configuration file cannot be restored and will be overwritten by the stored values when the configuration file is recalled. Always remember to store the settings again after changing the transducer factors.

Transducer settings in secure user mode

Be sure to store transducer files before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Recalling transducer factors

After recalling measurement settings, the transducer factors applied to the measurement may be different to those displayed in the "Transducer" dialog box; see "Saving and recalling transducer and limit line settings" on page 556.

9.3 General Instrument Settings

Access: SETUP

Network and Remote Settings, Display Settings

Settings for network and remote operation are described in Chapter 10, "Network and Remote Operation", on page 635.

Display settings are described in Chapter 9.4, "Display Settings", on page 616.

•	Reference Frequency Settings	.594
	Transducer Settings	
	Alignment Settings	
	System Configuration Settings	
	Service Functions.	

9.3.1 Reference Frequency Settings

Access: SETUP > "Reference"

Reference Frequency Input	.594
L Behavior in case of missing external reference	595
L Tuning Range	
L Frequency	
L Loop Bandwidth	
Reference Frequency Output	
Resetting the Default Values	

Reference Frequency Input

The R&S FSW can use the internal reference source or an external reference source as the frequency standard for all internal oscillators. A 10 MHz crystal oscillator is used as the internal reference source. In the external reference setting, all internal oscillators of the R&S FSW are synchronized to the external reference frequency.

External references are connected to one of the REF INPUT or the SYNC TRIGGER connectors on the rear panel. For details see the "Getting Started" manual.

Note: The optional, and more precise OCXO signal can replace the internal reference source.

The default setting is the internal reference. When an external reference is used, "EXT REF" is displayed in the status bar.

The following reference inputs are available:

Table 9-1: Available Reference Frequency Input

Source	Frequency	Tuning Range	Loop Band- width	Description
Internal	10 MHz	-	1-100 Hz	Internal reference signal or optional OCXO
External Reference 10 MHz	10 MHz	+/- 6 ppm	1-100 Hz	External reference from REF INPUT 120 MHZ connector; Fixed external 10 MHZ reference frequency. Good phase noise performance
External Reference 120 MHz	120 MHz in 1 Hz steps	+/- 0.5 ppm	0.1 Hz (fixed)	Variable external reference frequency in 0.1 Hz steps from REF INPUT 120 MHZ connector; Good external phase noise suppression. Small tuning range.
		+/- 6 ppm	1-30 Hz	Variable external reference frequency in 0.1 Hz steps from REF INPUT 120 MHZ connector; Wide tuning range.
External Reference 100 MHz	100 MHz	+/- 6 ppm	1-300 Hz	External reference from REF INPUT 100 MHZ connector Good phase noise performance
Sync Trigger	100 MHz	+/- 6 ppm	1-300 Hz	External reference from SYNC TRIGGER INPUT connector

Remote command:

[SENSe:]ROSCillator:SOURce on page 1099
SOURce:EXTernal:ROSCillator:EXTernal:FREQuency on page 1098

Behavior in case of missing external reference ← Reference Frequency Input If an external reference is selected but none is available, there are different ways the instrument can react.

"Show Error The message "NO REF" is displayed to indicate that no synchroniza-

Flag" tion is performed.

"Switch to The instrument automatically switches back to the internal reference if no external reference is available. Note that you must re-activate ence" the external reference if it becomes available again at a later time.

Remote command:

[SENSe:]ROSCillator:SOURce on page 1099
[SENSe:]ROSCillator:SOURce:EAUTo? on page 1099

$\textbf{Tuning Range} \leftarrow \textbf{Reference Frequency Input}$

The tuning range is only available for the variable external reference frequency. It determines how far the frequency may deviate from the defined level in parts per million (10-6).

"+/- 0.5 ppm" W

With this smaller deviation a very narrow fixed loop bandwidth of 0.1 Hz is realized. With this setting the instrument can synchronize to an external reference signal with a very precise frequency. Due to the very narrow loop bandwidth, unwanted noise or spurious components on the external reference input signal are strongly attenuated. Furthermore, the loop requires about 30 seconds to reach a locked state. During this locking process, "NO REF" is displayed in the status bar.

"+/- 6 ppm"

The larger deviation allows the instrument to synchronize to less precise external reference input signals.

Remote command:

[SENSe:]ROSCillator:TRANge on page 1100

Frequency ← **Reference Frequency Input**

Defines the external reference frequency to be used (for variable connectors only).

Loop Bandwidth ← Reference Frequency Input

Defines the speed of internal synchronization with the reference frequency. The setting requires a compromise between performance and increasing phase noise.

For a variable external reference frequency with a narrow tuning range (+/- 0.5 ppm), the loop bandwidth is fixed to 0.1 Hz and cannot be changed.

Remote command:

```
[SENSe:]ROSCillator:LBWidth on page 1097
```

Reference Frequency Output

A reference frequency can be provided by the R&S FSW to other devices that are connected to this instrument. If one of the following options is activated, the reference signal is output to the corresponding connector.

"Output 100 MHz"

Provides a 100 MHz reference signal to the REF OUTPUT 100 MHZ connector.

"Ouput 640 MHz"

Provides a 640 MHz reference signal to the REF OUTPUT 640 MHZ connector.

"Output Sync Trigger"

Provides a 100 MHz reference signal to the SYNC TRIGGER OUTPUT connector.

Remote command:

```
[SENSe:]ROSCillator:0100 on page 1098
[SENSe:]ROSCillator:0640 on page 1098
[SENSe:]ROSCillator:0SYNc on page 1098
```

Resetting the Default Values

The values for the "Tuning Range", "Frequency" and "Loop Bandwidth" are stored for each source of "Reference Frequency Input". Thus, when you switch the input source, the previously defined settings are restored. You can restore the default values for all input sources using the "Preset Channel" function.

9.3.2 Transducer Settings

Access: SETUP > "Transducer"

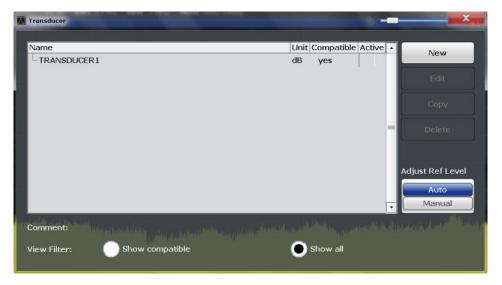
Up to 8 transducer lines can be activated simultaneously in the R&S FSW. Many more can be stored on the instrument.

Transducers can also be defined when an optional external mixer is used (R&S FSW-B21).

Transducer settings in secure user mode

Be sure to store transducer files before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Stored transducer settings


When storing and recalling transducer settings, consider the information provided in "Saving and recalling transducer and limit line settings" on page 556.

Transducer Management.
 Transducer Factors.
 597

9.3.2.1 Transducer Management

Access: SETUP > "Transducer"

The settings required to manage all transducer lines on the instrument are described here.

For the transducer line overview, the R&S FSW searches for all stored transducer lines with the file extension . \mathtt{TDF} in the \mathtt{trd} subfolder of the main installation folder. The

overview allows you to determine which transducer lines are available and can be used for the current measurement.

For details on settings for individual lines see Chapter 9.3.2.2, "Transducer Factors", on page 599.

For instructions on configuring and working with transducers see Chapter 9.6.6, "How to Configure the Transducer", on page 629.

Name	598
Unit	598
Compatibility	
Activating/Deactivating	
Comment	
Included Transducer Lines in Overview (View Filter)	
Adjusting the Reference Level	
Create New Line	
Edit Line	
Copy Line	
Delete Line	

Name

The name of the stored transducer line.

Unit

The unit in which the y-values of the data points of the transducer line are defined.

The following units are available:

- dB
- dBm
- dBmV
- dBµV
- dBµV/m
- dBµA
- dBµA/m
- dBpWdBpT

Compatibility

Indicates whether the transducer factors are compatible with the current measurement settings.

For more information on which conditions a transducer line must fulfill to be compatible, see Chapter 9.2, "Basics on Transducer Factors", on page 591.

Activating/Deactivating

Activates/deactivates the transducer line. Up to 8 transducer lines can be active at the same time.

Remote command:

```
[SENSe:]CORRection:TRANsducer:SELect on page 1107 [SENSe:]CORRection:TRANsducer[:STATe] on page 1107
```

Comment

An optional description of the transducer line.

Included Transducer Lines in Overview (View Filter)

Defines which of the stored transducer lines are included in the overview. The view can be restricted to compatible transducer lines only or include all transducer lines found. Whether a line is compatible or not is indicated in the Compatibility setting.

Adjusting the Reference Level

Activates or deactivates the automatic adjustment of the reference level to the selected transducer factor.

"Auto" Activates the automatic adjustment. The original dynamic range is

restored by shifting the reference level by the maximum transducer

factor.

"Man" Deactivates the automatic adjustment. Adjust the reference level via

the "Amplitude" menu.

Remote command:

```
[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe] on page 1105
```

Create New Line

Create a new transducer line.

Remote command:

```
[SENSe:] CORRection: TRANsducer: SELect on page 1107
```

Edit Line

Edit an existing transducer line configuration.

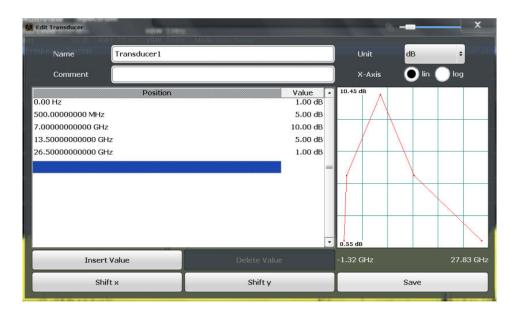
Copy Line

Copy the selected transducer line configuration to create a new line.

Delete Line

Delete the selected transducer line.

Remote command:


```
[SENSe:]CORRection:TRANsducer:DELete on page 1106
```

9.3.2.2 Transducer Factors

Access: SETUP > "Transducer" > "Edit Line" / "Copy Line" / "New Line"

The settings and functions available for individual transducer lines are described here.

For instructions on creating and editing transducer lines see Chapter 9.6.6, "How to Configure the Transducer", on page 629.

Name	600
Comment	600
Unit	600
X-Axis Scaling	601
Data points	601
Insert Value	601
Delete Value	601
Shift x	601
Shift y	601
Save	601

Name

Defines the transducer line name. All names must be compatible with the Windows conventions for file names. The transducer data is stored under this name (with a .TDF extension) in the trd subfolder of the main installation folder.

Remote command:

[SENSe:]CORRection:TRANsducer:SELect on page 1107

Comment

Defines an optional comment for the transducer line. The text may contain up to 40 characters.

Remote command:

[SENSe:]CORRection:TRANsducer:COMMent on page 1106

Unit

The unit in which the y-values of the data points of the transducer line are defined.

As soon as a transducer is activated, the unit of the transducer is automatically used for all the level settings and outputs. The unit cannot be changed in the amplitude settings unless dB is used.

Remote command:

[SENSe:]CORRection:TRANsducer:UNIT on page 1107

X-Axis Scaling

Describes the scaling of the horizontal axis on which the data points of the transducer line are defined. Scaling can be linear or logarithmic.

Remote command:

[SENSe:] CORRection: TRANsducer: SCALing on page 1107

Data points

Each transducer line is defined by a minimum of 2 and a maximum of 50 data points. Each data point is defined by its position (x-axis) and value (y-value).

The data points must comply with the following rules to ensure correct operation:

- The frequencies for the data points must always be defined in ascending order.
 Otherwise the entry will not be accepted and the an error message is displayed.
- The frequencies of the data points may exceed the valid frequency range of the R&S FSW since only the set frequency range is taken into account for measurements. The minimum frequency of a data point is 0 Hz, the maximum frequency 200 GHz.
- The value range for the transducer factor is ±200 dB.
- Gain has to be entered as a negative value, and attenuation as a positive value.

Remote command:

```
[SENSe:]CORRection:TRANsducer:DATA on page 1106
```

Insert Value

Inserts a data point in the transducer line above the selected one in the "Edit Transducer" dialog box.

Delete Value

Deletes the selected data point in the "Edit Transducer" dialog box.

Shift x

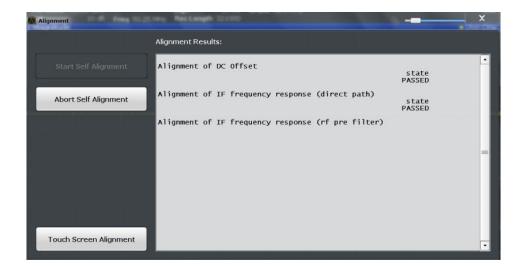
Shifts the x-value of each data point horizontally by the defined shift width.

Shift y

Shifts the y-value of each data point vertically by the defined shift width.

Save

Saves the currently edited transducer line under the name defined in the "Name" field.


Remote command:

```
MMEMory:SELect[:ITEM]:TRANsducer:ALL on page 1072
MMEMory:STORe<n>:STATe on page 1076
```

9.3.3 Alignment Settings

Access: SETUP > "Alignment"

Both the instrument and the touchscreen can be aligned when necessary (see Chapter 9.1, "Basics on Alignment", on page 590).

Self-alignment results in secure user mode

Be sure to store self-alignment results before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

If the currently stored self-alignment results are not suitable, you must perform a self-alignment each time you switch on the R&S FSW in secure user mode, as the results are not stored permanently in this case.

Starting a Self-alignment	602
Aborting the Self-alignment	
Starting the Touchscreen Alignment	
Alignment Results	603

Starting a Self-alignment

Starts recording correction data for the instrument. If the correction data acquisition fails or if the correction values are deactivated, a corresponding message is displayed in the status field.

For details see Chapter 9.1, "Basics on Alignment", on page 590.

Note

A running Sequencer operation is aborted when you start a self-alignment.

Remote command:

*CAL? on page 711, see also CALibration[:ALL]? on page 1101

Aborting the Self-alignment

As long as the self-alignment data is being collected the procedure can be cancelled using the "Abort Self-alignment" button.

Note: If you start a self-alignment remotely, then select the "Local" softkey while the alignment is still running, the instrument only returns to the manual operation state after the alignment is completed. In this case, you cannot abort a self-alignment manually.

Starting the Touchscreen Alignment

Starts the touchscreen alignment.

Tap the 4 markers on the screen as you are asked to do. The touchscreen is aligned according to the executed pointing operations.

Alignment Results

Information on whether the alignment was performed successfully and on the applied correction data is displayed. The results are available until the next self-alignment process is started or the instrument is switched off.

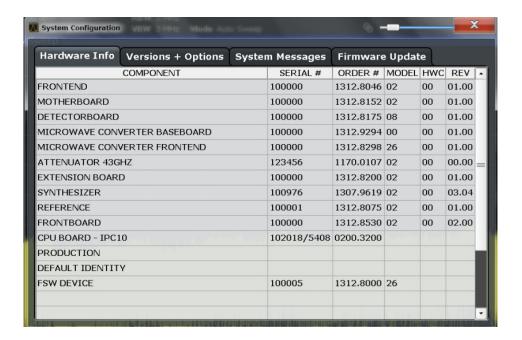
Remote command:

CALibration: RESult? on page 1101

9.3.4 System Configuration Settings

Access: SETUP > "System Configuration"

•	Hardware Information	603
•	Information on Versions and Options	604
	System Messages	
	Firmware Updates	
	General Configuration Settings.	


9.3.4.1 Hardware Information

Access: SETUP > "System Configuration" > "Hardware Info"

An overview of the installed hardware in your R&S FSW is provided.

Every listed component is described by its serial number, order number, model information, hardware code, and hardware revision.

This information can be useful when problems occur with the instrument and you require support from Rohde & Schwarz.

Remote command:

DIAGnostic: SERVice: HWINfo? on page 1119

9.3.4.2 Information on Versions and Options

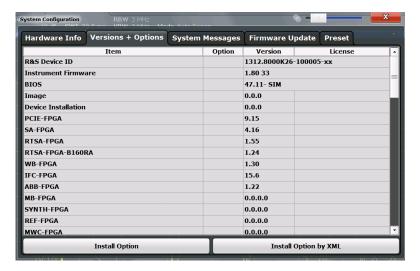
Access: SETUP > "System Configuration" > "Versions Options"

Information on the firmware version and options installed on your instrument is provided. The unique Rohde & Schwarz device ID is also indicated here, as it is required for license and option administration.

You can also install new firmware options in this dialog box.

Installing options in secure user mode

Be sure to install any new options before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.


For restricted users in secure user mode, this function is not available!

Expired option licenses

If an option is about to expire, a message box is displayed to inform you. You can then use the "Install Option" function to enter a new license key.

If an option has already expired, a message box appears for you to confirm. In this case, all instrument functions are unavailable (including remote control) until the R&S FSW is rebooted. You must then use the "Install Option" function to enter the new license key.

For details on options refer to the "Getting Started" manual, "Checking the Supplied Items".

Remote commands:

SYSTem: FORMat: IDENt on page 1123

DIAGnostic: SERVice: BIOSinfo? on page 1119

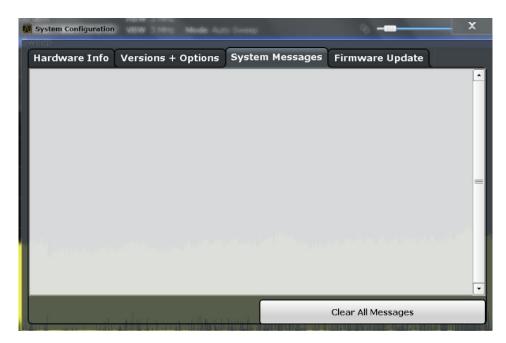
DIAGnostic: SERVice: VERSinfo? on page 1120

Install Option

Opens an edit dialog box to enter the license key for the option that you want to install. Only user accounts with administrator rights are able to install options.

Install Option by XML

Opens a file selection dialog box to install an additional option to the R&S FSW using an XML file. Enter or browse for the name of an XML file that contains the option key and press "Select".


Only user accounts with administrator rights are able to install options.

9.3.4.3 System Messages

Access: SETUP > "System Configuration" > "System Messages"

The system messages generated by the R&S FSW are displayed.

The messages are displayed in the order of their occurrence; the most recent messages are placed at the top of the list. Messages that have occurred since you last visited the system messages tab are marked with an asterisk '*'.

If the number of error messages exceeds the capacity of the error buffer, "Message buffer overflow" is displayed. To clear the message buffer use the "Clear All Messages" button.

The following information is available:

No	device-specific error code
Message	brief description of the message
Component	hardware messages: name of the affected module
	software messages: name of the affected software
Date/Time	date and time of the occurrence of the message

Remote command:

SYSTem: ERRor: LIST? on page 1121

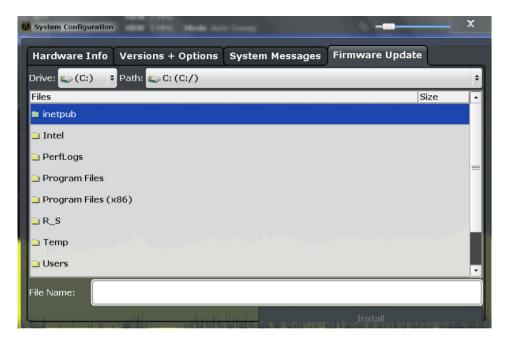
9.3.4.4 Firmware Updates

Access: SETUP > "System Configuration" > "Firmware Update"

During instrument start, the installed hardware is checked against the current firmware version to ensure the hardware is supported. If not, an error message is displayed ("WRONG_FW") and you are asked to update the firmware. Until the firmware version is updated, self-alignment fails. To see which components are not supported, see the System Messages.

The firmware on your R&S FSW may also need to be updated in order to enable additional new features or if reasons for improvement come up. Ask your sales representative or check the Rohde&Schwarz website for availability of firmware updates. A firmware update package includes at least a setup file and release notes.

Before updating the firmware on your instrument, read the release notes delivered with the firmware version.


Administrator rights are no longer required to perform a firmware update.

Installing options in secure user mode

Be sure to perform any firmware updates before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

For restricted users in secure user mode, this function is not available!

Enter the name or browse for the firmware installation file and press the "Install" button.

Remote command:

SYSTem:FIRMware:UPDate on page 1122

9.3.4.5 General Configuration Settings

Access: SETUP > "System Configuration" > "Config"

General system settings, for example concerning the initial behaviour of the R&S FSW after booting, can also be configured.

Preset Mode	608
Out-of-range value behavior	
Secure User Mode	608
L Changing the password	609

Preset Mode

The default operating mode is Signal and Spectrum Analyzer mode, however, the presetting can be changed. The defined operating mode is activated when you switch on the R&S FSW or press the PRESET key.

The presettings can be defined in the "Config" tab of the "System Configuration" dialog box.

For details on operating modes see Chapter 4, "Applications and Operating Modes", on page 100.

"SAN" Signal and Spectrum Analyzer mode
"MSRA" Multi-Standard Radio Analysis mode
"MSRT" Multi-Standard Real-Time mode

Remote command:

SYSTem: PRESet: COMPatible on page 1123

Out-of-range value behavior

By default, if you enter a value that is outside the valid range in an input field for a setting, a warning is displayed and the value is not accepted. Alternatively, entries below the minimum value can automatically be set to the minimum possible entry, and entries above the maximum value set to the maximum possible entry. This behavior avoids errors and facilitates setting correct values.

Secure User Mode

If activated, the R&S FSW requires a reboot and then automatically logs in using the "SecureUser" account.

Data that the R&S FSW normally stores on the solid-state drive is redirected to volatile memory instead. Data that is stored in volatile memory can be accessed by the user during the current instrument session; however, when the instrument's power is removed, all data in volatile memory is erased.

The Secure User Mode can only be activated or deactivated by a user with administrator rights.

Note: Storing instrument settings permanently. Before you activate secure user mode, store any instrument settings that are required beyond the current session, such as predefined instrument settings, transducer files, or self-alignment data.

For details on the secure user mode see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Remote command:

SYSTem: SECurity[:STATe] on page 1123

Note: Initially after installation of the R&S FSW-K33 option, secure user mode must be enabled manually once before remote control is possible.

Changing the password ← Secure User Mode

When the secure user mode is activated the first time after installation, you are prompted to change the passwords for all user accounts in order to improve system security.

To save the new password, select "Save". The password dialog for the next user is displayed, until you have been prompted to change the password all user accounts.

If you cancel the dialog without changing the password, the password dialog for the next user is displayed, until you have been prompted to change the password all user accounts. Although it is possible to continue in secure user mode without changing the passwords (and you will not be prompted to do so again), it is strongly recommended that you do define a more secure password for all users.

By default, the password characters are not displayed to ensure confidentiality during input. To display the characters, select "Show password".

To display the onscreen keyboard, select "Keyboard".

9.3.5 Service Functions

Access: SETUP > "Service"

When unexpected problems arise with the R&S FSW some service functions may help you solve them.

•	R&S Support Information	. 610
•	Self-test Settings and Results	.611
•	Calibration Signal Display	. 612
•	Service Functions	613
•	Hardware Diagnostics	.615

9.3.5.1 R&S Support Information

Access: SETUP > "Service" > "R&S Support"

In case of errors you can store useful information for troubleshooting and send it to your Rohde & Schwarz support center.

Creating R&S Support Information	610
Save Device Footprint.	611

Creating R&S Support Information

Creates a *.zip file with important support information. The *.zip file contains the system configuration information ("device footprint"), the current eeprom data and a screenshot of the screen display.

This data is stored to the C:\R_S\INSTR\USER directory on the instrument.

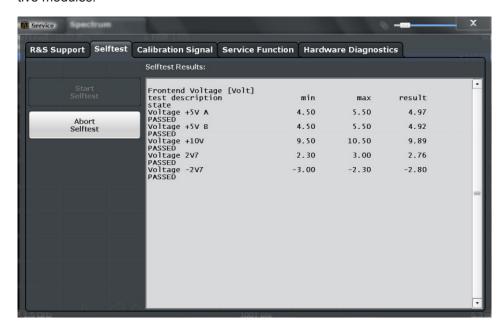
The file name consists of the unique device ID and the current date and time of the file creation.

If you contact the Rohde&Schwarz support to get help for a certain problem, send these files to the support in order to identify and solve the problem faster.

Remote command:

DIAGnostic:SERVice:SINFo? on page 1125

Save Device Footprint


Creates an *.xml file with information on installed hardware, software, image and FPGA versions. The *.xml file is stored under

C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\devicedata\xml\ on the instrument. It is also included in the service.zip file.

9.3.5.2 Self-test Settings and Results

Access: SETUP > "Service" > "Self-test"

If the R&S FSW fails you can perform a self-test of the instrument to identify any defective modules.

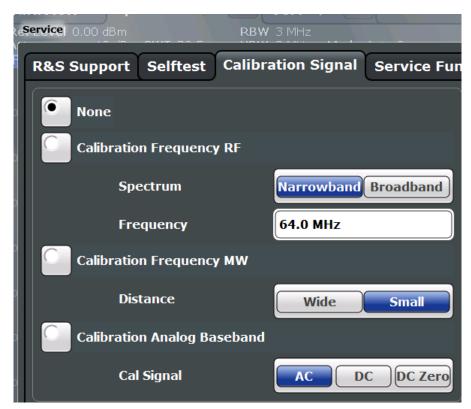
Once the self-test is started, all modules are checked consecutively and the test result is displayed. You can abort a running test.

In case of failure a short description of the failed test, the defective module, the associated value range and the corresponding test results are indicated.

A running Sequencer process is aborted when you start a self-test.

If you start a self-test remotely, then select the "Local" softkey while the test is still running, the instrument only returns to the manual operation state after the test is completed. In this case, the self-test cannot be aborted.

Remote command:


*TST? on page 714

DIAGnostic:SERVice:STESt:RESult? on page 1104

9.3.5.3 Calibration Signal Display

Access: SETUP > "Service" > "Calibration Signal"

Alternatively to the RF input signal from the front panel connector you can use the instrument's calibration signal as the input signal, for example to perform service functions on.

None	612
Calibration Frequency RF	612
L Spectrum	
L Frequency	613
Calibration Frequency MW	
Calibration Analog Baseband	
L Calibration Signal Type	

None

Uses the current RF signal at the input, i.e. no calibration signal (default).

Remote command:

DIAGnostic:SERVice:INPut[:SELect] on page 1103

Calibration Frequency RF

Uses the internal calibration signal as the RF input signal.

Remote command:

DIAGnostic:SERVice:INPut[:SELect] on page 1103
DIAGnostic:SERVice:INPut:PULSed:CFRequency on page 1102

Spectrum ← Calibration Frequency RF

Defines whether a broadband or narrowband calibration signal is sent to the RF input.

"Narrowband" Used to calibrate the absolute level of the frontend at 64 MHz.

"Broadband" Used to calibrate the IF filter.

Remote command:

```
DIAGnostic:SERVice:INPut:RF:SPECtrum on page 1102
```

Frequency ← Calibration Frequency RF

Defines the frequency of the internal broadband calibration signal to be used for IF filter calibration (max. 64 MHz). For narrowband signals, 64 MHz is sent.

Calibration Frequency MW

Uses the microwave calibration signal as the RF input (for frequencies greater than 8 GHz; for instrument models R&S FSW13/26/43/50/67/85 only). This function is used to calibrate the YIG-filter on the microwave converter. The microwave calibration signal is pulsed. You can define whether the distance between input pulses is small or wide.

Remote command:

```
DIAGnostic:SERVice:INPut[:SELect] on page 1103
DIAGnostic:SERVice:INPut:MC:DISTance on page 1102
DIAGnostic:SERVice:INPut:MC:CFRequency on page 1102
```

Calibration Analog Baseband

Uses an internal calibration signal as input to the optional Analog Baseband interface. This signal is only available if the R&S FSW-B71 option is installed.

For more information on the Analog Baseband Interface (R&S FSW-B71) see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

Remote command:

```
DIAGnostic:SERVice:INPut[:SELect] on page 1103
```

Calibration Signal Type ← Calibration Analog Baseband

Defines the type of calibration signal to be used for Analog Baseband.

"AC" 1.5625 MHz square wave AC signal

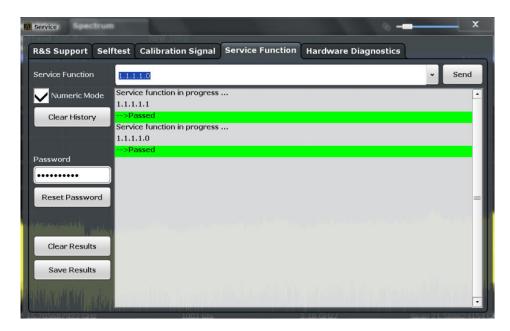
"DC" DC signal

"DC zero" no signal

Remote command:

```
DIAGnostic:SERVice:INPut:AIQ[:TYPE] on page 1103
```

9.3.5.4 Service Functions


Access: SETUP > "Service" > "Service Function"

NOTICE

Using service functions

The service functions are not necessary for normal measurement operation. Incorrect use can affect correct operation and/or data integrity of the R&S FSW.

Therefore, only user accounts with administrator rights can use service functions and many of the functions can only be used after entering a password. These functions are described in the instrument service manual.

Service Function	614
Numeric Mode	614
Send	
Clear History	
Password	
Clear Results	615
Save Results	615
Result List	

Service Function

Selects the service function by its numeric code or textual name.

The selection list includes all functions previously selected (since the last "Clear History" action).

Remote command:

DIAGnostic: SERVice: SFUNction on page 1124

Numeric Mode

If activated, the service function is selected by its numeric code. Otherwise, the function is selected by its textual name.

Send

Starts the selected service function.

Remote command:

DIAGnostic: SERVice: SFUNction on page 1124

Clear History

Deletes the list of previously selected service functions.

Password

Most service functions require a special password as they may disrupt normal operation of the R&S FSW. There are different levels of service functions, depending on how restrictive their use is handled. Each service level has a different password.

"Reset Password" returns to the lowest (least restrictive) service level.

Clear Results

Clears the result display for all previously performed service functions.

Remote command:

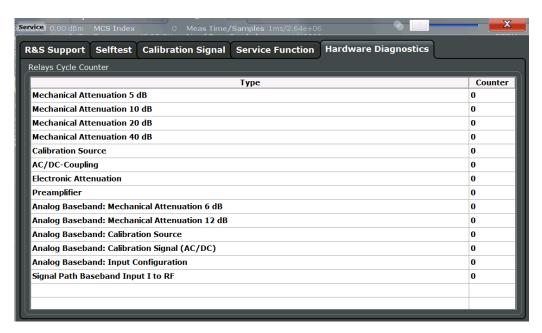
DIAGnostic:SERVice:SFUNction:RESults:DELete on page 1125

Save Results

Opens a file selection dialog box to save the results of all previously performed service functions to a file.

Remote command:

DIAGnostic:SERVice:SFUNction:RESults:SAVE on page 1125


Result List

The Results List indicates the status and results of the executed service functions.

9.3.5.5 Hardware Diagnostics

In case problems occur with the instrument hardware, some diagnostic tools provide information that may support troubleshooting.

The hardware diagnostics tools are available in the "Hardware Diagnostics" tab of the "Service" dialog box.

Relay Cycle Counter......616

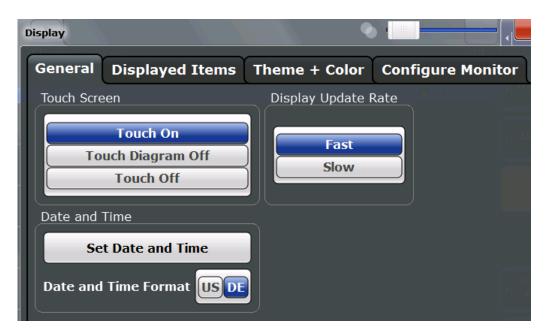
Relay Cycle Counter

The hardware relays built into the R&S FSW may fail after a large number of switching cycles (see data sheet). The counter indicates how many switching cycles the individual relays have performed since they were installed.

Remote command:

DIAGnostic: INFO: CCOunter? on page 1118

9.4 Display Settings


Access: SETUP > "Display"

Some general display settings are available regardless of the current application or operating mode. For information on optimizing your display for measurement results see Chapter 7.1, "Result Display Configuration", on page 451.

9.4.1 General Display Settings

Access: SETUP > "Display" > "General"

This section includes general screen display behavior and date and time display.

Deactivating and Activating the Touchscreen	617
Display Update Rate	617
Setting the Date and Time	617
Date and Time Format	618

Deactivating and Activating the Touchscreen

The touchscreen function can be deactivated, e.g. when the instrument is being used for demonstration purposes and tapping the screen should not provoke an action.

To reactivate the touchscreen, simply press the SETUP key on the front panel. The "Display" dialog box is opened automatically and the "touchscreen" option is set to "ON".

"TOUCH ON" Touchscreen function is active for the entire screen

"TOUCH OFF" Touchscreen is deactivated for the entire screen

"TOUCH DIAGRAM OFF"

Touchscreen is deactivated for the diagram area of the screen, but active for the surrounding softkeys, toolbars and menus

Remote command:

DISPlay: TOUChscreen: STATe on page 1110

Display Update Rate

By default, a fast update rate ensures the most recent measurement results on the display. However, when performance is poor due to slow data transfer (for example during remote control), it may be helpful to decrease the frequency with which the screen display is updated.

Setting the Date and Time

The current date and time on the instrument is set using the standard Windows "Date and Time Properties" dialog box which is displayed when you select the "Set Date and Time" button in the "Display" dialog box, or when you select the date and time display in the status bar.

Date and Time Format

Switches the time and date display on the screen between US and German (DE) format.

Remote command:

DISPlay[:WINDow]:TIME:FORMat on page 1110

9.4.2 Displayed Items

Access: SETUP > "Display" > "Displayed Items"

Several elements on the screen display can be hidden or shown as required, for example to enlarge the display area for the measurement results.

Toolbar	619
Status Bar	619
Softkey Bar	619
Channel Bar	
Diagram Footer (Annotation)	619
Date and Time	619
Front Panel	620
Mini Front Panel	622

Toolbar

The toolbar provides access to frequently used functions via icons at the top of the screen. Some functions, such as zooming, finding help, printing screenshots or storing and loading files are not accessible at all without the toolbar.

Remote command:

DISPlay: TBAR[:STATe] on page 1109

Status Bar

The status bar beneath the diagram indicates the global instrument settings, the instrument status and any irregularities during measurement or display.

Some of the information displayed in the status bar can be queried from the status registry via remote commands, see Chapter 11, "Remote Commands", on page 709.

Remote command:

DISPlay:SBAR[:STATe] on page 1109

Softkey Bar

Softkeys are virtual keys provided by the software. Thus, more functions can be provided than those that can be accessed directly via the function keys on the device.

The functions provided by the softkeys are often also available via dialog boxes. However, some functions may not be accessible at all without the softkey bar.

The softkey bar can be hidden temporarily to provide more space for the result displays on the screen. If you switch the "Softkey Bar" display off, it is only displayed for a few seconds when you select a key. Thus, you can access the functionality. Then the bar is hidden again until the next time you select a key or switch the "Softkey Bar" display back on.

Note: The softkey bar is hidden while the SmartGrid is displayed and restored automatically when the SmartGrid is closed.

Remote command:

DISPlay: SKEYs [:STATe] on page 1109

Channel Bar

The channel bar provides information on firmware and measurement settings for a specific measurement channel.

Remote command:

DISPlay: ANNotation: CBAR on page 1108

Diagram Footer (Annotation)

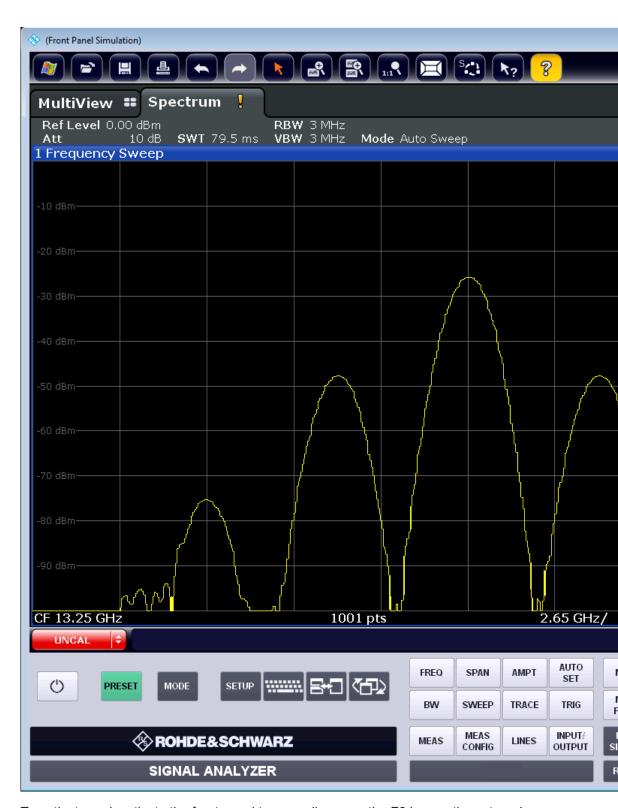
The diagram footer beneath the diagram contains information on the x-axis of the diagram display, such as the current center frequency and span settings, the displayed span per division and the number of sweep points.

Remote command:

DISPlay: ANNotation: FREQuency on page 1109

Date and Time

The date and time display can be switched off independently of the status bar.


You can set the current date and time and configure the display format in the "General" tab of the "Display" dialog box.

Remote command:

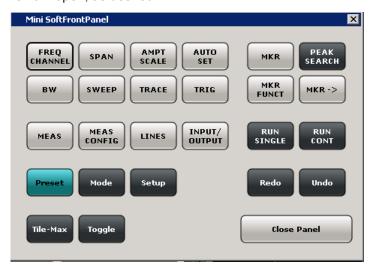
DISPlay[:WINDow]:TIME on page 1110

Front Panel

The "Front Panel" display simulates the entire front panel of the device (except for the external connectors) on the screen. This allows you to interact with the R&S FSW without requiring the keypad and keys located on the front panel of the device. This is useful, for example, when working with an external monitor or operating via remote control from a computer.

To activate or deactivate the front panel temporarily, press the F6 key on the external keyboard (if available) or the remote computer.

For more information see Chapter 9.6.8, "How to Work with the Soft Front Panels", on page 633.


Remote command:

SYSTem:DISPlay:FPANel[:STATe] on page 1111

Mini Front Panel

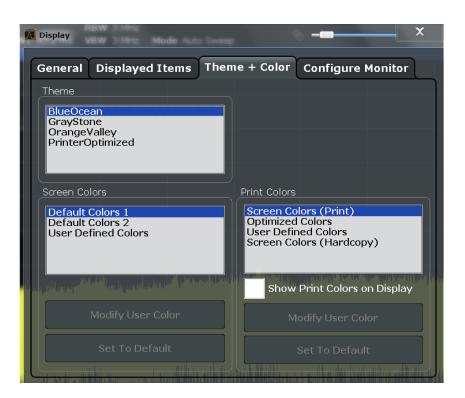
If you require a front panel display but do not want to lose too much space for results in the display area, a mini front panel is available. The mini version displays only the main function hardkeys in a separate window in the display area.

This window can be closed automatically after pressing a key ("Auto Close" option), or remain open, as desired.

Note:

You can also activate the Mini Front Panel using the key combination "ALT + m" (be aware of the keyboard language defined in the operating system!). This is useful when you are working from a remote PC and the Front Panel function is not active.

Remote command:


SYSTem:DISPlay:FPANel[:STATe] on page 1111

9.4.3 Display Theme and Colors

Access: SETUP > "Display" > "Theme + Color"

You can configure the used colors and styles of display elements on the screen.

For step-by-step instructions see Chapter 9.6.7, "How to Configure the Colors for Display and Printing", on page 632.

Theme	623
Screen colors	623
Print colors	624
Showing Print Colors on Display	624
Modifying User-Defined Color Assignments	
L Selecting the Object	625
L Predefined Colors	625
L Preview	625
Defining User-specific Colors	625
Restoring the User Settings to Default Colors	626

Theme

The theme defines the colors and style used to display softkeys and other screen objects.

The default theme is "BlueOcean".

Remote command:

DISPlay: THEMe: SELect on page 1113

Screen colors

Two different color sets are provided by the instrument, a third user-defined set can be configured.

The default color schemes provide optimum visibility of all screen objects when regarding the screen from above or below. Default setting is "Default Colors 1".

If "User Defined Colors" is selected, a user-defined color set can be defined (see "Defining User-specific Colors" on page 625).

Remote command:

DISPlay: CMAP<item>: DEFault<colors> on page 1111

Print colors

Defines the color settings used for printout. In addition to the predefined settings, a user-defined color set can be configured (see "Defining User-specific Colors" on page 625).

If "Show Print Colors on Display" is activated, the currently selected print colors are displayed as a preview for your selection.

Optimized Colors	Selects an optimized color setting for the printout to improve the visibility of the colors (default setting). Trace 1 is blue, trace 2 black, trace 3 green, and the markers are turquoise. The background is always printed in white and the grid in black.
Screen Colors (Print)	Selects the current screen colors for the printout. The background is always printed in white and the grid in black.
Screen Colors (Screenshot)	Selects the current screen colors without any changes for a screen-shot.
User Defined Colors	Selects the user-defined color setting.

Remote command:

HCOPy:CMAP<item>:DEFault<colors> on page 1080

Showing Print Colors on Display

Temporarily shows the currently selected print colors on the screen display. This function can be used as a preview for printing.

Modifying User-Defined Color Assignments

You can configure the colors used to display and print individual screen objects according to your specific requirements.

The colors are configured in the (identical) "Screen Color Setup"/"Printer Color Setup" dialog boxes.

Selecting the Object ← Modifying User-Defined Color Assignments

Selects the object for which the color is to be defined. Colors can be defined for the following objects:

- Background
- Grid
- Individual traces
- Display lines
- Limit lines and check results
- Markers and marker information

Remote command:

Each object is assigned to a specific suffix of the CMAP commands, see Chapter 11.10.4.3, "CMAP Suffix Assignment", on page 1113.

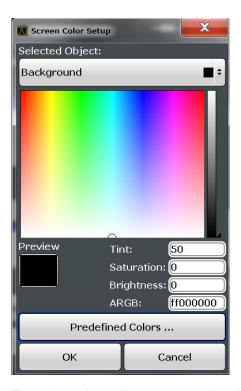
Predefined Colors ← **Modifying User-Defined Color Assignments**

Displays the available colors from the predefined color set that can be used for the selected object.

Remote command:

HCOPy:CMAP<item>:PDEFined on page 1081

Preview ← **Modifying User-Defined Color Assignments**


Indicates the currently selected color that will be used for the selected object.

Defining User-specific Colors

In addition to the colors in the predefined color set you can configure a user-specific color to be used for the selected object.

When you select "Userdefined Colors", the set of predefined colors is replaced by a color palette and color configuration settings.

External Monitor Settings

The color palette allows you to select the color directly. The color settings allow you to define values for tint, saturation and brightness.

Remote command:

HCOPy:CMAP<item>:HSL on page 1081

Restoring the User Settings to Default Colors

In addition to the predefined color settings, a user-defined setting can be configured. By default, the same settings as defined in "Default Colors 1" are used. They can then be modified according to user-specific requirements (see "Modifying User-Defined Color Assignments" on page 624).

The "Set to Default" function restores the original default settings for the user-defined color set. You can select which of the three default settings are restored.

Remote command:

DISPlay:CMAP<item>:PDEFined on page 1112

9.5 External Monitor Settings

Access: SETUP > "Display" > "Configure Monitor"

You can connect an external monitor (or projector) to the DVI or DISPLAY PORT connector on the instrument's rear panel (see the R&S FSW Getting Started manual).

How to Configure the Basic Instrument Settings

Screen resolution and format

The touchscreen of the R&S FSW is calibrated for a 16:10 format. If you connect a monitor or projector using a different format (e.g. 4:3), the calibration will not be correct and the screen will not react to your touch actions properly.

The touchscreen has a screen resolution of 1280x800 pixels. Most external monitors have a higher screen resolution. If the screen resolution of the monitor is set higher than the instrument's resolution, the application window uses an area of 1280x800 pixels on the monitor display. For full screen display, adjust the monitor's screen resolution.

Setup

Opens the standard Windows configuration dialog box to configure the display devices to be used

9.6 How to Configure the Basic Instrument Settings

The following step-by-step instructions demonstrate how to configure the basic instrument settings. For details on individual functions and settings see Chapter 9.3, "General Instrument Settings", on page 593.

The remote commands required to perform these tasks are described in Chapter 9.3, "General Instrument Settings", on page 593.

9.6.1 How to Perform a Self-test

The self-test does not need to be repeated every time the instrument is switched on. It is only necessary when instrument malfunction is suspected.

Operating temperature

Before performing this functional test, make sure that the instrument has reached its operating temperature (for details, refer to the data sheet).

- 1. Press the SETUP key.
- 2. Press the "Service" softkey.

How to Configure the Basic Instrument Settings

3. Press the "Self-test" softkey.

Once the instrument modules have been checked successfully, a message is displayed.

9.6.2 How to Align the Instrument

Operating temperature

Before performing this functional test, make sure that the instrument has reached its operating temperature (for details, refer to the data sheet).

To perform a self-alignment

- 1. Press the SETUP key.
- 2. Select the "Alignment" softkey.
- 3. Select the "Start Self-alignment" button.
- To abort the self-alignment process, select the "Abort Self-alignment" button.
 Once the system correction values have been calculated successfully, a messa

Once the system correction values have been calculated successfully, a message is displayed.

To display the alignment results again later

- Press the SETUP key.
- Press the "Alignment" softkey.

9.6.3 How to Align the Touchscreen

To align the touchscreen

- 1. Press the SETUP key.
- 2. Select the "Alignment" softkey.
- 3. Select "Touchscreen Alignment".

A blinking cross appears in the lower left corner of the screen.

4. Touch and hold the blinking cross until it stops blinking. Repeat this action for the crosses in the other corners.

9.6.4 How to Install an R&S FSW Option

Additional options for the R&S FSW can be enabled using a license key. To obtain the license key, consult your sales representative. You need the device ID and serial number of your instrument to get a license key (see Chapter 9.3.4, "System Configuration Settings", on page 603). No additional installation is required.

9.6.5 How to Update the Instrument Firmware

- Download the update package from the Rohde&Schwarz website and store it on a memory stick, on the instrument, or on a server network drive that can be accessed by the instrument.
- NOTICE! Stop measurement. The firmware update must not be performed during a running measurement.
 - If a measurement is running, stop it by pressing the highlighted RUN CONT or RUN SINGLE key.
- 3. Press the SETUP key.
- 4. Select the "Firmware Update" tab.
- 5. In the file selection dialog box select the FSWSetup*.exe file.
- 6. Select "Install" to start the update.
- 7. After the firmware update, the R&S FSW reboots automatically.
- 8. Depending on the previous firmware version, a reconfiguration of the hardware might be required during the first startup of the firmware. The reconfiguration starts automatically, and a message box informs you about the process. When the reconfiguration has finished, the instrument again reboots automatically.

Note: Do not switch off the instrument during the reconfiguration process!

Now the firmware update is complete. It is recommended that you perform a self-alignment after the update (see Chapter 9.6.2, "How to Align the Instrument", on page 628).

9.6.6 How to Configure the Transducer

Configuring the transducer is very similar to configuring limit lines.

The transducer settings are defined in the "Transducer" dialog box which is displayed when you press the SETUP key and then select "Transducer".

Stored transducer settings

When storing and recalling transducer settings, consider the information provided in "Saving and recalling transducer and limit line settings" on page 556.

How to Configure the Basic Instrument Settings

The following tasks are described:

- "How to find compatible transducer lines" on page 630
- "How to activate and deactivate a transducer" on page 630
- "How to edit existing transducer lines" on page 630
- "How to copy an existing transducer line" on page 630
- "How to delete an existing transducer line" on page 631
- "How to configure a new transducer line" on page 631
- "How to move the transducer line vertically or horizontally" on page 632

How to find compatible transducer lines

▶ In the "Transducer" dialog box, select the "View filter" option: "Show compatible".
All transducer lines stored on the instrument that are compatible to the current measurement settings are displayed in the overview.

How to activate and deactivate a transducer

1. To activate a transducer select a transducer line in the overview and select the "Active" setting for it.

The trace is automatically recalculated for the next sweep after a transducer line is activated.

2. To deactivate a transducer line, deactivate the "Active" setting for it.

After the next sweep, the originally measured values are displayed.

How to edit existing transducer lines

Existing transducer line configurations can be edited.

- 1. In the "Transducer" dialog box, select the transducer line.
- 2. Select the "Edit" button.
- Edit the line configuration as described in "How to configure a new transducer line" on page 631.
- 4. Save the new configuration by selecting the "Save" button.

The trace is automatically recalculated for the next sweep if the transducer line is active.

In order to store the changes to the transducer lines in a settings file, select the save save icon in the toolbar.

(See Chapter 8.3, "Storing and Recalling Instrument Settings and Measurement Data", on page 555).

How to copy an existing transducer line

1. In the "Transducer" dialog box, select the transducer line.

2. Select the "Copy" button.

The "Edit Transducer" dialog box is opened with the configuration of the selected transducer.

- 3. Define a new name to create a new transducer with the same configuration as the source line
- 4. Edit the line configuration as described in "How to configure a new transducer line" on page 631.
- 5. Save the new configuration by selecting the "Save" button.

The new transducer line is displayed in the overview and can be activated.

How to delete an existing transducer line

- 1. In the "Transducer" dialog box, select the transducer line.
- 2. Select the "Delete" button.
- Confirm the message.

The transducer line is deleted. After the next sweep, the originally measured values are displayed.

How to configure a new transducer line

1. In the "Transducer" dialog box, select the "New" button.

The "Edit Transducer" dialog box is displayed. The current line configuration is displayed in the preview area of the dialog box. The preview is updated after each change to the configuration.

- 2. Define a "Name" and, optionally, a "Comment" for the new transducer line.
- 3. Define the scaling for the x-axis.
- 4. Define the data points: minimum 2, maximum 1000:
 - a) Select "Insert Value".
 - b) Define the x-value ("Position") and y-value ("Value") of the first data point.
 - c) Select "Insert Value" again and define the second data point.
 - d) Repeat this to insert all other data points.
 - To insert a data point before an existing one, select the data point and then "Insert Value".
 - To insert a new data point at the end of the list, move the focus to the line after the last entry and then select "Insert Value".
 - To delete a data point, select the entry and then "Delete Value".
- 5. Check the current line configuration in the preview area of the dialog box. If necessary, correct individual data points or add or delete some.
 - If necessary, shift the entire line vertically or horizontally by selecting the "Shift x" or "Shift y" button and defining the shift width.

6. Save the new configuration by selecting the "Save" button.

The new transducer line is displayed in the overview and can be activated.

How to move the transducer line vertically or horizontally

A configured transducer line can easily be moved vertically or horizontally. Thus, a new transducer line can be easily generated based upon an existing transducer line which has been shifted.

- 1. In the "Line Config" dialog box, select the transducer line.
- 2. Select the "Edit" button.
- 3. In the "Edit transducer Line" dialog box, select the "Shift x" or "Shift y" button and define the shift width.
- 4. Save the shifted data points by selecting the "Save" button.

If activated, the trace is recalculated after the next sweep.

9.6.7 How to Configure the Colors for Display and Printing

You can configure the style and colors with which various screen objects are displayed or printed.

To select a color set

- 1. Press the SETUP key and select the "Display" softkey.
- 2. Select the "Theme + Color" tab.
- 3. In the "Screen Colors" area, select a predefined set of colors to be used for screen display, or select "User Defined Colors" to configure the color set yourself.
- 4. In the "Print Colors" area, select a predefined set of colors to be used for printing screenshots, or select "User Defined Colors" to configure the color set yourself. Activate the "Show Print Colors on Display" option to see a preview of the print colors.

To configure a user-defined color set

- 1. In the "Theme + Color" tab of the "Display" dialog box select "User Defined Colors" either for the screen or the print colors.
- Select "Modify User Color".
 - The "Screen Color Setup" dialog box is opened.
- 3. From the "Selected Object" list, select the object to which you want to assign a color.
- 4. Select a color from the "Predefined Colors" or select the "Userdefined Colors..." button to define a different color.

The "Preview" area indicates the currently selected color.

- 5. To assign a user-specific color to the selected object, do one of the following:
 - Select the color from the palette.
 - Enter values for the "Tint", "Saturation", and "Brightness".
 Note: In the continuous color spectrum ("Tint") red is represented by 0% and blue by 100%.
 - Enter an "ARGB" value in hexadecimal format.
- Select the next object to which you want to assign a color from the "Selected Object" list and assign a color as described.
 Repeat these steps until all objects you want to configure have been assigned a color.
- 7. Select "OK" to close the dialog box and apply the colors to the assigned objects.

9.6.8 How to Work with the Soft Front Panels

Basic operation with the soft front panels is identical to normal operation, except for the following aspects:

To activate a key, select the key on the touchscreen.

To simulate the use of the rotary knob, use the additional keys displayed between the keypad and the arrow keys:

Icon	Function
•	Turn left
0	Enter
•	Turn right

Mini Front Panel

The Mini Front Panel provides only the hardkeys on the touchscreen, in order to operate the R&S FSW via an external monitor or remote desktop.

By default, the "Auto close" option is activated and the Mini Front Panel window closes automatically after you select a key. This is useful if you only require the Mini Front Panel display occassionally to press a single function key.

If you want the window to remain open, deactivate the "Auto close" option. You can close the window manually by selecting "Close Panel" or the key combination ALT + M (be aware of the keyboard language defined in the operating system!).

To display the soft front panel or mini front panel

- 1. Press the SETUP key and select the "Display" softkey.
- Select the "Displayed Items" tab.
- 3. Select "Front Panel: On" or "Mini Front Panel: On".

How to Configure the Basic Instrument Settings

To activate or deactivate the front panel temporarily, press the F6 key on the external keyboard (if available) or on the remote computer.

10 Network and Remote Operation

In addition to working with the R&S FSW interactively, located directly at the instrument, it is also possible to operate and control it from a remote PC. Various methods for remote control are supported:

- Connecting the instrument to a (LAN) network
- Using the LXI browser interface in a LAN network
- Using the Windows Remote Desktop application in a LAN network
- Connecting a PC via the GPIB interface

How to configure the remote control interfaces is described in Chapter 10.5, "How to Set Up a Network and Remote Control", on page 688.

•	Remote Control Basics	. 635
•	GPIB Languages	.673
	The IECWIN Tool	
	Network and Remote Control Settings	
	How to Set Up a Network and Remote Control	

10.1 Remote Control Basics

Basic information on operating an instrument via remote control is provided here. This information applies to all applications and operating modes on the R&S FSW.

10.1.1 Remote Control Interfaces and Protocols

The instrument supports different interfaces and protocols for remote control. The following table gives an overview.

Table 10-1: Remote control interfaces and protocols

Interface	Protocols, VISA*) address string	Remarks
Local Area Network	HiSLIP High-Speed LAN Instrument Protocol (IVI-6.1) TCPIP::host address::hislip0[::INSTR]	A LAN connector is located on the rear panel of the instrument.
(LAN)	VXI-11 TCPIP::host address::inst0[::INSTR] Library: VISA	The interface is based on TCP/IP and supports various protocols.
	• socket communication (Raw Ethernet, simple Telnet) TCPIP::host address[::LAN device name]:: <port>::</port>	For a description of the protocols refer to:
	SOCKET Library: VISA or socket controller	VXI-11 Protocol
		HiSLIP Protocol
		Socket Communication
GPIB (IEC/ IEEE Bus Interface)	VISA*) address string: GPIB::primary address[::INSTR]	A GPIB bus interface according to the IEC 625.1/IEEE 488.1 standard is located on the rear panel of the instru-
	(no secondary address)	ment.
		For a description of the interface refer to 10.1.1.2 GPIB Interface (IEC 625/ IEEE 418 Bus Interface).
USB	VISA*) address string:	USB connectors are located on the
	<pre>USB::<vendor id="">::<pre>product_ID>::<serial_number>[::INSTR]</serial_number></pre></vendor></pre>	front and rear panel of the instrument.
		For a description of the interface refer to 10.1.1.3 USB Interface.

^{*)} VISA is a standardized software interface library providing input and output functions to communicate with instruments. A VISA installation on the controller is a prerequisite for remote control using the indicated interfaces.

(See also Chapter 10.1.3, "VISA Libraries", on page 642).

Within this interface description, the term GPIB is used as a synonym for the IEC/IEEE bus interface.

10.1.1.1 LAN Interface

To be integrated in a LAN, the instrument is equipped with a LAN interface, consisting of a connector, a network interface card and protocols. The network card can be operated with the following interfaces:

- 10 Mbit/s Ethernet IEEE 802.3
- 100 Mbit/s Ethernet IEEE 802.3u
- 1Gbit/s Ethernet IEEE 802.3ab

For remote control via a network, the PC and the instrument must be connected via the LAN interface to a common network with TCP/IP network protocol. They are connected using a commercial RJ45 cable (shielded or unshielded twisted pair category 5). The TCP/IP network protocol and the associated network services are preconfigured on the instrument. Software for instrument control and the VISA program library must be installed on the controller.

VISA library

Instrument access is usually achieved from high level programming platforms using VISA as an intermediate abstraction layer. VISA encapsulates the low level VXI, GPIB, LAN or USB function calls and thus makes the transport interface transparent for the user. See Chapter 10.1.3, "VISA Libraries", on page 642 for details.

The R&S FSW supports various LAN protocols such as LXI, RSIB, raw socket or the newer HiSLIP protocol.

IP address

Only the IP address or a valid DNS host name is required to set up the connection. The host address is part of the "VISA resource string" used by the programs to identify and control the instrument.

The VISA resource string has the form:

```
TCPIP::host address[::LAN device name][::INSTR]
or
TCPIP::host address::port::SOCKET
```

where:

- TCPIP designates the network protocol used
- host address is the IP address or host name of the device
- LAN device name defines the protocol and the instance number of a sub-instrument;
 - inst0 selects the VXI-11 protocol (default)
 - hislip0 selects the newer HiSLIP protocol
- INSTR indicates the instrument resource class (optional)
- port determines the used port number
- SOCKET indicates the raw network socket resource class

Example:

 Instrument has the IP address 192.1.2.3; the valid resource string using VXI-11 protocol is:

```
TCPIP::192.1.2.3::INSTR
```

- The DNS host name is *FSW13-123456*; the valid resource string using HiSLIP is: TCPIP::FSW13-123456::hislip0
- A raw socket connection can be established using:

```
TCPIP::192.1.2.3::5025::SOCKET
```


Identifying instruments in a network

If several instruments are connected to the network, each instrument has its own IP address and associated resource string. The controller identifies these instruments by means of the resource string.

For details on configuring the LAN connection, see Chapter 10.5.1, "How to Configure a Network", on page 688.

•	VXI-11 Protocol	.638
•	HiSLIP Protocol.	.638
•	Socket Communication.	638
•	LXI Web Browser Interface	639

VXI-11 Protocol

The VXI-11 standard is based on the ONC RPC (Open Network Computing Remote Procedure Call) protocol which in turn relies on TCP/IP as the network/transport layer. The TCP/IP network protocol and the associated network services are preconfigured. TCP/IP ensures connection-oriented communication, where the order of the exchanged messages is adhered to and interrupted links are identified. With this protocol, messages cannot be lost.

HiSLIP Protocol

The HiSLIP (**High Speed LAN Instrument Protocol**) is the successor protocol for VXI-11 for TCP-based instruments specified by the IVI foundation. The protocol uses two TCP sockets for a single connection - one for fast data transfer, the other for non-sequential control commands (e.g. Device Clear or SRQ).

HiSLIP has the following characteristics:

- High performance as with raw socket network connections
- Compatible IEEE 488.2 support for Message Exchange Protocol, Device Clear, Serial Poll, Remote/Local, Trigger, and Service Reguest
- Uses a single IANA registered port (4880), which simplifies the configuration of firewalls
- Supports simultaneous access of multiple users by providing versatile locking mechanisms
- Usable for IPv6 or IPv4 networks

Using VXI-11, each operation is blocked until a VXI-11 device handshake returns. However, using HiSLIP, data is sent to the device using the "fire and forget" method with immediate return. Thus, a successful return of a VISA operation such as <code>viWrite()</code> does not guarantee that the instrument has finished or started the requested command, but is delivered to the TCP/IP buffers.

For more information see also the application note: 1MA208: Fast Remote Instrument Control with HiSLIP.

Socket Communication

An alternative way for remote control of the software is to establish a simple network communication using sockets. The socket communication, also referred to as "Raw Ethernet communication", does not necessarily require a VISA installation on the remote controller side. It is available by default on all operating systems.

The simplest way to establish socket communication is to use the built-in telnet program. The telnet program is part of every operating system and supports a communication with the software on a command-by-command basis. For more convenience and to enable automation by means of programs, user-defined sockets can be programmed.

Socket connections are established on a specially defined port. The socket address is a combination of the IP address or the host name of the instrument and the number of the port configured for remote-control. All R&S FSW use port number 5025 for this purpose. The port is configured for communication on a command-to-command basis and for remote control from a program.

LXI Web Browser Interface

LAN eXtensions for Instrumentation (LXI) is an instrumentation platform for measuring instruments and test systems that is based on standard Ethernet technology. LXI is intended to be the LAN-based successor to GPIB, combining the advantages of Ethernet with the simplicity and familiarity of GPIB. The LXI browser interface allows for easy configuration of the LAN and remote control of the R&S FSW without additional installation requirements.

The instrument's LXI web browser interface works correctly with all W3C compliant browsers.

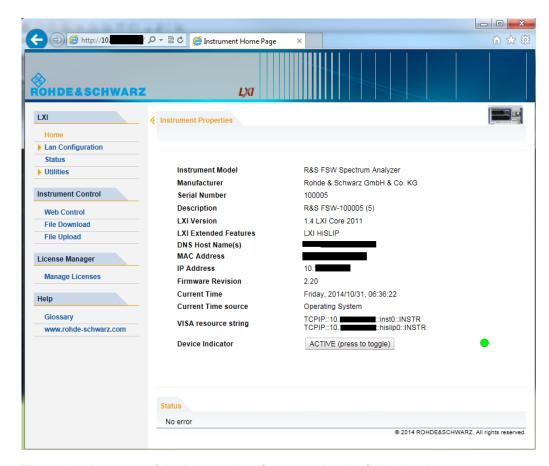
Via the LXI browser interface to the R&S FSW you can control the instrument remotely from another PC. Manual instrument controls are available via the front panel simulation. File upload and download between the instrument and the remote PC is also available. Using this feature, several users can access *and operate* the R&S FSW simultaneously. This is useful for troubleshooting or training purposes.

For details, see Chapter 10.5.1.4, "How to Configure the LAN Using the LXI Web Browser Interface", on page 692 and Chapter 10.5.5, "How to Control the R&S FSW via the Web Browser Interface", on page 698.

If you do not want other users in the LAN to be able to access and operate the R&S FSW you can deactivate this function.

See Chapter 10.5.6, "How to Deactivate the Web Browser Interface", on page 699.

Restrictions


Only user accounts with administrator rights can use the LXI functionality. For details, see Chapter 3.1.2.3, "Login", on page 27.

To display the LXI web browser interface

➤ Type the host name or IP address of the instrument in the address field of the browser on your PC, for example "http://10.113.10.203".

The instrument home page (welcome page) opens.

Note: If only a black screen is displayed in the browser, install the required driver (see "Restrictions" on page 639).

The navigation pane of the browser interface contains the following elements:

• "LXI"

- "Home" opens the instrument home page.
 - The home page displays the device information required by the LXI standard, including the VISA resource string in read-only format.
 - The "Device Indicator" button allows you to physically identify the instrument. This is useful if you have several instruments and want to know which instrument the LXI home page belongs to. To identify the instrument, activate the "Device Indicator". Then check the "LAN Status" indicator of the instruments.
- "Lan Configuration" allows you to configure LAN parameters and to initiate a ping.
 - (See "Ping Client" on page 694.) (See
- "Status" displays information about the LXI status of the instrument.
- "Utilities" provides access to the LXI event log functionality required by the LXI standard.

"Instrument Control"

- "Web Control" provides remote access to the instrument via VNC (no installation required). Manual instrument controls are available via the front panel simulation.
- "File Download" downloads files from the instrument.

"File Upload" uploads files to the instrument.

(See Chapter 10.5.5, "How to Control the R&S FSW via the Web Browser Interface", on page 698.)

- "License Manager"
 - "Manage Licenses" allows you to install or uninstall license keys and to activate, register or unregister licenses.
- "Help"
 - "Glossary" explains terms related to the LXI standard.
 - "www.rohde-schwarz.com" opens the Rohde & Schwarz home page.

10.1.1.2 GPIB Interface (IEC 625/IEEE 418 Bus Interface)

A GPIB interface is integrated on the rear panel of the instrument.

By connecting a PC to the R&S FSW via the GPIB connection you can send remote commands to control and operate the instrument.

To be able to control the instrument via the GPIB bus, the instrument and the controller must be linked by a GPIB bus cable. A GPIB bus card, the card drivers and the program libraries for the programming language used must be provided in the controller. The controller must address the instrument with the GPIB bus address (see Chapter 10.5.1.5, "How to Change the GPIB Instrument Address", on page 695). You can set the GPIB address and the ID response string. The GPIB language is set as SCPI by default and cannot be changed for the R&S FSW.

Notes and Conditions

In connection with the GPIB interface, note the following:

- Up to 15 instruments can be connected
- The total cable length is restricted to a maximum of 15 m or 2 m times the number of devices, whichever is less; the cable length between two instruments should not exceed 2 m.
- A wired "OR"-connection is used if several instruments are connected in parallel.
- Any connected IEC-bus cables should be terminated by an instrument or controller.

10.1.1.3 USB Interface

For remote control via the USB connection, the PC and the instrument must be connected via the USB type B interface. A USB connection requires the VISA library to be installed. VISA detects and configures the R&S instrument automatically when the USB connection is established. You do not have to enter an address string or install a separate driver.

USB address

The used USB address string is:

USB::<vendor ID>::product ID>::<serial number>[::INSTR]

where:

- <vendor ID> is the vendor ID for Rohde & Schwarz (0x0AAD)
- product ID> is the product ID for the Rohde & Schwarz instrument
- <serial number> is the individual serial number on the rear of the instrument

Table 10-2: Product IDs for R&S FSW

Instrument model	Product ID
FSW8	C6
FSW13	C7
FSW26	C8
FSW43	CA
FSW50	СВ
FSW67	СС
FSW85	CD

Example:

USB::0x0AAD::0x00C7::100001::INSTR

0x0AAD is the vendor ID for Rohde&Schwarz

0x00C7 is the product ID for the R&S FSW13

100001 is the serial number of the particular instrument

10.1.2 SCPI (Standard Commands for Programmable Instruments)

SCPI commands - messages - are used for remote control. Commands that are not taken from the SCPI standard follow the SCPI syntax rules. The R&S FSW supports the SCPI version 1999. The SCPI standard is based on standard IEEE 488.2 and aims at the standardization of device-specific commands, error handling and the status registers. The tutorial "Automatic Measurement Control - A tutorial on SCPI and IEEE 488.2" from John M. Pieper (R&S order number 0002.3536.00) offers detailed information on concepts and definitions of SCPI.

Tables provide a fast overview of the bit assignment in the status registers. The tables are supplemented by a comprehensive description of the status registers.

10.1.3 VISA Libraries

VISA is a standardized software interface library providing input and output functions to communicate with instruments. The I/O channel (LAN or TCP/IP, USB, ...) is selected at initialization time by one of the following:

- The channel–specific address string ("VISA resource string") indicated in Table 10-1
- An appropriately defined VISA alias (short name).

A VISA installation is a prerequisite for remote control using the following interfaces:

- Chapter 10.1.1.1, "LAN Interface", on page 636
- Chapter 10.1.1.2, "GPIB Interface (IEC 625/IEEE 418 Bus Interface)", on page 641
- Chapter 10.1.1.3, "USB Interface", on page 641

For more information about VISA, refer to the user documentation.

10.1.4 Messages

The messages transferred on the data lines are divided into the following categories:

- Interface messages Interface messages are transmitted to the instrument on the data lines, with the attention line being active (LOW). They are used to communicate between the controller and the instrument. Interface messages can only be sent by instruments that have GPIB bus functionality. For details see the sections for the required interface.
- Instrument messages
 Instrument messages are employed in the same way for all interfaces, if not indicated otherwise in the description. Structure and syntax of the instrument messages are described in Chapter 10.1.5, "SCPI Command Structure", on page 644. A detailed description of all messages available for the instrument is provided in the chapter "Remote Control Commands".

There are different types of instrument messages, depending on the direction they are sent:

- Commands
- Instrument responses

Commands

Commands (program messages) are messages the controller sends to the instrument. They operate the instrument functions and request information. The commands are subdivided according to two criteria:

- According to the effect they have on the instrument:
 - Setting commands cause instrument settings such as a reset of the instrument or setting the frequency.
 - Queries cause data to be provided for remote control, e.g. for identification of the instrument or polling a parameter value. Queries are formed by directly appending a question mark to the command header.
- According to their definition in standards:
 - Common commands: their function and syntax are precisely defined in standard IEEE 488.2. They are employed identically on all instruments (if implemented). They refer to functions such as management of the standardized status registers, reset and self-test.
 - Instrument control commands refer to functions depending on the features of the instrument such as frequency settings. Many of these commands have also been standardized by the SCPI committee. These commands are marked as "SCPI confirmed" in the command reference chapters. Commands without this

SCPI label are device-specific; however, their syntax follows SCPI rules as permitted by the standard.

Instrument responses

Instrument responses (response messages and service requests) are messages the instrument sends to the controller after a query. They can contain measurement results, instrument settings and information on the instrument status.

10.1.5 SCPI Command Structure

SCPI commands consist of a so-called header and, in most cases, one or more parameters. The header and the parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The headers may consist of several mnemonics (keywords). Queries are formed by appending a question mark directly to the header.

The commands can be either device-specific or device-independent (common commands). Common and device-specific commands differ in their syntax.

10.1.5.1 Syntax for Common Commands

Common (=device-independent) commands consist of a header preceded by an asterisk (*) and possibly one or more parameters.

Examples:

*RST	RESET	Resets the instrument.
*ESE	EVENT STATUS ENABLE	Sets the bits of the event status enable registers.
*ESR?	EVENT STATUS QUERY	Queries the contents of the event status register.
*IDN?	IDENTIFICATION QUERY	Queries the instrument identification string.

10.1.5.2 Syntax for Device-Specific Commands

Not all commands used in the following examples are necessarily implemented in the instrument.

For demonstration purposes only, assume the existence of the following commands for this section:

- DISPlay[:WINDow<1...4>]:MAXimize <Boolean>
- FORMat:READings:DATA <type>[, <length>]
- HCOPy:DEVice:COLor <Boolean>
- HCOPy:DEVice:CMAP:COLor:RGB <red>, <green>, <blue>
- HCOPy[:IMMediate]
- HCOPy: ITEM: ALL
- HCOPy:ITEM:LABel <string>
- HCOPy:PAGE:DIMensions:QUADrant[<N>]
- HCOPy:PAGE:ORIentation LANDscape | PORTrait
- HCOPy:PAGE:SCALe <numeric value>
- MMEMory:COPY <file source>,<file destination>
- SENSE:BANDwidth|BWIDth[:RESolution] <numeric_value>
- SENSe:FREQuency:STOP <numeric value>
- SENSe:LIST:FREQuency <numeric_value>{,<numeric value>}

Long and short form

The mnemonics feature a long form and a short form. The short form is marked by upper case letters, the long form corresponds to the complete word. Either the short form or the long form can be entered; other abbreviations are not permitted.

Example:

HCOPy: DEVice: COLor ON is equivalent to HCOP: DEV: COL ON.

Case-insensitivity

Upper case and lower case notation only serves to distinguish the two forms in the manual, the instrument itself is case-insensitive.

Numeric suffixes

If a command can be applied to multiple instances of an object, e.g. specific channels or sources, the required instances can be specified by a suffix added to the command. Numeric suffixes are indicated by angular brackets (<1...4>, <n>, <i>) and are replaced by a single value in the command. Entries without a suffix are interpreted as having the suffix 1.

Example:

Definition: HCOPy:PAGE:DIMensions:QUADrant[<N>]

Command: HCOP: PAGE: DIM: QUAD2

This command refers to the quadrant 2.

Different numbering in remote control

For remote control, the suffix may differ from the number of the corresponding selection used in manual operation. SCPI prescribes that suffix counting starts with 1. Suffix 1 is the default state and used when no specific suffix is specified.

Some standards define a fixed numbering, starting with 0. If the numbering differs in manual operation and remote control, it is indicated for the corresponding command.

Optional mnemonics

Some command systems permit certain mnemonics to be inserted into the header or omitted. These mnemonics are marked by square brackets in the description. The instrument must recognize the long command to comply with the SCPI standard. Some commands are considerably shortened by these optional mnemonics.

Example:

Definition: HCOPy[:IMMediate]

Command: HCOP: IMM is equivalent to HCOP

Optional mnemonics with numeric suffixes

Do not omit an optional mnemonic if it includes a numeric suffix that is relevant for the effect of the command.

Example:

Definition:DISPlay[:WINDow<1...4>]:MAXimize <Boolean>

Command: DISP:MAX ON refers to window 1.

In order to refer to a window other than 1, you must include the optional WINDow parameter with the suffix for the required window.

DISP: WIND2: MAX ON refers to window 2.

Parameters

Parameters must be separated from the header by a "white space". If several parameters are specified in a command, they are separated by a comma (,). For a description of the parameter types, refer to Chapter 10.1.5.3, "SCPI Parameters", on page 647.

Example:

Definition:HCOPy:DEVice:CMAP:COLor:RGB <red>, <green>, <blue>

Command:HCOP:DEV:CMAP:COL:RGB 3,32,44

Special characters

Parameters

A vertical stroke in parameter definitions indicates alternative possibilities in the sense of "or". The effect of the command differs, depending on which parameter is used.

Example:

Definition: HCOPy: PAGE: ORIentation LANDscape | PORTrait
Command HCOP: PAGE: ORI LAND specifies landscape orientation

Command HCOP: PAGE: ORI PORT specifies portrait orientation

Mnemonics

A selection of mnemonics with an identical effect exists for several commands. These mnemonics are indicated in the same line; they are separated by a vertical stroke. Only one of these mnemonics needs to be included in the header of the command. The effect of the command is independent of which of the mnemonics is used.

Example

DefinitionSENSE:BANDwidth|BWIDth[:RESolution] <numeric value>

The two following commands with identical meaning can be created:

SENS:BAND:RES 1 SENS:BWID:RES 1

[] Mnemonics in square brackets are optional and may be inserted into the header or omitted.

Example: HCOPy[:IMMediate]
HCOP:IMM is equivalent to HCOP

Parameters in curly brackets are optional and can be inserted once or several times, or omitted.

Example: SENSe:LIST:FREQuency <numeric_value>{, <numeric_value>}

The following are valid commands:

SENS:LIST:FREQ 10 SENS:LIST:FREQ 10,20 SENS:LIST:FREQ 10,20,30,40

10.1.5.3 SCPI Parameters

Many commands are supplemented by a parameter or a list of parameters. The parameters must be separated from the header by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). Allowed parameters are:

- Numeric values
- Special numeric values
- Boolean parameters
- Text
- Character strings
- Block data

The parameters required for each command and the allowed range of values are specified in the command description.

Numeric values

Numeric values can be entered in any form, i.e. with sign, decimal point and exponent. Values exceeding the resolution of the instrument are rounded up or down. The mantissa may comprise up to 255 characters, the exponent must lie inside the value range -32000 to 32000. The exponent is introduced by an "E" or "e". Entry of the exponent alone is not allowed. In the case of physical quantities, the unit can be entered. Allowed unit prefixes are G (giga), MA (mega), MOHM and MHZ are also allowed), K (kilo), M (milli), U (micro) and N (nano). If the unit is missing, the basic unit is used.

Example: SENS: FREQ: STOP 1.5GHz = SENS: FREQ: STOP 1.5E9

Units

For physical quantities, the unit can be entered. Allowed unit prefixes are:

- G (giga)
- MA (mega), MOHM, MHZ
- K (kilo)
- M (milli)
- U (micro)
- N (nano)

If the unit is missing, the basic unit is used.

Example:

```
SENSe: FREQ: STOP 1.5GHz = SENSe: FREQ: STOP 1.5E9
```

Some settings allow relative values to be stated in percent. According to SCPI, this unit is represented by the PCT string.

Example:

HCOP:PAGE:SCAL 90PCT

Special numeric values

The texts listed below are interpreted as special numeric values. In the case of a query, the numeric value is provided.

MIN/MAX

MINimum and MAXimum denote the minimum and maximum value.

DEF

DEFault denotes a preset value which has been stored in the EPROM. This value conforms to the default setting, as it is called by the *RST command.

UP/DOWN

UP, DOWN increases or reduces the numeric value by one step. The step width can be specified via an allocated step command for each parameter which can be set via UP, DOWN.

INF/NINF

INFinity, Negative INFinity (NINF) represent the numeric values 9.9E37 or -9.9E37, respectively. INF and NINF are only sent as instrument responses.

NAN

Not A Number (NAN) represents the value 9.91E37. NAN is only sent as a instrument response. This value is not defined. Possible causes are the division of zero by zero, the subtraction of infinite from infinite and the representation of missing values.

Example:

Setting command: SENSe:LIST:FREQ MAXimum Query: SENS:LIST:FREQ?, Response: 3.5E9

Queries for special numeric values

The numeric values associated to MAXimum/MINimum/DEFault can be queried by adding the corresponding mnemonics to the command. They must be entered following the quotation mark.

Example: SENSe:LIST:FREQ? MAXimum

Returns the maximum numeric value as a result.

Boolean Parameters

Boolean parameters represent two states. The "ON" state (logically true) is represented by "ON" or a numeric value 1. The "OFF" state (logically untrue) is represented by "OFF" or the numeric value 0. The numeric values are provided as the response for a query.

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text parameters

Text parameters observe the syntactic rules for mnemonics, i.e. they can be entered using a short or long form. Like any parameter, they have to be separated from the header by a white space. In the case of a query, the short form of the text is provided.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP: PAGE: ORI?

Response: LAND

Character strings

Strings must always be entered in quotation marks (' or ").

Example:

HCOP:ITEM:LABel "Test1" or HCOP:ITEM:LABel 'Test1'

Block data

Block data is a format which is suitable for the transmission of large amounts of data. A command using a block data parameter has the following structure:

Example:

FORMat:READings:DATA #45168xxxxxxxx

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other control signs are ignored until all bytes are transmitted.

#0 specifies a data block of indefinite length. The use of the indefinite format requires a NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

10.1.5.4 Overview of Syntax Elements

The following table provides an overview of the syntax elements:

:	The colon separates the mnemonics of a command. In a command line the separating semicolon marks the uppermost command level.
;	The semicolon separates two commands of a command line. It does not alter the path.
,	The comma separates several parameters of a command.
?	The question mark forms a query.
*	The asterisk marks a common command.
	Quotation marks introduce a string and terminate it (both single and double quotation marks are possible).
#	The hash symbol introduces binary, octal, hexadecimal and block data. • Binary: #B10110 • Octal: #O7612 • Hexa: #HF3A7 • Block: #21312
	A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates the header from the parameters.

10.1.5.5 Structure of a command line

A command line may consist of one or several commands. It is terminated by one of the following:

- a <New Line>
- a <New Line> with EOI
- an EOI together with the last data byte

Several commands in a command line must be separated by a semicolon ";". If the next command belongs to a different command system, the semicolon is followed by a colon.

Example:

```
MMEM:COPY "Test1", "MeasurementXY"; : HCOP:ITEM ALL
```

This command line contains two commands. The first command belongs to the MMEM system, the second command belongs to the HCOP system.

If the successive commands belong to the same system, having one or several levels in common, the command line can be abbreviated. To this end, the second command after the semicolon starts with the level that lies below the common levels. The colon following the semicolon must be omitted in this case.

Example:

```
HCOP: ITEM ALL; : HCOP: IMM
```

This command line contains two commands. Both commands are part of the ${\tt HCOP}$ command system, i.e. they have one level in common.

When abbreviating the command line, the second command begins with the level below HCOP. The colon after the semicolon is omitted. The abbreviated form of the command line reads as follows:

```
HCOP: ITEM ALL; IMM
```

A new command line always begins with the complete path.

Example:

```
HCOP:ITEM ALL
HCOP:IMM
```

10.1.5.6 Responses to Queries

A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding a question mark to the associated setting command. According to SCPI, the responses to queries are partly subject to stricter rules than in standard IEEE 488.2.

• The requested parameter is transmitted without a header.

```
Example: HCOP: PAGE: ORI?, Response: LAND
```

 Maximum values, minimum values and all other quantities that are requested via a special text parameter are returned as numeric values.

```
Example: SENSe: FREQuency: STOP? MAX, Response: 3.5E9
```

- Numeric values are output without a unit. Physical quantities are referred to the basic units or to the units set using the Unit command. The response 3.5E9 in the previous example stands for 3.5 GHz.
- Truth values (Boolean values) are returned as 0 (for OFF) and 1 (for ON).

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text (character data) is returned in a short form.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP:PAGE:ORI?

Response: LAND

Invalid numerical results

In some cases, particularly when a result consists of multiple numeric values, invalid values are returned as 9.91E37 (not a number).

10.1.6 Command Sequence and Synchronization

IEEE 488.2 defines a distinction between overlapped and sequential commands:

- A sequential command is one which finishes executing before the next command starts executing. Commands that are processed quickly are usually implemented as sequential commands.
- An overlapping command is one which does not automatically finish executing before the next command starts executing. Usually, overlapping commands take longer to process and allow the program to do other tasks while being executed. If overlapping commands do have to be executed in a defined order, e.g. in order to avoid wrong measurement results, they must be serviced sequentially. This is called synchronization between the controller and the instrument.

Setting commands within one command line, even though they may be implemented as sequential commands, are not necessarily serviced in the order in which they have been received. In order to make sure that commands are actually carried out in a certain order, each command must be sent in a separate command line.

Example: Commands and queries in one message

The response to a query combined in a program message with commands that affect the queried value is not predictable.

The following commands always return the specified result:

```
:FREQ:STAR 1GHZ; SPAN 100; :FREQ:STAR?
```

Result:

1000000000 (1 GHz)

Whereas the result for the following commands is not specified by SCPI:

```
:FREQ:STAR 1GHz;STAR?;SPAN 1000000
```

The result could be the value of STARt before the command was sent since the instrument might defer executing the individual commands until a program message terminator is received. The result could also be 1 GHz if the instrument executes commands as they are received.

As a general rule, send commands and queries in different program messages.

Example: Overlapping command with *OPC

The instrument implements <code>INITiate[:IMMediate]</code> as an overlapped command. Assuming that <code>INITiate[:IMMediate]</code> takes longer to execute than <code>*OPC</code>, sending the following command sequence results in initiating a sweep and, after some time, setting the <code>OPC</code> bit in the <code>ESR</code>:

```
INIT; *OPC.
```

Sending the following commands still initiates a sweep:

```
INIT; *OPC; *CLS
```

However, since the operation is still pending when the instrument executes *CLS, forcing it into the "Operation Complete Command Idle" State (OCIS), *OPC is effectively skipped. The OPC bit is not set until the instrument executes another *OPC command.

10.1.6.1 Preventing Overlapping Execution

To prevent an overlapping execution of commands, one of the commands *OPC, *OPC? or *WAI can be used. All three commands cause a certain action only to be carried out after the hardware has been set. By suitable programming, the controller can be forced to wait for the corresponding action to occur.

Table 10-3: Synchronization using *OPC, *OPC? and *WAI

Com- mand	Action	Programming the controller
*OPC	Sets the Operation Complete bit in the ESR after all previous commands have been executed.	 Setting bit 0 in the ESE Setting bit 5 in the SRE Waiting for service request (SRQ)
*OPC?	Stops command processing until 1 is returned. This is only the case after the Operation Complete bit has been set in the ESR. This bit indicates that the previous setting has been completed.	Sending *OPC? directly after the command whose processing should be terminated before other commands can be executed.
*WAI	Stops further command processing until all commands sent before *WAI have been executed.	Sending *WAI directly after the command whose processing should be terminated before other commands are executed.

Command synchronization using *WAI or *OPC? is a good choice if the overlapped command takes only little time to process. The two synchronization commands simply block overlapped execution of the command. Append the synchronization command to the overlapping command, for example:

SINGle; *OPC?

For time consuming overlapped commands you can allow the controller or the instrument to do other useful work while waiting for command execution. Use one of the following methods:

*OPC with a service request

- 1. Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Set bit no. 5 in the SRE: *SRE 32 to enable ESB service request.
- 3. Send the overlapped command with *OPC
- 4. Wait for a service request

The service request indicates that the overlapped command has finished.

*OPC? with a service request

- 1. Set bit no. 4 in the SRE: *SRE 16 to enable MAV service request.
- 2. Send the overlapped command with *OPC?
- 3. Wait for a service request

The service request indicates that the overlapped command has finished.

Event Status Register (ESE)

- 1. Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Send the overlapped command without *OPC, *OPC? or *WAI

3. Poll the operation complete state periodically (by means of a timer) using the sequence: *OPC; *ESR?

A return value (LSB) of 1 indicates that the overlapped command has finished.

10.1.7 Status Reporting System

The status reporting system stores all information on the current operating state of the instrument, and on errors which have occurred. This information is stored in the status registers and in the error queue. Both can be queried via GPIB bus or LAN interface (STATus... commands, see Chapter 11.11, "Using the Status Register", on page 1126).

•	Hierarchy of Status Registers	655
	Structure of a SCPI Status Register	
	Contents of the Status Registers	
	Application of the Status Reporting System	
	Reset Values of the Status Reporting System.	

10.1.7.1 Hierarchy of Status Registers

As shown in the following figure, the status information is of hierarchical structure.

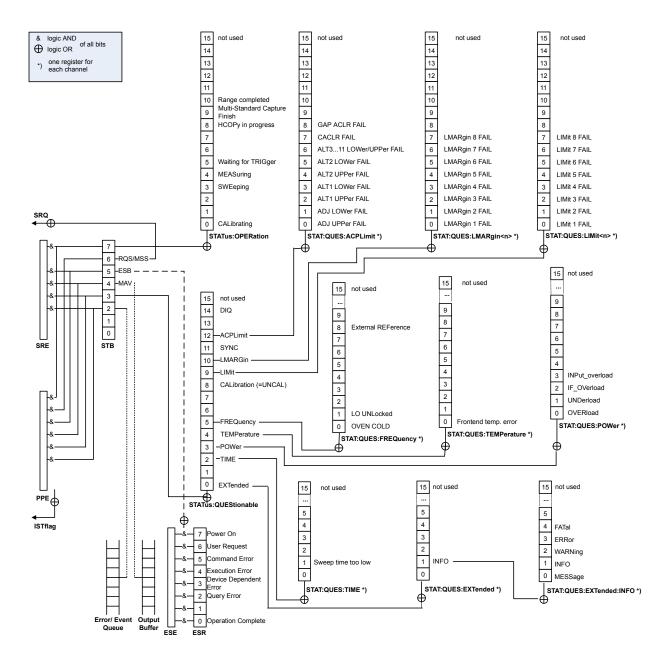


Figure 10-1: Graphical overview of the R&S FSW status registers hierarchy

STB. SRE

The STatus Byte (STB) register and its associated mask register Service Request Enable (SRE) form the highest level of the status reporting system. The STB provides a rough overview of the instrument status, collecting the information of the lower-level registers.

• ESR, SCPI registers

The STB receives its information from the following registers:

- The Event Status Register (ESR) with the associated mask register standard Event Status Enable (ESE).
- The STATUS:OPERation and STATUS:QUEStionable registers which are defined by SCPI and contain detailed information on the instrument.

• IST, PPE

The IST flag ("Individual STatus"), like the SRQ, combines the entire instrument status in a single bit. The PPE fulfills the same function for the IST flag as the SRE for the service request.

Output buffer

The output buffer contains the messages the instrument returns to the controller. It is not part of the status reporting system but determines the value of the MAV bit in the STB and thus is represented in the overview.

All status registers have the same internal structure.

SRE, ESE

The service request enable register SRE can be used as ENABle part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be used as the ENABle part of the ESR.

10.1.7.2 Structure of a SCPI Status Register

Each standard SCPI register consists of 5 parts. Each part has a width of 16 bits and has different functions. The individual bits are independent of each other, i.e. each hardware status is assigned a bit number which is valid for all five parts. Bit 15 (the most significant bit) is set to zero for all parts. Thus the contents of the register parts can be processed by the controller as positive integers.

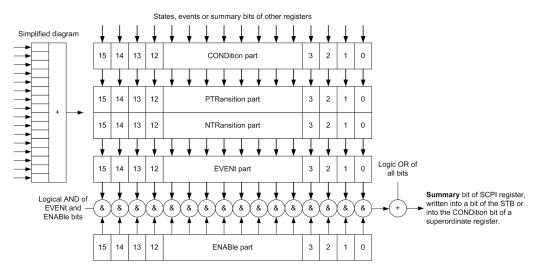


Figure 10-2: The status-register model

Description of the five status register parts

The five parts of a SCPI register have different properties and functions:

CONDition

The CONDition part is written into directly by the hardware or the sum bit of the next lower register. Its contents reflect the current instrument status. This register

part can only be read, but not written into or cleared. Its contents are not affected by reading.

PTRansition / NTRansition

The two transition register parts define which state transition of the CONDition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.

The **Positive-TRansition** part acts as a transition filter. When a bit of the CONDition part is changed from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1.

- PTR bit =1: the EVENt bit is set.
- PTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

The **Negative-TRansition** part also acts as a transition filter. When a bit of the CONDition part is changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1.

- NTR bit =1: the EVENt bit is set.
- NTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

EVENt

The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of the condition part. It only indicates events passed on by the transition filters. It is permanently updated by the instrument. This part can only be read by the user. Reading the register clears it. This part is often equated with the entire register.

ENABle

The ENABle part determines whether the associated EVENt bit contributes to the sum bit (see below). Each bit of the EVENt part is "ANDed" with the associated ENABle bit (symbol '&'). The results of all logical operations of this part are passed on to the sum bit via an "OR" function (symbol '+').

ENABle bit = 0: the associated EVENt bit does not contribute to the sum bit ENABle bit = 1: if the associated EVENt bit is "1", the sum bit is set to "1" as well. This part can be written into and read by the user as required. Its contents are not affected by reading.

Sum bit

The sum bit is obtained from the EVENt and ENABle part for each register. The result is then entered into a bit of the CONDition part of the higher-order register.

The instrument automatically generates the sum bit for each register. Thus an event can lead to a service request throughout all levels of the hierarchy.

10.1.7.3 Contents of the Status Registers

In the following sections, the contents of the status registers are described in more detail.

STATus:QUEStionable:DIQ register

The STATUS: QUEStionable: DIQ register is used for digital I/Q data from the optional Digital Baseband Interface and is described in the R&S FSW I/Q Analyzer and I/Q Input User Manual.

STATus:QUEStionable:SYNC register

The STATus: QUEStionable: SYNC register is used by the R&S FSW applications and is described in the individual sections (manuals) for each application.

•	Status Byte (STB) and Service Request Enable Register (SRE)	659
•	IST Flag and Parallel Poll Enable Register (PPE)	660
•	Event Status Register (ESR) and Event Status Enable Register (ESE)	660
•	STATus:OPERation Register	661
•	STATus:QUEStionable Register	662
•	STATus:QUEStionable:ACPLimit Register	664
•	STATus:QUEStionable:EXTended Register	664
•	STATus:QUEStionable:EXTended:INFO Register	665
•	STATus:QUEStionable:FREQuency Register	665
•	STATus:QUEStionable:LIMit Register	666
•	STATus:QUEStionable:LMARgin Register	667
•	STATus:QUEStionable:POWer Register	667
•	STATus:QUEStionable:TEMPerature Register	668
•	STATus:QUEStionable:TIMe Register	668

Status Byte (STB) and Service Request Enable Register (SRE)

The STatus Byte (STB) is already defined in IEEE 488.2. It provides a rough overview of the instrument status by collecting the pieces of information of the lower registers. A special feature is that bit 6 acts as the sum bit of the remaining bits of the status byte.

The STB can thus be compared with the CONDition part of an SCPI register and assumes the highest level within the SCPI hierarchy.

The STB is read using the command *STB? or a serial poll.

The STatus Byte (STB) is linked to the Service Request Enable (SRE) register. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE and the associated bit in the STB changes from 0 to 1, a service request (SRQ) is generated. The SRE can be set using the command *SRE and read using the command *SRE?

Table 10-4: Meaning of the bits used in the status byte

Bit No.	Meaning	
01	Not used	
2	Error Queue not empty	
	The bit is set when an entry is made in the error queue. If this bit is enabled by the SRE, each entry of the error queue generates a service request. Thus an error can be recognized and specified in greater detail by polling the error queue. The poll provides an informative error message. This procedure is to be recommended since it considerably reduces the problems involved with remote control.	
3	QUEStionable status register summary bit	
	The bit is set if an EVENt bit is set in the QUEStionable status register and the associated ENABLe bit is set to 1. A set bit indicates a questionable instrument status, which can be specified in greater detail by querying the STATUS: QUESTIONABLE status register.	
4	MAV bit (message available)	
	The bit is set if a message is available in the output queue which can be read. This bit can be used to enable data to be automatically read from the instrument to the controller.	
5	ESB bit	
	Sum bit of the event status register. It is set if one of the bits in the event status register is set and enabled in the event status enable register. Setting of this bit indicates a serious error which can be specified in greater detail by polling the event status register.	
6	MSS bit (master status summary bit)	
	The bit is set if the instrument triggers a service request. This is the case if one of the other bits of this registers is set together with its mask bit in the service request enable register SRE.	
7	STATus: OPERation status register summary bit	
	The bit is set if an EVENt bit is set in the OPERation status register and the associated ENABle bit is set to 1. A set bit indicates that the instrument is just performing an action. The type of action can be determined by querying the STATUS:OPERation status register.	

IST Flag and Parallel Poll Enable Register (PPE)

As with the SRQ, the IST flag combines the entire status information in a single bit. It can be read by means of a parallel poll (see "Parallel Poll" on page 670) or using the command *IST?.

The parallel poll enable register (PPE) determines which bits of the STB contribute to the IST flag. The bits of the STB are "ANDed" with the corresponding bits of the PPE, with bit 6 being used as well in contrast to the SRE. The IST flag results from the "ORing" of all results. The PPE can be set using commands *PRE and read using command *PRE?.

Event Status Register (ESR) and Event Status Enable Register (ESE)

The ESR is defined in IEEE 488.2. It can be compared with the EVENt part of a SCPI register. The event status register can be read out using command *ESR?.

The ESE corresponds to the ENABle part of a SCPI register. If a bit is set in the ESE and the associated bit in the ESR changes from 0 to 1, the ESB bit in the STB is set. The ESE register can be set using the command *ESE and read using the command *ESE?.

Table 10-5: Meaning of the bits used in the event status register

Bit No.	Meaning
0	Operation Complete This bit is set on receipt of the command *OPC exactly when all previous commands have been executed.
1	Not used
2	Query Error This bit is set if either the controller wants to read data from the instrument without having sent a query, or if it does not fetch requested data and sends new instructions to the instrument instead. The cause is often a query which is faulty and hence cannot be executed.
3	Device-dependent Error This bit is set if a device-dependent error occurs. An error message with a number between -300 and -399 or a positive error number, which denotes the error in greater detail, is entered into the error queue.
4	Execution Error This bit is set if a received command is syntactically correct but cannot be performed for other reasons. An error message with a number between -200 and -300, which denotes the error in greater detail, is entered into the error queue.
5	Command Error This bit is set if a command is received, which is undefined or syntactically incorrect. An error message with a number between -100 and -200, which denotes the error in greater detail, is entered into the error queue.
6	User Request This bit is set when the instrument is switched over to manual control.
7	Power On (supply voltage on) This bit is set on switching on the instrument.

STATus:OPERation Register

The STATUS: OPERation register contains information on current activities of the R&S FSW. It also contains information on activities that have been executed since the last read out.

You can read out the register with STATus:OPERation:CONDition? or STATus:OPERation[:EVENt]?.

Table 10-6: Meaning of the bits used in the STATus:OPERation register

Bit No.	Meaning
0	CALibrating
	This bit is set as long as the instrument is performing a calibration.
1-2	Not used
3	SWEeping
	Sweep is being performed in base unit (applications are not considered); identical to bit 4
	In applications, this bit is not used.

Bit No.	Meaning
4	MEASuring Measurement is being performed in base unit (applications are not considered); identical to bit 3
	In applications, this bit is not used.
5	Waiting for TRIgger
	Instrument is ready to trigger and waiting for trigger signal.
6-7	Not used
8	HardCOPy in progress
	This bit is set while the instrument is printing a hardcopy.
9	For data acquisition in MSRA/MSRT mode only:
	For data acquisition in MSRA/MSRT mode only:
	Multi-Standard capture finish
	This bit is set if a data acquisition measurement was completed successfully in MSRA/MSRT operating mode and data is available for evaluation.
	For details on the MSRT operating mode see the R&S FSW Real-Time Spectrum Application and MSRT Operating Mode User Manual.
10	Range completed
	This bit is set when a range in the sweep list has been completed if "Stop after Range" has been activated.
11-14	Not used
15	This bit is always 0.

STATus:QUEStionable Register

The STATus:QUEStionable register contains information on instrument states that do not meet the specifications.

The STAT: QUES: SYNC register is used by the applications and is thus described in the individual applications' User Manuals.

You can read out the register with STAT: QUES: COND or STAT: QUES: EVEN.

The STATus:QUEStionable register "sums up" the information from all subregisters (e.g. bit 2 sums up the information for all STATus:QUEStionable:TIMe registers). For some subregisters, there may be separate registers for each active channel. Thus, if a status bit in the STATus:QUEStionable register indicates an error, the error may have occurred in any of the channel-specific subregisters. In this case, you must check the subregister of each channel to determine which channel caused the error. By default, querying the status of a subregister always returns the result for the currently selected channel.

Table 10-7: Meaning of the bits used in the STATus: QUEStionable register

Bit No.	Meaning
0 - 1	Unused
2	TIMe This bit is set if a time error occurs in any of the active channels. The STATus:QUEStionable:TIMe Register provides more information on the error type.
3	POWer This bit is set if the measured power level in any of the active channels is questionable. The STATus:QUEStionable:POWer Register provides more information on the error type.
4	TEMPerature This bit is set if the temperature is questionable.
5	FREQuency This bit is set if there is anything wrong with the frequency of the local oscillator or the reference frequency in any of the active channels. The STATus:QUEStionable:FREQuency Register provides more information on the error type.
6 - 7	Unused
8	CALibration This bit is set if the R&S FSW is unaligned ("UNCAL" display)
9	LIMit (device-specific) This bit is set if a limit value is violated in any of the active channels in any window. The STATus:QUEStionable:LIMit Register provides more information on the error type.
10	LMARgin (device-specific) This bit is set if a margin is violated in any of the active channels in any window. The STATus:QUEStionable:LMARgin Register provides more information on the error type.
11	SYNC (device-specific) This bit is set if the R&S FSW is not synchronized to the signal that is applied. The R&S FSW is not synchronized if: it cannot synchronize to midamble during a measurement or premeasurement it cannot find a burst during a measurement or premeasurement the results deviate too much from the expected value during premeasurements
12	ACPLimit (device-specific) This bit is set if a limit during ACLR measurements is violated in any of the active channels. The STATus:QUEStionable:ACPLimit Register provides more information on the error type.
13	Unused
14	Digital I/Q (device-specific) This bit is set if a connection error occurs at the optional Digital Baseband Interface. For details see the R&S FSW I/Q Analyzer User Manual.

STATus:QUEStionable:ACPLimit Register

The STATus:QUEStionable:ACPLimit register contains information about the results of a limit check during ACLR measurements. A separate ACPLimit register exists for each active channel.

You can read out the register with STATus: QUEStionable: ACPLimit: CONDition? or STATus: QUEStionable: ACPLimit[:EVENt]?

Table 10-8: Meaning of the bits used in the STATus: QUEStionable: ACPLimit register

Bit No.	Meaning
0	ADJ UPPer FAIL
	This bit is set if the limit is exceeded in the upper adjacent channel
1	ADJ LOWer FAIL
	This bit is set if the limit is exceeded in the lower adjacent channel.
2	ALT1 UPPer FAIL
	This bit is set if the limit is exceeded in the upper 1st alternate channel.
3	ALT1 LOWer FAIL
	This bit is set if the limit is exceeded in the lower 1st alternate channel.
4	ALT2 UPPer FAIL
	This bit is set if the limit is exceeded in the upper 2nd alternate channel.
5	ALT2 LOWer FAIL
	This bit is set if the limit is exceeded in the lower 2nd alternate channel.
6	ALT3 11 LOWer/UPPer FAIL
	This bit is set if the limit is exceeded in one of the lower or upper alternate channels 3 11.
7	CACLR FAIL
	This bit is set if the CACLR limit is exceeded in one of the gap channels.
8	GAP ACLR FAIL
	This bit is set if the ACLR limit is exceeded in one of the gap channels.
9 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:EXTended Register

The STATus: QUEStionable: EXTended register contains further status information not covered by the other status registers of the R&S FSW. A separate EXTended register exists for each active channel.

You can read out the register with STATus:QUEStionable:EXTended: CONDition? Or STATus:QUEStionable:EXTended[:EVENt]?

Table 10-9: Meaning of the bits used in the STATus:QUEStionable:EXTended register

Bit No.	Meaning
0	not used
1	INFO
	This bit is set if a status message is available for the application.
	Which type of message occurred is indicated in the STATus:QUEStionable:EXTended:INFO Register.
2 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:EXTended:INFO Register

The STATus: QUEStionable: EXTended: INFO register contains information on the type of messages that occur during operation of the R&S FSW. A separate INFO register exists for each active channel.

You can read out the register with STATus:QUEStionable:EXTended:INFO: CONDition? or STATus:QUEStionable:EXTended:INFO[:EVENt]?. You can query all messages that occur for a specific channel using the command SYSTEM: ERROr:EXTended? on page 1121.

Table 10-10: Meaning of the bits used in the STATus:QUEStionable:EXTended:INFO register

Bit No.	Meaning
0	MESSage
	This bit is set if event or state has occurred that may lead to an error during further operation.
1	INFO
	This bit is set if an informational status message is available for the application.
2	WARNing
	This bit is set if an irregular situation occurs during measurement, e.g. the settings no longer match the displayed results, or the connection to an external device was interrupted temporarily.
3	ERRor
	This bit is set if an error occurs during a measurement, e.g. due to missing data or wrong settings, so that the measurement cannot be completed correctly.
4	FATal
	This bit is set if a serious error occurs in the application and regular operation is no longer possible.
5 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:FREQuency Register

The STATus:QUEStionable:FREQuency register contains information about the condition of the local oscillator and the reference frequency. A separate frequency register exists for each active channel.

You can read out the register with STATus:QUEStionable:FREQuency: CONDition? or STATus:QUEStionable:FREQuency[:EVENt]?.

Table 10-11: Meaning of the bits used in the STATus:QUEStionable:FREQuency register

Bit No.	Meaning
0	OVEN COLD
	This bit is set if the reference oscillator has not yet attained its operating temperature. "OCXO" is displayed.
1	LO UNLocked
	This bit is set if the local oscillator no longer locks. "LOUNL" is displayed.
2 to 7	Not used
8	EXTernalREFerence
	This bit is set if you have selected an external reference oscillator but did not connect a useable external reference source.
	In that case the synthesizer can not lock. The frequency in all probability is not accurate.
9 to 14	Not used
15	This bit is always 0.

STATus:QUEStionable:LIMit Register

The STATus:QUEStionable:LIMit register contains information about the results of a limit check when you are working with limit lines.

A separate LIMit register exists for each active channel and for each window.

You can read out the register with STATus:QUEStionable:LIMit<n>: CONDition? Or STATus:QUEStionable:LIMit<n>[:EVENt]?.

Table 10-12: Meaning of the bits used in the STATus:QUEStionable:LIMit register

Bit No.	Meaning
0	LIMit 1 FAIL
	This bit is set if limit line 1 is violated.
1	LIMit 2 FAIL
	This bit is set if limit line 2 is violated.
2	LIMit 3 FAIL
	This bit is set if limit line 3 is violated.
3	LIMit 4 FAIL
	This bit is set if limit line 4 is violated.
4	LIMit 5 FAIL
	This bit is set if limit line 5 is violated.
5	LIMit 6 FAIL
	This bit is set if limit line 6 is violated.
6	LIMit 7 FAIL
	This bit is set if limit line 7 is violated.

Bit No.	Meaning
7	LIMit 8 FAIL
	This bit is set if limit line 8 is violated.
8 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:LMARgin Register

This register contains information about the observance of limit margins.

A separate LMARgin register exists for each active channel and for each window.

It can be read using the commands

STATus:QUEStionable:LMARgin:CONDition? and STATus:QUEStionable:LMARgin[:EVENt]?.

Table 10-13: Meaning of the bits used in the STATus:QUEStionable:LMARgin register

Bit No.	Meaning
0	LMARgin 1 FAIL
	This bit is set if limit margin 1 is violated.
1	LMARgin 2 FAIL
	This bit is set if limit margin 2 is violated.
2	LMARgin 3 FAIL
	This bit is set if limit margin 3 is violated.
3	LMARgin 4 FAIL
	This bit is set if limit margin 4 is violated.
4	LMARgin 5 FAIL
	This bit is set if limit margin 5 is violated.
5	LMARgin 6 FAIL
	This bit is set if limit margin 6 is violated.
6	LMARgin 7 FAIL
	This bit is set if limit margin 7 is violated.
7	LMARgin 8 FAIL
	This bit is set if limit margin 8 is violated.
8 to 14	Not used
15	This bit is always 0.

STATus:QUEStionable:POWer Register

The STATus:QUEStionable:POWer register contains information about possible overload situations that may occur during operation of the R&S FSW. A separate power register exists for each active channel.

You can read out the register with STATus:QUEStionable:POWer:CONDition? or STATus:QUEStionable:POWer[:EVENt]?

Table 10-14: Meaning of the bits used in the STATus:QUEStionable:POWer register

Bit No.	Meaning
0	OVERload
	This bit is set if an overload occurs at the RF input, causing signal distortion but not yet causing damage to the device.
	The R&S FSW displays the keyword "RF OVLD".
1	UNDerload
	This bit is set if an underload occurs at the RF input.
	The R&S FSW displays the keyword "UNLD".
2	IF_OVerload
	This bit is set if an overload occurs in the IF path.
	The R&S FSW displays the keyword "IF OVLD".
3	Input Overload
	This bit is set if the signal level at the RF input connector exceeds the maximum.
	The RF input is disconnected from the input mixer to protect the device. In order to re-enable measurement, decrease the level at the RF input connector and reconnect the RF input to the mixer input.
	(See Chapter 6.2.1.1, "RF Input Protection", on page 321 or INPut: ATTenuation: PROTection: RESet on page 917)
	The R&S FSW displays the keyword "INPUT OVLD".
4 to 14	Unused
15	This bit is always 0.

STATus:QUEStionable:TEMPerature Register

The STATus:QUEStionable:TEMPerature register contains information about possible temperature deviations that may occur during operation of the R&S FSW. A separate temperature register exists for each active channel.

You can read out the register with STATus:QUEStionable:TEMPerature: CONDition? Or STATus:QUEStionable:TEMPerature[:EVENt]?

Table 10-15: Meaning of the bits used in the STATus:QUEStionable:TEMPerature register

Bit No.	Meaning
0	This bit is set if the frontend temperature sensor deviates by a certain degree from the self-alignment temperature.
	During warmup, this bit is always 0.
	For details see "Temperature check" on page 591.
1 to 14	Unused
15	This bit is always 0.

STATus: QUEStionable: TIMe Register

The STATus:QUEStionable:TIMe register contains information about possible time errors that may occur during operation of the R&S FSW. A separate time register exists for each active channel.

You can read out the register with STATus:QUEStionable:TIME:CONDition? or STATus:QUEStionable:TIME[:EVENt]?

Table 10-16: Meaning of the bits used in the STATus:QUEStionable:TIMe register

Bit No.	Meaning
0	not used
1	Sweep time too low This bit is set if the sweep time is too low and thus calibration fails. Note: the STATus:QUEStionable bit for CALibration is not affected by this error.
2 to 14	Unused
15	This bit is always 0.

10.1.7.4 Application of the Status Reporting System

The purpose of the status reporting system is to monitor the status of one or several devices in a measuring system. To do this and react appropriately, the controller must receive and evaluate the information of all devices. The following standard methods are used:

- Service request (SRQ) initiated by the instrument
- Serial poll of all devices in the bus system, initiated by the controller in order to find out who sent a SRQ and why
- Parallel poll of all devices
- Query of a specific instrument status by means of commands
- Query of the error queue

Service Request

Under certain circumstances, the instrument can send a service request (SRQ) to the controller. A service request is a request from an instrument for information, advice or treatment by the controller. Usually this service request initiates an interrupt at the controller, to which the control program can react appropriately. As evident from Figure 10-1, an SRQ is always initiated if one or several of bits 2, 3, 4, 5 or 7 of the status byte are set and enabled in the SRE. Each of these bits combines the information of a further register, the error queue or the output buffer. The ENABle parts of the status registers can be set such that arbitrary bits in an arbitrary status register initiate an SRQ. In order to make use of the possibilities of the service request effectively, all bits should be set to "1" in enable registers SRE and ESE.

The service request is the only possibility for the instrument to become active on its own. Each controller program should cause the instrument to initiate a service request if errors occur. The program should react appropriately to the service request.

Use of the command *OPC to generate an SRQ at the end of a sweep

 CALL InstrWrite (analyzer, "*ESE 1") 'Set bit 0 in the ESE (Operation Complete)

- 2. CALL InstrWrite (analyzer, "*SRE 32") 'Set bit 5 in the SRE (ESB)
- CALL InstrWrite(analyzer, "*INIT; *OPC") 'Generate an SRQ after operation complete

After its settings have been completed, the instrument generates an SRQ.

A detailed example for a service request routine can be found in Chapter 11.15.2, "Service Request", on page 1173.

Serial Poll

In a serial poll, just as with command *STB, the status byte of an instrument is queried. However, the query is realized via interface messages and is thus clearly faster.

The serial poll method is defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll the status byte. The method also works for instruments which do not adhere to SCPI or IEEE 488.2.

The serial poll is mainly used to obtain a fast overview of the state of several instruments connected to the controller.

Parallel Poll

In a parallel poll, up to eight instruments are simultaneously requested by the controller using a single command to transmit 1 bit of information each on the data lines, i.e., to set the data line allocated to each instrument to a logical "0" or "1".

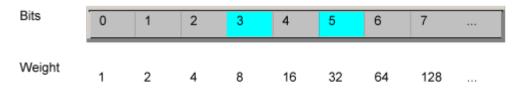
In addition to the SRE register, which determines the conditions under which an SRQ is generated, there is a Parallel Poll Enable register (PPE) which is ANDed with the STB bit by bit, considering bit 6 as well. This register is ANDed with the STB bit by bit, considering bit 6 as well. The results are ORed, the result is possibly inverted and then sent as a response to the parallel poll of the controller. The result can also be queried without parallel poll using the command *IST?

The instrument first has to be set for the parallel poll using the command PPC. This command allocates a data line to the instrument and determines whether the response is to be inverted. The parallel poll itself is executed using PPE.

The parallel poll method is mainly used to find out quickly which one of the instruments connected to the controller has sent a service request. To this effect, SRE and PPE must be set to the same value.

Query of an instrument status

Each part of any status register can be read using queries. There are two types of commands:


- The common commands *ESR?, *IDN?, *IST?, *STB? query the higher-level registers.
- The commands of the STATus system query the SCPI registers (STATus:QUEStionable...)

The returned value is always a decimal number that represents the bit pattern of the queried register. This number is evaluated by the controller program.

Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the SRQ.

Decimal representation of a bit pattern

The STB and ESR registers contain 8 bits, the SCPI registers 16 bits. The contents of a status register are specified and transferred as a single decimal number. To make this possible, each bit is assigned a weighted value. The decimal number is calculated as the sum of the weighted values of all bits in the register that are set to 1.

Example:

The decimal value 40 = 32 + 8 indicates that bits no. 3 and 5 in the status register (e.g. the QUEStionable status summary bit and the ESB bit in the STatus Byte) are set.

Error Queue

Each error state in the instrument leads to an entry in the error queue. The entries of the error queue are detailed plain text error messages that can be looked up in the Error Log or queried via remote control using SYSTem:ERROr[:NEXT]? or SYSTem:ERROr:ALL? Each call of SYSTem:ERROr[:NEXT]? provides one entry from the error queue. If no error messages are stored there any more, the instrument responds with 0, "No error".

The error queue should be queried after every SRQ in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

10.1.7.5 Reset Values of the Status Reporting System

The following table contains the different commands and events causing the status reporting system to be reset. None of the commands, except *RST and SYSTem: PRESet, influence the functional instrument settings. In particular, DCL does not change the instrument settings.

Table 10-17: Resetting the status reporting system

Event	Switching on supply voltage Power-On-Status-		DCL, SDC (Device	*RST or SYS- Tem:PRE- Set	STA- Tus:PRE- Set	*CLS
Effect	Clear 0	1	Clear, Selected Device Clear)	Set		
Clear STB, ESR	-	yes	-	-	-	yes
Clear SRE, ESE	-	yes	-	-	-	-
Clear PPE	-	yes	-	-	-	-
Clear EVENt parts of the registers	-	yes	-	-	-	yes
Clear ENABle parts of all OPERation and QUEStionable registers;	-	yes	-	-	yes	-
Fill ENABle parts of all other registers with "1".						
Fill PTRansition parts with "1"; Clear NTRansition parts	-	yes	-	-	yes	-
Clear error queue	yes	yes	-	-	-	yes
Clear output buffer	yes	yes	yes	1)	1)	1)
Clear command processing and input buffer	yes	yes	yes	-	-	-

¹⁾ The first command in a command line that immediately follows a <PROGRAM MESSAGE TERMINATOR> clears the output buffer.

10.1.8 General Programming Recommendations

Initial instrument status before changing settings

Manual operation is designed for maximum possible operating convenience. In contrast, the priority of remote control is the "predictability" of the instrument status. Thus, when a command attempts to define incompatible settings, the command is ignored and the instrument status remains unchanged, i.e. other settings are not automatically adapted. Therefore, control programs should always define an initial instrument status (e.g. using the *RST command) and then implement the required settings.

Command sequence

As a general rule, send commands and queries in different program messages. Otherwise, the result of the query may vary depending on which operation is performed first (see also Chapter 10.1.6.1, "Preventing Overlapping Execution", on page 653).

GPIB Languages

Reacting to malfunctions

The service request is the only possibility for the instrument to become active on its own. Each controller program should instruct the instrument to initiate a service request in case of malfunction. The program should react appropriately to the service request.

Error queues

The error queue should be queried after every service request in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

10.2 GPIB Languages

The R&S FSW analyzer family supports a subset of the GPIB commands used by other devices. Thus it can emulate other devices in order to use existing remote control programs.

The device model to be emulated is selected manually using "SETUP > Network + Remote > GPIB tab > Language". Via the GPIB interface using the SYSTem:

LANGuage on page 1132 command.

In order to emulate device models that are not part of the selection list of the GPIB "Language" setting, you can modify the identification string received in response to the ID command ("Identification String" setting). Thus, any device model whose command set is compatible with one of the supported device models can be emulated.

Supported languages

Language	Comment
SCPI	
71100C	Compatible to 8566A/B
71200C	Compatible to 8566A/B
71209A	Compatible to 8566A/B
8560E	
8561E	
8562E	
8563E	
8564E	
8565E	
8566A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.

GPIB Languages

Language	Comment
8566B	
8568A	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568A_DC	Uses DC input coupling by default if supported by the instrument
8568B	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
8568B_DC	Uses DC input coupling by default if supported by the instrument
8591E	Compatible to 8594E
8594E	Command sets A and B are available. Command sets A and B differ in the rules regarding the command structure.
FSEA	
FSEB	
FSEM	
FSEK	
PSA89600	
PSA	

Notes:

- If you select a language other than "SCPI", the GPIB address is set to 18 if it was 20 before.
- The Start/stop frequency, reference level and number of sweep points are adapted to the selected instrument model.
- When you switch between remote control languages, the following settings or changes are made:

SCPI:

The instrument performs a PRESET.

8566A/B, 8568A/B, 8594E; FSEA, FSEB, FSEM; FSEK:

- The instrument performs a PRESET.
- The following instrument settings are changed:

Table 10-18: Instrument settings for emulation of 8566A/B, 8568A/B, 8594E; FSEA, FSEB, FSEM; FSEK instruments

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8566A/B	1001	2 GHz	22 GHz	0 dBm	AC
8568A/B	1001	0 Hz	1.5 GHz	0 dBm	AC
8560E	601	0 Hz	2.9 GHz	0 dBm	AC
8561E	601	0 Hz	6.5 GHz	0 dBm	AC
8562E	601	0 Hz	13.2 GHz	0 dBm	AC
8563E	601	0 Hz	26.5 GHz	0 dBm	AC

The IECWIN Tool

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8564E	601	0 Hz	40 GHz	0 dBm	AC
8565E	601	0 Hz	50 GHz	0 dBm	AC
8594E	401	0 Hz	3 GHz	0 dBm	AC
FSEA	500	0 Hz	3.5 GHz	-20 dBm	AC
FSEB	500	0 Hz	7 GHz	-20 dBm	AC
FSEM	500	0 Hz	26.5 GHz	-20 dBm	AC
FSEK	500	0 Hz	40 GHz	-20 dBm	AC

Note: The stop frequency indicated in the table may be limited to the corresponding frequency of the R&S FSW, if required.

10.3 The IECWIN Tool

The R&S FSW is delivered with *IECWIN* installed, an auxiliary tool provided free of charge by R&S. IECWIN is a program to send SCPI commands to a measuring instrument either interactively or from a command script.

The R&S IECWIN32 tool is provided free of charge. The functionality may change in a future version without notice.

IECWIN offers the following features:

- Connection to instrument via several interfaces/protocols (GPIB, VISA, named pipe (if IECWIN is run on the instrument itself), RSIB)
- Interactive command entry
- Browsing available commands on the instrument
- Error checking following every command
- Execution of command scripts
- Storing binary data to a file
- · Reading binary data from a file
- Generation of a log file

For command scripts, IECWIN offers the following features:

- Synchronization with the instrument on every command
- Checking expected result for query commands (as string or numeric value)
- Checking for expected errors codes
- Optional pause on error
- Nested command scripts
- Single step mode

Conditional execution, based on the *IDN and *OPT strings

You can use the IECWIN to try out the programming examples provided in the R&S FSW User Manuals.

Starting IECWIN

IECWIN is available from the Windows task bar on the R&S FSW, or by executing the following file:

C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\iecwin32.exe

You can also copy the program to any Windows PC or laptop. Simply copy the iecwin32.exe, iecwin.chm and rsib32.dll files from the location above to the same folder on the target computer.

When the tool is started, a "Connection settings" dialog box is displayed. Define the connection from the computer the IECWIN tool is installed on to the R&S FSW you want to control. If you are using the tool directly on the R&S FSW, you can use an NT Pipe (COM Parser) connection, which requires no further configuration. For help on setting up other connection types, check the tool's online help (by clicking the "Help" button in the dialog box).

The IECWIN offers an online help with extensive information on how to work with the tool.

10.4 Network and Remote Control Settings

Access: SETUP > "Network + Remote"

Network settings in secure user mode

Be sure to store all network settings before Secure User Mode is enabled; see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

If the currently stored network settings are not suitable, you must correct them each time you switch on the R&S FSW in secure user mode, as the settings are not stored permanently in this case.

The remote commands required to define these settings are described in Chapter 11.10.5, "Configuring the Network and Remote Control", on page 1115.

Step-by-step instructions are provided in Chapter 10.5, "How to Set Up a Network and Remote Control", on page 688.

•	General Network Settings	677
	GPIB Settings	
	Compatibility Settings	
	LXI Settings.	
		686

10.4.1 General Network Settings

Access: SETUP > "Network + Remote" > "Network" tab

The R&S FSW can be operated in a local area network (LAN), for example to control the instrument from a remote PC or use a network printer.

NOTICE

Risk of network problems

All parameters can be edited here; however, beware that changing the computer name has major effects in a network.

For details, see Chapter 10.5, "How to Set Up a Network and Remote Control", on page 688.

Computer Name	678
IP Address	678
Subnet Mask	
DHCP	
Network Configuration	

Computer Name

Each instrument is delivered with an assigned computer name, but this name can be changed. The naming conventions of Windows apply. If too many characters and/or numbers are entered, an error message is displayed in the status line.

The default instrument name is a non-case-sensitive string with the following syntax:

<Type><variant>-<serial number>

For example FSW13-123456

The serial number can be found on the rear panel of the instrument. It is the third part of the device ID printed on the bar code sticker:

IP Address

Defines the IP address. The TCP/IP protocol is preinstalled with the IP address 10.0.0.10. If the DHCP server is available ("DHCP On"), the setting is read-only.

The IP address consists of four number blocks separated by dots. Each block contains 3 numbers in maximum (e.g. 100.100.100.100), but also one or two numbers are allowed in a block (as an example see the preinstalled address).

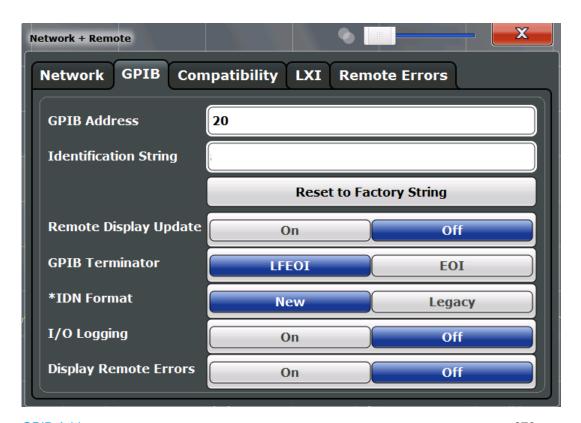
Subnet Mask

Defines the subnet mask. The TCP/IP protocol is preinstalled with the subnet mask 255.255.255.0. If the DHCP server is available ("DHCP On"), this setting is read-only.

The subnet mask consists of four number blocks separated by dots. Each block contains 3 numbers in maximum (e.g. 100.100.100.100), but also one or two numbers are allowed in a block (as an example see the preinstalled address).

DHCP

Switches between DHCP server available (On) or not available (Off). If a DHCP server is available in the network, the IP address and subnet mask of the instrument are obtained automatically from the DHCP server.


Network Configuration

Opens the standard Windows "Network Configuration" dialog box for further configuration.

10.4.2 GPIB Settings

Access: SETUP > "Network + Remote" > "GPIB" tab

Alternatively to connecting the R&S FSW to a LAN, the GPIB interface can be used to connect a remote PC. For details see Chapter 10.1.1.2, "GPIB Interface (IEC 625/IEEE 418 Bus Interface)", on page 641).

GPIB Address	679
Identification String	679
Reset to Factory String	
Remote Display Update	
GPIB Terminator	
*IDN Format	680
I/O Logging	680
Display Remote Errors	680

GPIB Address

Defines the GPIB address. Values from 0 to 30 are allowed. The default address is 20. Remote command:

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess on page 1115

Identification String

Defines the identification string for the R&S FSW which is provided as a response to the *IDN? query. Maximum 36 characters are allowed.

Remote command:

SYSTem:IDENtify[:STRing] on page 1117

Reset to Factory String

Restores the default identification string. Each R&S FSW has a unique ID according to the following syntax:

Rohde&Schwarz,FSW,<Unique number>

Remote command:

SYSTem: IDENtify: FACTory on page 1116

Remote Display Update

Defines whether the display of the R&S FSW is updated when changing from manual operation to remote control.

Turning off the display update function improves performance during remote control.

Remote command:

SYSTem: DISPlay: UPDate on page 1116

GPIB Terminator

Changes the GPIB receive terminator.

"LFEOI" According to the standard, the terminator in ASCII is <LF> and/or

<EOI>.

"EOI" For binary data transfers (e.g. trace data) from the control computer

to the instrument, the binary code used for <LF> might be included in the binary data block, and therefore should not be interpreted as a terminator in this particular case. This can be avoided by using only

the receive terminator EOI.

Remote command:

SYSTem: COMMunicate: GPIB[:SELF]: RTERminator on page 1115

*IDN Format

Defines the response format to the remote command *IDN? (see *IDN? on page 712). This function is intended for re-use of existing control programs together with the R&S FSW.

"Leg" Legacy format, as in the R&S FSP/FSU/FSQ family.

"New" R&S FSW format.

Remote command:

SYSTem: FORMat: IDENt on page 1123

I/O Logging

Activates or deactivates the SCPI error log function. All remote control commands received by the R&S FSW are recorded in the following log file:

```
C:\R S\instr\ScpiLogging\ScpiLog.txt
```

Logging the commands may be extremely useful for debug purposes, e.g. in order to find misspelled keywords in control programs.

Remote command:

SYSTem: CLOGging on page 1130

Display Remote Errors

Activates and deactivates the display of errors that occur during remote operation of the R&S FSW. If activated, the R&S FSW displays a message box at the bottom of the screen that contains the type of error and the command that caused the error.

The error message remains in place when you switch to "Local" mode. To close the message box, select the \bowtie "Close" icon.

Only the most recent error is displayed in remote mode. However, in local mode, all errors that occurred during remote operation are listed in a separate tab of the "Network + Remote" dialog box (see Chapter 10.4.5, "Remote Errors", on page 686).

Remote command:

SYSTem: ERROr: DISPlay on page 1116 SYSTem: ERROr: CLEar: REM on page 1121

10.4.3 Compatibility Settings

The R&S FSW can emulate the GPIB interface of other signal and spectrum analyzers, e.g. in order to use existing control applications.

Compatibility with former R&S signal and spectrum analyzers

As a rule, the R&S FSW supports most commands from previous R&S signal and spectrum analyzers such as the FSQ, FSP, FSU, or FSV. However, the default values, in particular the number of sweep points or particular bandwidths, may vary. Therefore, the R&S FSW can emulate these other devices, including their default values, in order to repeat previous measurements or support existing control applications as in legacy systems.

The required settings are configured in the "Compatibility" tab of the "Network +Remote" dialog box.

Language	682
IF Gain	
Sweep Repeat	
Coupling	
Wideband	
FSU/FSQ Preamplifier	
Revision String	
Resetting the Factory Revision.	

Language

Defines the system language used to control the instrument.

For details on the available GPIB languages, see Chapter 11.13.2, "Reference: GPIB Commands of Emulated HP Models", on page 1135.

Note: Emulating previous R&S signal and spectrum analyzers. This function is also used to emulate previous R&S signal and spectrum analyzers.

As a rule, the R&S FSW supports most commands from previous R&S signal and spectrum analyzers such as the FSQ, FSP, FSU, or FSV. However, the default values, in particular the number of sweep points or particular bandwidths, may vary. Therefore, the R&S FSW can emulate these other devices, including their default values, in order to repeat previous measurements or support existing control applications as in legacy systems.

Note: For PSA89600 emulation, the option is indicated as "B7J" for the *OPT? query ("B7J, 140" or "B7J, 122" if Wideband is activated, see SYSTem: PSA: WIDeband on page 1133).

Remote command:

SYSTem: LANGuage on page 1132

IF Gain

Configures the internal IF gain settings in HP emulation mode due to the application needs. This setting is only taken into account for resolution bandwidth < 300 kHz.

NORM	Optimized for high dynamic range, overload limit is close to reference level.
PULS	Optimized for pulsed signals, overload limit up to 10 dB above reference level.

This setting is only available if an HP language is selected (see "Language" on page 682).

Remote command:

SYSTem: IFGain: MODE on page 1132

Sweep Repeat

Controls a repeated sweep of the E1 and MKPK HI HP model commands (for details on the commands refer to Chapter 11.13.2, "Reference: GPIB Commands of Emulated HP Models", on page 1135). If the repeated sweep is OFF, the marker is set without sweeping before.

Note: In single sweep mode, switch off this setting before you set the marker via the E1 and MKPK HI commands in order to avoid sweeping again.

This setting is only available if a HP language is selected (see "Language" on page 682).

Remote command:

SYSTem: RSW on page 1134

Coupling

Controls the default coupling ratios in the HP emulation mode for:

- span and resolution bandwidth (Span/RBW)
- resolution bandwidth and video bandwidth (RBW/VBW)

For FSx, the standard parameter coupling of the instrument is used. As a result, in most cases a shorter sweep time is used than in case of HP.

This setting is only available if a HP language is selected (see "Language" on page 682).

Remote command:

SYSTem: HPCoupling on page 1132

Wideband

This setting defines which option is returned when the *OPT? query is executed, depending on the state of the wideband option.

It is only available for PSA89600 emulation.

"Off" No wideband is used.

The option is indicated as "B7J".

"40 MHz" The 40 MHz wideband is used.

The option is indicated as "B7J, 140".

"80 MHz" The 80 MHz wideband is used.

The option is indicated as "B7J, 122".

Remote command:

SYSTem: PSA: WIDeband on page 1133

FSU/FSQ Preamplifier

This setting defines which option is returned when the *OPT? query is executed, depending on the used preamplifier.

It is only available for FSU/FSQ emulation, and only if a preamplifier is used by the R&S FSW (-B24/-B25 option).

Remote command:

SYSTem: PREamplifier on page 1133

Revision String

Defines the response to the REV? query for the revision number (HP emulation only, see "GPIB Address" on page 679). Max. 36 characters are allowed.

Remote command:

SYSTem: REVision [:STRing] on page 1134

Resetting the Factory Revision

Resets the response to the REV? query for the revision number to the factory default (HP emulation only, see "Language" on page 682).

Remote command:

SYSTem: REVision: FACTory on page 1134

10.4.4 LXI Settings

Access: SETUP > "Network + Remote" > "LXI" tab

On the R&S FSW the LXI Class C functionality is already installed and enabled; thus, the instrument can be accessed via any web browser (e.g. the Microsoft Internet Explorer) to perform the following tasks:

- modifying network configurations
- modifying device configurations
- monitoring connections from the device to other devices

The "LXI" tab of the "Network + Remote" dialog box provides basic LXI functions and information for the R&S FSW.

Alternatively, you can change the LAN settings using the LXI Web browser interface.

For details see Chapter 10.5.1.4, "How to Configure the LAN Using the LXI Web Browser Interface", on page 692.

Only user accounts with administrator rights are able to use LXI functionality.

Current LXI Configuration	685
LXI Password	
LXI Manufacturer Description	686
LAN Reset	686

Current LXI Configuration

Displays the current LXI information from the R&S FSW (read-only).

"Current ver- Current LXI version sion"

"LXI Extended Detected LXI features, such as HiSlip (see "HiSLIP Protocol"

Features" on page 638)

"Computer Name of the R&S FSW as defined in the operating system (see also

name" "Computer Name" on page 678)

"MAC address" Media Access Control address (MAC address), a unique identifier for

the network card in the R&S FSW

"IP address" IP address of the R&S FSW as defined in the operating system (see

also "IP Address" on page 678).

"ICMP" Indicates whether the ping responder is active or not

"VXI-11 Dis- If enabled, connected devices are detected automatically using the

covery" VXI-11 protocol (see "VXI-11 Protocol" on page 638)

Remote command:

SYSTem:LXI:INFo? on page 1117

LXI Password

Password for LAN configuration. The default password is *LxiWeblfc*.

Remote command:

SYSTem:LXI:PASSword on page 1117

LXI Manufacturer Description

Instrument description of the R&S FSW

Remote command:

SYSTem: LXI: MDEScription on page 1117

LAN Reset

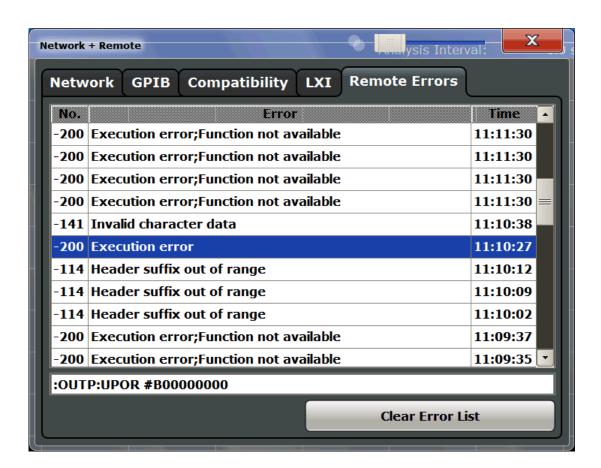
Resets the LAN configuration to its default settings (LCI function).

According to the LXI standard, an LCI must set the following parameters to a default state.

Parameter	Value
TCP/IP Mode	DHCP + Auto IP Address
Dynamic DNS	Enabled
ICMP Ping	Enabled
Password for LAN configuration	LxiWeblfc

The LAN settings are configured in the "Network" tab of the "Network + Remote" dialog box or using the instrument's LXI Browser interface.

Remote command:


SYSTem: LXI: LANReset on page 1117

10.4.5 Remote Errors

Access: SETUP > "Network + Remote" > "Remote Errors" tab

The error messages generated by the R&S FSW during remote operation are displayed here.

The messages are displayed in the order of their occurrence; the most recent messages are placed at the top of the list.

The most recent error message during remote operation can be displayed on the screen, see "Display Remote Errors" on page 680.

If the number of error messages exceeds the capacity of the error buffer, the oldest error message is removed before the newest one is inserted. To clear the message buffer use the "Clear Error List" button. It is automatically cleared when the R&S FSW is shut down.

The following information is available:

No	Device-specific error code
Error	Brief description of the error
Date/Time	Time the message occurred

Remote command:

SYSTem: ERRor: LIST? on page 1121

Clear Error List

Deletes the error message buffer for remote operation.

Note: The remote error list is automatically cleared when the R&S FSW is shut down.

Remote command:

SYSTem: ERRor: CLEar: REM on page 1121

10.5 How to Set Up a Network and Remote Control

NOTICE

Risk of network failure

Before connecting the instrument to the network or configuring the network, consult your network administrator. Errors may affect the entire network.

Remote operation

Remote operation of the instrument from a connected computer is possible using SCPI commands (see Chapter 10.1.2, "SCPI (Standard Commands for Programmable Instruments)", on page 642). Sending remote commands requires the instrument to be configured in a LAN network or connected to a PC via the GPIB interface as described in Chapter 10.5.1, "How to Configure a Network", on page 688.

Remote Desktop

In production test and measurement, a common requirement is central monitoring of the T&M instruments for remote maintenance and remote diagnostics. Equipped with the Remote Desktop software of Windows, the R&S FSW ideally meets requirements for use in production. The computer that is used for remote operation is called "controller" here.

The following tasks can be performed using Remote Desktop:

- Access to the control functions via a virtual front panel (soft front panel)
- Printout of measurement results directly from the controller
- Storage of measured data on the controller's hard disk

This documentation provides basic instructions on setting up the Remote Desktop for the R&S FSW. For details refer to the Windows operating system documentation.

10.5.1 How to Configure a Network

A precondition for operating or monitoring the instrument remotely is that it is connected to a LAN network or a PC connected to the GPIB interface. This is described here.

Windows Firewall Settings

A firewall protects an instrument by preventing unauthorized users from gaining access to it through a network. Rohde & Schwarz highly recommends the use of the firewall on your instrument. R&S instruments are shipped with the Windows firewall enabled and preconfigured in such a way that all ports and connections for remote control are enabled. For more details on firewall configuration see the R&S White Paper "Malware Protection" (available at http://www.rohde-schwarz.com/appnote/1EF73) and the Windows help system.

10.5.1.1 How to Connect the Instrument to the Network

There are two methods to establish a LAN connection to the instrument:

- A non-dedicated network (Ethernet) connection from the instrument to an existing network made with an ordinary RJ-45 network cable. The instrument is assigned an IP address and can coexist with a computer and with other hosts on the same network.
- A dedicated network connection (Point-to-point connection) between the instrument and a single computer made with a (crossover) RJ-45 network cable. The computer must be equipped with a network adapter and is directly connected to the instrument. The use of hubs, switches, or gateways is not required, however, data transfer is still performed using the TCP/IP protocol. An IP address has to be assigned to the instrument and the computer, see Chapter 10.5.1.2, "How to Assign the IP Address", on page 689.

Note: As the R&S FSW uses a 1 GBit LAN, a crossover cable is not necessary (due to Auto-MDI(X) functionality).

► To establish a non-dedicated network connection, connect a commercial RJ-45 cable to one of the LAN ports.

To establish a dedicated connection, connect a (crossover) RJ-45 cable between the instrument and a single PC.

If the instrument is connected to the LAN, Windows automatically detects the network connection and activates the required drivers.

The network card can be operated with a 1 GBit Ethernet IEEE 802.3u interface.

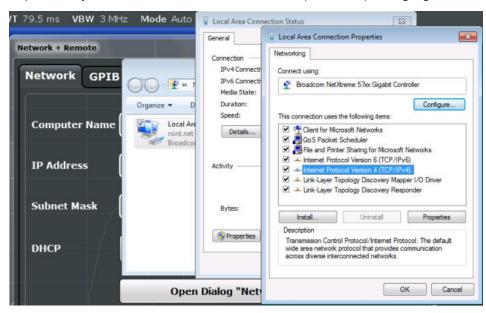
10.5.1.2 How to Assign the IP Address

Depending on the network capacities, the TCP/IP address information for the instrument can be obtained in different ways.

- If the network supports dynamic TCP/IP configuration using the Dynamic Host Configuration Protocol (DHCP), all address information can be assigned automatically.
- If the network does not support DHCP, or if the instrument is set to use alternate TCP/IP configuration, the addresses must be set manually.

By default, the instrument is configured to use dynamic TCP/IP configuration and obtain all address information automatically. This means that it is safe to establish a physical connection to the LAN without any previous instrument configuration.

When a DHCP server is used, a new IP address may be assigned each time the PC is restarted. This address must first be determined on the PC itself. Thus, when using a DHCP server, it is recommended that you use the permanent computer name, which determines the address via the DNS server (see "Using a DNS server to determine the IP address" on page 691).


NOTICE

Risk of network errors

Connection errors can affect the entire network. If your network does not support DHCP, or if you choose to disable dynamic TCP/IP configuration, you must assign valid address information before connecting the instrument to the LAN. Contact your network administrator to obtain a valid IP address.

Assigning the IP address on the R&S FSW

- 1. Press the SETUP key.
- 2. Press the "Network + Remote" softkey.
- 3. Double-tap the "Local Area Connection" icon.
- In the "Local Area Connection Status" dialog box, select the "Properties" button.
 The items used by the LAN connection are displayed.
- 5. Tap the entry named "Internet Protocol Version 4 (TCP/IPv4)" to highlight it.

6. Select the "Properties" button.

In the "Network + Remote" dialog, toggle the "DHCP On/Off" setting to the required mode.

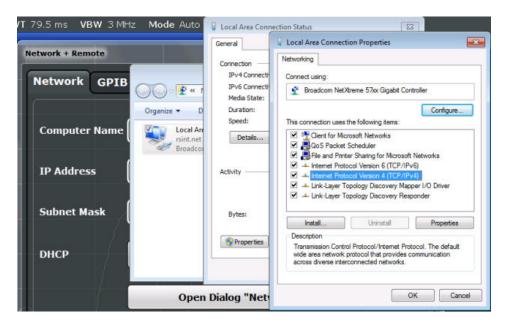
If DHCP is "Off", you must enter the IP address manually, as described in the following steps.

Note: When DHCP is changed from "On" to "Off", the previously set IP address and subnet mask are retrieved.

If DHCP is "On", the IP address of the DHCP server is obtained automatically. The configuration is saved, and you are prompted to restart the instrument. You can skip the remaining steps.

Note: When a DHCP server is used, a new IP address may be assigned each time the instrument is restarted. This address must first be determined on the instrument itself. Thus, when using a DHCP server, it is recommended that you use the permanent computer name, which determines the address via the DNS server.

- 8. Enter the "IP Address", for example 10.0.0.10. The IP address consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.
- Enter the "Subnet Mask", for example 255.255.25.0. The subnet mask consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.
- 10. Close the dialog box.


If you have entered an invalid IP address or subnet mask, the message "out of range" is displayed in the status line. If the settings are correct, the configuration is saved, and you are prompted to restart the instrument.

11. Confirm the displayed message ("Yes" button) to restart the instrument.

Using a DNS server to determine the IP address

If a DNS server is configured on the R&S FSW, the server can determine the current IP address for the connection using the permanent computer name.

- Obtain the name of your DNS domain and the IP addresses of the DNS and WINS servers on your network (see Chapter 10.5.1.3, "How to Change the Instrument Name", on page 692).
- 2. Press the SETUP key and then the "Network + Remote" softkey.
- 3. In the "Network" tab, select the "Open Dialog 'Network Connections" button.
- Double-tap the "Local Area Network" icon.
- In the "Local Area Connection Status" dialog box, select the "Properties" button.The items used by the LAN connection are displayed.
- 6. Tap the entry named "Internet Protocol Version 4 (TCP/IPv4)" to highlight it.

- 7. Select the "Properties" button.
- 8. On the "General" tab, select "Use the following DNS server addresses" and enter your own DNS addresses.

For more information refer to the Windows operating system Help.

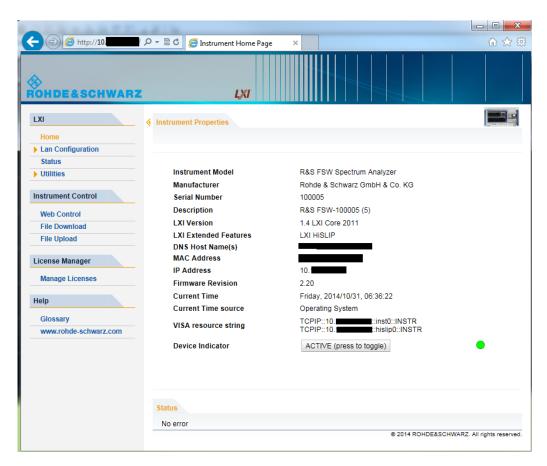
10.5.1.3 How to Change the Instrument Name

In a LAN that uses a DNS server (Domain Name System server), each PC or instrument connected in the LAN can be accessed via an unambiguous computer name instead of the IP address. The DNS server translates the host name to the IP address. This is especially useful when a DHCP server is used, as a new IP address may be assigned each time the instrument is restarted.

Each instrument is delivered with an assigned computer name, but this name can be changed.

To change the instrument's computer name

- 1. Press the SETUP key and then the "Network + Remote" softkey. The current "Computer Name" is displayed in the "Network" tab.
- Enter the new computer name and close the dialog box.The configuration is saved, and you are prompted to restart the instrument.
- 3. Confirm the displayed message ("Yes" button) to restart the instrument.


10.5.1.4 How to Configure the LAN Using the LXI Web Browser Interface

The instrument's LXI browser interface works correctly with all W3C compliant browsers.

► In the web browser, open the http://<instrument-hostname> or http://
<instrument-ip-address> page, e.g. http://10.113.10.203.

The default password to change LAN configurations is LxiWeblfc.

The "Instrument Home Page" (welcome page) opens.

The instrument home page displays the device information required by the LXI standard including the VISA resource string in read-only format.

Press the "Device Indicator" button on the "Instrument Home Page" to activate or deactivate the LXI status icon on the status bar of the R&S FSW. A green LXI status symbol indicates that a LAN connection has been established; a red symbol indicates an error, for example, that no LAN cable is connected. When a device is connecting to the instrument, the LXI logo blinks. The "Device Indicator" setting is not password-protected.

The most important control elements in the navigation pane of the browser interface are the following:

- "LAN Configuration" opens the menu with configuration pages.
- "Status" displays information about the LXI status of the instrument.
- "Help > Glossary" opens a document with a glossary of terms related to the LXI standard.

LAN Configuration

The LAN configuration consists of three parts:

- "IP configuration" provides all mandatory LAN parameters.
- "Advanced LAN Configuration" provides LAN settings that are not declared mandatory by the LXI standard.
- "Ping Client" provides the ping utility to verify the connection between the instrument and other devices.

IP Configuration

The "LAN Configuration > IP configuration" web page displays all mandatory LAN parameters and allows their modification.

The "TCP/IP Mode" configuration field controls how the IP address for the instrument gets assigned (see also Chapter 10.5.1.2, "How to Assign the IP Address", on page 689).

For the manual configuration mode, the static IP address, subnet mask, and default gateway are used to configure the LAN. The automatic configuration mode uses DHCP server or Dynamic Link Local Addressing (Automatic IP) to obtain the instrument IP address.

Changing the LAN configuration is password-protected. The default password is *Lxi-Weblfc* (notice upper and lower case characters).

You can change the LXI password in the "Network + Remote" dialog box, see Chapter 10.4.4, "LXI Settings", on page 684.

Advanced LAN Configuration

The "LAN Configuration > Advanced LAN Configuration" parameters are used as follows:

- The "Negotiation" configuration field provides different Ethernet speed and duplex mode settings. In general, the "Auto Detect" mode is sufficient.
- "ICMP Ping" must be enabled to use the ping utility.
- "VXI-11" is the protocol that is used to detect the instrument in the LAN. According
 to the standard, LXI devices must use VXI-11 to provide a detection mechanism;
 other additional detection mechanisms are permitted.
- mDNS and DNS-SD are two additional protocols: Multicast DNS and DNS Service Discovery. They are used for device communication in zero configuration networks working without DNS and DHCP

Ping Client

Ping is a utility that verifies the connection between the LXI-compliant instrument and another device. The ping command uses the ICMP echo request and echo reply packets to determine whether the LAN connection is functional. Ping is useful for diagnosing IP network or router failures. The ping utility is not password-protected.

To initiate a ping between the LXI-compliant instrument and a second connected device:

- 1. Enable "ICMP Ping" on the "Advanced LAN Configuration" page (enabled after an LCI).
- Enter the IP address of the second device without the ping command and without any further parameters into the "Destination Address" field (e.g. 10.113.10.203).
- Select "Submit".

10.5.1.5 How to Change the GPIB Instrument Address

In order to operate the instrument via remote control, it must be addressed using the GPIB address. The remote control address is factory-set to 20, but it can be changed if it does not fit in the network environment. For remote control, addresses 0 through 30 are allowed. The GPIB address is maintained after a reset of the instrument settings.

Setting the GPIB address

- 1. On the R&S FSW, press the SETUP key.
- 2. Press the "Network + Remote" softkey.
- 3. In the "Network + Remote" dialog box, select the "GPIB" tab.
- 4. In the "GPIB Address" field, enter a value between 0 and 30.

Remote command:

SYST:COMM:GPIB:ADDR 18

10.5.2 How to Operate the Instrument Without a Network

To operate the instrument without a network connection either temporarily or permanently, no special measures are necessary. Windows automatically detects the interruption of the network connection and does not set up the connection when the instrument is switched on.

If you are not prompted to enter the user name and password, proceed as described in Chapter 10.5.3.3, "How to Activate or Deactivate the Automatic Login Mechanism", on page 697.

10.5.3 How to Log on to the Network

Windows requires that users identify themselves by entering a user name and password in a login window. You can set up two types of user accounts, either an administrator account with unrestricted access to the computer/domain or a standard user account with limited access. The instrument provides an auto-login function for the administrator account, i.e. login with unrestricted access is carried out automatically in the background. By default, the user name for the administrator account is "Instrument", and the user name for the standard user account is "NormalUser". In both

cases the initial password is "894129". You can change the password in Windows for any user at any time. Some administrative tasks require administrator rights (e.g. firmware updates or the configuration of a LAN network).

Refer to Chapter 9, "General Instrument Setup", on page 590 to find out which functions are affected.

At the same time you log on to the operating system, you are automatically logged on to the network. As a prerequisite, the user name and the password must be identical on the instrument and on the network.

10.5.3.1 How to Create Users

After the software for the network has been installed, the instrument issues an error message the next time it is switched on because there is no user named "instrument" (= default user ID for Windows automatic login) in the network. Thus, a matching user must be created in the R&S FSW and in the network, the password must be adapted to the network password, and the automatic login mechanism must then be deactivated.

The network administrator is responsible for creating new users in the network. A new user can be created on the instrument using the "User Account" dialog box:

Select the "Windows" icon in the toolbar to access the operating system.

- 2. In the "Start" menu, select "Control Panel" and then select "User Accounts."
- Select "Give other users access to this computer" and then "Add". The "Add New User" dialog box is displayed.
- 4. Enter the name of the new user in the text field and select "Next".
- 5. Define the level of access you want to allow the new user:
 - Select "Standard" to create an account with limited rights.
 - Select "Administrator" to create an account with administrator rights.

Note: Full firmware functionality requires administrator rights.

Select the "Finish" button.The new user is created.

10.5.3.2 How to Change the User Password

After the new user has been created on the instrument, the password must be adapted to the network password. This is also done using the "User Accounts" dialog box.

1.

Select the "Windows" icon in the toolbar to access the operating system.

- 2. Press CTRL + ALT + DELETE, then select "Change a password".
- 3. Enter the user account name.
- 4. Enter the old password.
- 5. Enter the new password in the upper text line and repeat it in the following line.
- Press ENTER.The new password is now active.

10.5.3.3 How to Activate or Deactivate the Automatic Login Mechanism

Deactivating the automatic login mechanism

When shipped, the instrument is already configured to automatically log on under Windows . To deactivate the automatic login mechanism, perform the following steps:

- In the "Start" menu, select "Run".
 The "Run" dialog box is displayed.
- 2. Enter the command $C:\R_S\INSTR\USER\NO_AUTOLOGIN.REG.$
- Press the ENTER key to confirm.
 The automatic login mechanism is deactivated. The next time you switch on the instrument, you are prompted to enter your user name and password before the firmware is started.

Reactivating the automatic login mechanism

- In the "Start" menu, select "Run".
 The "Run" dialog box is displayed.
- 2. Enter the command C:\R S\INSTR\USER\AUTOLOGIN.REG.
- Press the ENTER key to confirm.
 The automatic login mechanism is reactivated. It will be applied the next time the instrument is switched on.

10.5.4 How to Share Directories (only with Microsoft Networks)

Sharing directories makes data available for other users. This is only possible in Microsoft networks. Sharing is a property of a file or directory.

- 1. In the "Start" menu, select "Programs", "Accessories" and then select "Windows Explorer".
- 2. Select the desired folder with the right mouse button.
- In the context menu, select "Sharing with > Specific people".
 The dialog box for sharing a directory is displayed.

- 4. Select a user from the list or add a new name and select the "Add" button.
- 5. Select the "Share" button.
- Select "Done" to close the dialog box.The drive is shared and can be accessed by the selected users.

10.5.5 How to Control the R&S FSW via the Web Browser Interface

Via the LXI browser interface to the R&S FSW one or more users can control the instrument remotely from another PC without additional installation. Most instrument controls are available via the front panel simulation. File upload and download between the instrument and the remote PC is also available.

To access the R&S FSW via the web browser interface

- 1. Start a web browser that supports html5 (W3C compliant).
- 2. Enter the IP address of the R&S FSW in the browser's address bar. The R&S FSW's Welcome page is displayed.
- In the navigation pane, select "Instrument Control > Web Control".
 The instrument's display is shown in a new browser window, with a software front panel displayed beside or below it.
- 4. Use the mouse cursor to access the functionality in the software front panel or in the display as you would directly on the instrument's front panel.

To exchange files with the R&S FSW

You can download files, for example stored measurement data, from the R&S FSW to the remote PC, or upload files, for example limit line definitions, from the PC to the R&S FSW.

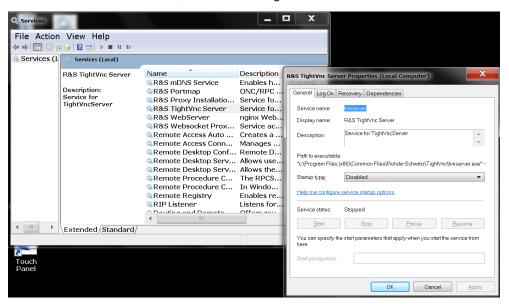
- 1. In the web browser, select the Welcome page window.
- In the navigation pane, select "Instrument Control" > "File Upload" or "File Download".

The most commonly used folders on the instrument are displayed, for example those that contain user data, as well as the top-most ${\tt My}$ Computer folder, from which you can access all other folders on the instrument.

- 3. To download a file from the R&S FSW, select the file from the displayed folders and then select "Download File".
- 4. To upload a file to the R&S FSW:
 - a) From the displayed folders in the web browser window, select the folder on the R&S FSW to which you want to copy a file.
 - b) Under "File to Upload", select "Browse" to open a file selection dialog box and select the required file on the PC.
 - Select "Upload" to copy the file from the PC to the defined folder on the R&S FSW.

10.5.6 How to Deactivate the Web Browser Interface

If you want to prevent other users in the LAN from accessing or operating the R&S FSW via its LXI web browser interface, you must deactivate this function. Note that **after a firmware update** the function is **automatically active** again until you deactivate it manually.


To deactivate the LXI web browser interface

1.

Select the "Windows" icon in the toolbar to access the operating system.

2. In the "Start" menu, select "Control Panel".

- 3. Select "System and Security" > "Administrative Tools".
- 4. From the list on the right, select "Services".
- 5. From the list of local services, select "R&S TightVNC Server".

- 6. Set "Startup type" to "Disabled".
- 7. Select "Stop".
- 8. Select "Apply".

The next time a user enters the IP address of the instrument in a web browser, an error message is displayed:

Failed to connect to server (code. 1006)

10.5.7 How to Set Up Remote Desktop

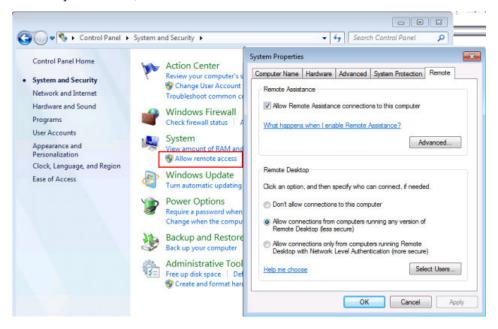
Remote Desktop is a Windows application which can be used to access and control the instrument from a remote computer through a LAN connection. While the instrument is in operation, the instrument screen contents are displayed on the remote computer, and Remote Desktop provides access to all of the applications, files, and network resources of the instrument. Thus, remote operation of the R&S FSW is possible.

With Windows, Remote Desktop Client is part of the operating system. For other versions of Windows, Microsoft offers the Remote Desktop Client as an add-on. For details refer to the Windows operating system documentation.

This section provides basic instructions on setting up the Remote Desktop for the R&S FSW.

10.5.7.1 How to Configure the R&S FSW for Remote Operation via Remote Desktop

 Create a fixed IP address for the TCP/IP protocol as described in Chapter 10.5.1.2, "How to Assign the IP Address", on page 689.


Note: To avoid problems, use a fixed IP address.

When a DHCP server is used, a new IP address is assigned each time the instrument is restarted. This address must first be determined on the instrument itself. Thus, using a DHCP server is not suitable for remote operation of the R&S FSW via Remote Desktop.

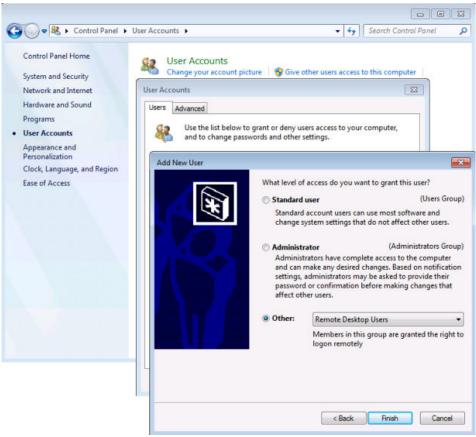
Select the "Windows" icon in the toolbar to access the operating system.

- 3. In the "Start" menu, select the "Control Panel" and then "System and Security".
- 4. In the "System" area, select "Allow remote access".

- 5. In the "Remote" tab, in the "Remote Desktop" area, activate the "Allow connections from computers running Remote Desktop" option.
- Define which users are to be given access to the R&S FSW via Remote Desktop.
 Note: The user account under which configuration is carried out is automatically enabled for Remote Desktop.
 - a) Select the "Select Users" button.
 - b) Select the users or create new user accounts as described in Chapter 10.5.3.1, "How to Create Users", on page 696.
 - c) Select "OK" to confirm the settings.

7. The R&S FSW is now ready for connection setup with the Remote Desktop program of the controller.

10.5.7.2 How to Add or Remove Users to the Remote Desktop Users Group


Only users in the Remote Desktop Users Group are allowed to connect to the R&S FSW via Remote Desktop. You can add the users to this group directly when you allow remote access on the R&S FSW, as described in Chapter 10.5.7, "How to Set Up Remote Desktop", on page 700. Furthermore, you can add or remove users to this group at any time.

Select the "Windows" icon in the toolbar to access the operating system.

- 2. In the "Start" menu, select "Control Panel" and then select "User Accounts."
- Select "Give other users access to this computer".
 The "User Accounts" dialog box is displayed with a list of users and the user group they are assigned to.
- 4. Give existing users the right to access the R&S FSW via Remote Desktop:
 - a) Select the user from the list and then select the "Properties" button.
 - b) As the level of access you want to allow the user, select "Other", then select "Remote Desktop Users" from the dropdown list.
 - c) Select the "Finish" button.The user is added to the Remote Desktop Users Group.
- 5. Create new users who may access the R&S FSW via Remote Desktop:
 - a) Select "Add".
 - b) Enter the name of the new remote user in the text field and select "Next".

c) As the level of access you want to allow the new user, select "Other", then select "Remote Desktop Users" from the dropdown list.

- d) Select the "Finish" button. The user is created.
- 6. Remove users from the Remote Desktop Users Group:
 - a) Select the user from the list and then select the "Remove" button.
 - b) Select "OK" to confirm the action.

Note: Users with administrator rights retain their access rights via Remote Desktop even when they have been removed from the Remote Desktop Users Group.

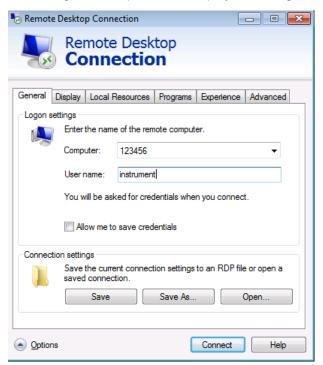
7. Select "OK" to close the dialog box.

10.5.7.3 How to Configure the Controller

Remote Desktop Client

With Windows, Remote Desktop Client is part of the operating system and can be accessed via "Start > Programs > Accessories > Remote Desktop Connection".

For other versions of Windows, Microsoft offers the Remote Desktop Client as an add-


on.

1. In the "Start" menu of the controller, select "All Programs > Accessories > Remote Desktop Connection".

The "Remote Desktop Connection" dialog box is displayed.

2. Select the "Options >>" button.

The dialog box is expanded to display the configuration data.

- Open the "Experience" tab.
 The settings on this tab are used to select and optimize the connection speed.
- In the list, select the appropriate connection (for example: LAN (10 Mbps or higher)).
 - Depending on your selection (and how powerful the connection is), the options are activated or deactivated.
- To improve the performance, you can deactivate the "Desktop background", "Show window contents while dragging" and "Menu and window animation" options.
- 6. Open the "Local Resources" tab to enable printers, local drives and serial interfaces.
- If you will need to access drives of the controller from the R&S FSW (e.g. in order to store settings or to copy files from the controller to the R&S FSW), activate the "Disk drives" option.
 - Windows will then map drives of the controller to the corresponding network drives.
- 8. To use printers connected to the controller while accessing them from the R&S FSW, activate the "Printers" options. Do not change the remaining settings.
- Open the "Display" tab.
 The options to configure the R&S FSW screen display are displayed.

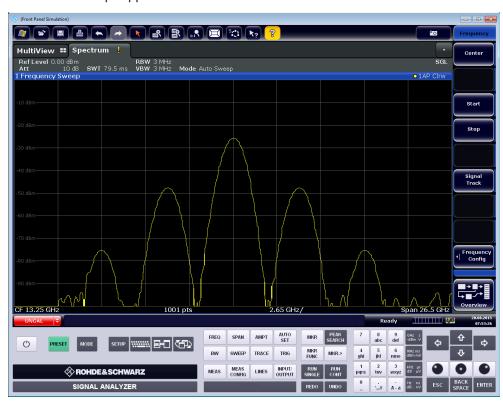
- Under "Remote desktop size", you can set the size of the R&S FSW window on the desktop of the controller.
- 11. Under "Colors", do not change the settings.
- 12. Set the "Display the connection bar when I use the full screen" option: If activated, a bar showing the network address of the R&S FSW will appear at the top edge of the screen. You can use this bar to reduce, minimize or close the window.

If deactivated, the only way you can return to the controller desktop from the R&S FSW screen in full screen mode is to select "Disconnect" from the "Start" menu.

10.5.7.4 How to Start and Close the Remote Desktop

To set up a connection to the R&S FSW

- In the "Remote Desktop Connection" dialog box (see Chapter 10.5.7.3, "How to Configure the Controller", on page 703), open the "General" tab.
- In the "Computer" field, enter the IP address of the R&S FSW.
 In the "User name" field, enter *instrument* to log in as an administrator, or *Normal User* to log in as a standard user.
 In the "Password" field, enter 894129.
- 3. To save the connection configuration for later use:
 - a) Select the "Save As" button.The "Save As" dialog box is displayed.
 - b) Enter the name for the connection information (* . RDP).
- 4. To load an existing connection configuration:
 - a) Select the "Open" button.The "Open" dialog box is displayed.
 - b) Select the *.RDP file.
- 5. Select the "Connect" button. The connection is set up.
- If the "Disk drives" option is activated on the "Local Resources" tab, a warning is displayed indicating that the drives are enabled for access from the R&S FSW. Select "OK" to confirm the warning.
- After a few moments, the R&S FSW screen is displayed.
 If a dark screen appears or a dark square appears in the upper left-hand corner of the screen, you must restart the R&S FSW in order to see the modified screen resolution.



- Press the key combination ALT + F4.
- The R&S FSW firmware is shut down, which may take a few seconds.
- On the desktop, double-tap the "Analyzer" icon.

The firmware restarts and then automatically opens the "Soft Front Panel", i.e. the user interface on which all front panel controls and the rotary knob are mapped to buttons.

For more information see Chapter 9.6.8, "How to Work with the Soft Front Panels", on page 633.

To deactivate or activate the "Softfrontpanel", press the F6 key.
 After the connection is established, the R&S FSW screen is displayed in the "Remote Desktop" application window.

The Windows "Start" menu can be made available by expanding the "Remote Desktop" window to full size.

During the connection with the controller, the login entry is displayed on the R&S FSW screen.

To terminate Remote Desktop control

The connection can be terminated by the controller or by a user at the R&S FSW:

1. On the controller, close the "Remote Desktop" window at any time. The connection to the R&S FSW is terminated.

2. On the R&S FSW, a user logs on.

The connection to the controller is terminated as a result. A message is displayed on the controller display indicating that another user has assumed control of the instrument.

Restoring the connection to the R&S FSW

Follow the instructions above for setting up a connection to the R&S FSW. If the connection is terminated and then restored, the R&S FSW remains in the same state.

10.5.7.5 How to Shut Down the R&S FSW via Remote Operation

- 1. Select the R&S FSW softfrontpanel and close the application with the key combination ALT + F4.
- Select the desktop and press the key combination ALT + F4.
 A safety query is displayed to warn you that the instrument cannot be reactivated via remote operation and asks you whether you want to continue the shutdown process.
- Respond to the safety query with "Yes".
 The connection with the controller is terminated and the R&S FSW is shut down.

10.5.8 How to Start a Remote Control Session from a PC

When you switch on the R&S FSW, it is always in manual operation state ("local" state) and can be operated via the front panel.

To start remote control

- 1. Send an addressed command (GTR Go to Remote) from a controller to the instrument
 - The instrument is switched to remote control ("remote" state). Operation via the front panel is disabled. Only the "Local" softkey is displayed to return to manual operation. The instrument remains in the remote state until it is reset to the manual state via the instrument or via remote control interfaces. Switching from manual operation to remote control and vice versa does not affect the other instrument settings.
- 2. During program execution, send the SYSTem:DISPlay:UPDate ON command to activate the display of results (see SYSTem:DISPlay:UPDate on page 1116).
 - The changes in the device settings and the recorded measurement values are displayed on the instrument screen.
- 3. To obtain optimum performance during remote control, send the SYSTem: DISPlay: UPDate OFF command to hide the display of results and diagrams again (default setting in remote control).

- 4. To prevent unintentional return to manual operation, disable the keys of the instrument using the universal command LLO.
 - Switching to manual mode is only possible via remote control then. This function is only available for the GPIB interface.
- 5. To enable the keys of the R&S FSW again, switch the instrument to local mode (GTL Go to Local), i.e. deactivate the REN line of the remote control interface.

If the instrument is operated exclusively in remote control, it is recommended that you switch on the power-save mode for the display. For more details on this mode refer to the "Overview".

10.5.9 How to Return to Manual Operation

Before you switch back to manual operation, all remote command processing must be completed. Otherwise, the instrument will switch back to remote control immediately.

Select the "Local" softkey or the PRESET key, or use the following GPIB command:

status = viGpibControlREN(vi, VI_GPIB_REN_ADDRESS_GTL)

If you select the "Local" softkey while a self-alignment or a self-test is still running (which was started remotely), the instrument only returns to the manual operation state when the alignment or test is completed.

Conventions Used in SCPI Command Descriptions

11 Remote Commands

The commands required to perform measurements in the Spectrum application in a remote environment are described here.

It is assumed that the R&S FSW has already been set up for remote operation in a network as described in Chapter 10.5, "How to Set Up a Network and Remote Control", on page 688.

Compatibility with former R&S signal and spectrum analyzers

As a rule, the R&S FSW supports most commands from previous R&S signal and spectrum analyzers such as the FSQ, FSP, FSU, or FSV. However, the default values, in particular the number of sweep points or particular bandwidths, may vary. Therefore, the R&S FSW can emulate these other devices, including their default values, in order to repeat previous measurements or support existing control applications as in legacy systems.

•	Conventions Used in SCPI Command Descriptions	709
•	Common Suffixes	710
•	Common Commands	710
•	Selecting the Operating Mode and Application	715
•	Configuring and Performing Measurements	726
•	Configuring the Result Display	871
•	Setting Basic Measurement Parameters	880
	Analyzing Measurements (Basics)	
	Managing Settings and Results	
	Configuring the R&S FSW	
•	Using the Status Register	1126
	Commands for Remote Instrument Operation	
	Emulating Other Instruments' Commands	
	Deprecated Commands	
	Programming Examples	1171

11.1 Conventions Used in SCPI Command Descriptions

Note the following conventions used in the remote command descriptions:

Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitly.

Parameter usage

If not specified otherwise, a parameter can be used to set a value and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**.

Parameters required only to refine a guery are indicated as **Query parameters**.

Common Commands

Parameters that are only returned as the result of a query are indicated as **Return values**.

Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S FSW follow the SCPI syntax rules.

Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

Reset values (*RST)

Default parameter values that are used directly after resetting the instrument (*RST command) are indicated as *RST values, if available.

Default unit

This is the unit used for numeric values if no other unit is provided with the parameter

Manual operation

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

11.2 Common Suffixes

In the Spectrum application, the following common suffixes are used in remote commands:

Table 11-1: Common suffixes used in remote commands in the Spectrum application

Suffix	Value range	Description
<m></m>	1 to 16	Marker
<n></n>	1 to 16	Window (in the currently selected measurement channel)
<t></t>	1 to 6	Trace
<k></k>	1 to 8	Limit line

11.3 Common Commands

Common commands are described in the IEEE 488.2 (IEC 625-2) standard. These commands have the same effect and are employed in the same way on different devices. The headers of these commands consist of "*" followed by three letters. Many common commands are related to the Status Reporting System.

Available common commands:

*CAL?	/11
*CLS	711
*ESE	711
*ESR?	711

Common Commands

*IDN?	712
*IST?	712
*OPC	712
*OPT?	712
*PCB	713
*PRE	713
*PSC	713
*RST	714
*SRE	714
*STB?	714
*TRG	714
*TST?	714
*WAI	

*CAL?

Calibration query

Initiates a calibration of the instrument and subsequently queries the calibration status. Responses > 0 indicate errors.

Note: If you start a self-alignment remotely, then select the "Local" softkey while the alignment is still running, the instrument only returns to the manual operation state after the alignment is completed.

Usage: Query only

Manual operation: See "Starting a Self-alignment" on page 602

*CLS

Clear status

Sets the status byte (STB), the standard event register (ESR) and the EVENt part of the QUEStionable and the OPERation registers to zero. The command does not alter the mask and transition parts of the registers. It clears the output buffer.

Usage: Setting only

*ESE <Value>

Event status enable

Sets the event status enable register to the specified value. The query returns the contents of the event status enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*ESR?

Event status read

Common Commands

Returns the contents of the event status register in decimal form and subsequently sets the register to zero.

Return values:

<Contents> Range: 0 to 255

Usage: Query only

*IDN?

Identification

Returns the instrument identification.

Return values:

<ID> "Rohde&Schwarz,<device type>,<part number>/serial num-

ber>,<firmware version>"

Example: Rohde&Schwarz, FSW-26, 1312.8000K26/100005, 1.30

Usage: Query only

Manual operation: See "*IDN Format" on page 680

*IST?

Individual status query

Returns the contents of the IST flag in decimal form. The IST flag is the status bit which is sent during a parallel poll.

Return values:

<ISTflag> 0 | 1

Usage: Query only

*OPC

Operation complete

Sets bit 0 in the event status register when all preceding commands have been executed. This bit can be used to initiate a service request. The query form writes a "1" into the output buffer as soon as all preceding commands have been executed. This is used for command synchronization.

*OPT?

Option identification query

Queries the options included in the instrument. For a list of all available options and their description refer to the data sheet.

Common Commands

Return values:

<Options> The query returns a list of all installed and activated options,

separated by commas, where:

B<number> describes hardware options K<number> describes software options

For PSA89600 emulation, the option is indicated as "B7J" for the

*OPT? query ("B7J, 140" if SYST: PSA: WID is activated).

(See SYSTem: PSA: WIDeband on page 1133.)

Note that K9 (Power Meter) and K14 (Spectrograms) are displayed for compatibility reasons only; in fact they are standard

functionality of the R&S FSW base unit.

Usage: Query only

*PCB <Address>

Pass control back

Indicates the controller address to which remote control is returned after termination of the triggered action.

Setting parameters:

<Address> Range: 0 to 30

Usage: Setting only

*PRE <Value>

Parallel poll register enable

Sets parallel poll enable register to the indicated value. The query returns the contents of the parallel poll enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*PSC <Action>

Power on status clear

Determines whether the contents of the <code>ENABle</code> registers are preserved or reset when the instrument is switched on. Thus a service request can be triggered when the instrument is switched on, if the status registers ESE and SRE are suitably configured. The query reads out the contents of the "power-on-status-clear" flag.

Parameters:

<Action> 0 | 1

0

The contents of the status registers are preserved.

1

Resets the status registers.

Common Commands

*RST

Reset

Sets the instrument to a defined default status. The default settings are indicated in the description of commands.

The command is equivalent to SYSTem: PRESet.

Note that the factory set default values can be modified to user-defined settings (see MMEMory: LOAD: STATe on page 1074). For more details on default values see Chapter 8.1, "Restoring the Default Instrument Configuration (Preset)", on page 552.

Usage: Setting only

*SRE <Contents>

Service request enable

Sets the service request enable register to the indicated value. This command determines under which conditions a service request is triggered.

Parameters:

<Contents> Contents of the service request enable register in decimal form.

Bit 6 (MSS mask bit) is always 0.

Range: 0 to 255

*STB?

Status byte query

Reads the contents of the status byte in decimal form.

Usage: Query only

*TRG

Trigger

Triggers all actions waiting for a trigger event. In particular, *TRG generates a manual trigger signal. This common command complements the commands of the $\mathtt{TRIGger}$ subsystem.

*TRG corresponds to the INITiate:IMMediate command (see INITiate<n>[: IMMediate] on page 729).

Usage: Event

*TST?

Self-test query

Initiates self-tests of the instrument and returns an error code

Selecting the Operating Mode and Application

Note: If you start a self-test remotely, then select the "Local" softkey while the test is still running, the instrument only returns to the manual operation state after the test is completed. In this case, the self-test cannot be aborted.

Return values:

<ErrorCode> integer > 0 (in decimal format)

An error occurred.

(For details see the Service Manual supplied with the instru-

ment).

0

No errors occurred.

Usage: Query only

*WAI

Wait to continue

Prevents servicing of the subsequent commands until all preceding commands have been executed and all signals have settled (see also command synchronization and *OPC).

Usage: Event

11.4 Selecting the Operating Mode and Application

The following commands are required to select the operating mode or the application and to configure a Sequencer in a remote environment. The tasks for manual operation are described in Chapter 4, "Applications and Operating Modes", on page 100.

•	Selecting the Mode and Applications	715
•	Performing a Sequence of Measurements	.721
•	Programming Example: Performing a Sequence of Measurements	724

11.4.1 Selecting the Mode and Applications

DISPlay:ATAB	716
INSTrument:CREate:DUPLicate	
INSTrument:CREate[:NEW]	716
INSTrument:CREate:REPLace	
INSTrument:DELete	717
INSTrument:LIST?	718
INSTrument:MODE	
INSTrument:REName.	719
INSTrument[:SELect]	720

Selecting the Operating Mode and Application

DISPlay:ATAB <State>

This command switches between the MultiView tab and the most recently displayed measurement channel.

Parameters:

<State> ON | OFF

ON

The MultiView tab is displayed.

OFF

The most recently displayed measurement channel is displayed.

*RST: OFF

INSTrument:CREate:DUPLicate

This command duplicates the currently selected measurement channel, i.e creates a new measurement channel of the same type and with the identical measurement settings. The name of the new channel is the same as the copied channel, extended by a consecutive number (e.g. "IQAnalyzer" -> "IQAnalyzer2").

The channel to be duplicated must be selected first using the INST: SEL command.

This command is not available if the MSRA/MSRT Master channel is selected.

This command is not available if the MSRA/MSRT Master channel is selected.

Example: INST:SEL 'IQAnalyzer'

INST:CRE:DUPL

Duplicates the channel named 'IQAnalyzer' and creates a new

measurement channel named 'IQAnalyzer2'.

Usage: Event

Manual operation: See "Duplicate Current Channel" on page 109

INSTrument:CREate[:NEW] <ChannelType>, <ChannelName>

This command adds an additional measurement channel.

The number of measurement channels you can configure at the same time depends on available memory.

See also

- INSTrument[:SELect] on page 720
- INSTrument:CREate:DUPLicate on page 716

Parameters:

<ChannelType> Channel type of the new channel.

For a list of available channel types see INSTrument:LIST?

on page 718.

Selecting the Operating Mode and Application

<ChannelName> String containing the name of the channel. The channel name is

displayed as the tab label for the measurement channel.

Note: If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the

new channel (see INSTrument:LIST? on page 718).

Example: INST:CRE IQ, 'IQAnalyzer2'

Adds an additional I/Q Analyzer channel named "IQAnalyzer2".

Manual operation: See "New Channel" on page 109

INSTrument:CREate:REPLace <ChannelName1>,<ChannelType>,<ChannelName2>

This command replaces a measurement channel with another one.

Setting parameters:

<ChannelName1> String containing the name of the measurement channel you

want to replace.

<ChannelType> Channel type of the new channel.

For a list of available channel types see INSTrument:LIST?

on page 718.

<ChannelName2> String containing the name of the new channel.

Note: If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the

new channel (see INSTrument:LIST? on page 718).

Example: INST:CRE:REPL 'IQAnalyzer2',IQ,'IQAnalyzer'

Replaces the channel named 'IQAnalyzer2' by a new measure-

ment channel of type 'IQ Analyzer' named 'IQAnalyzer'.

Usage: Setting only

Manual operation: See "Replace Current Channel" on page 109

INSTrument:DELete < ChannelName >

This command deletes a measurement channel.

If you delete the last measurement channel, the default "Spectrum" channel is activated.

Parameters:

<ChannelName> String containing the name of the channel you want to delete.

A measurement channel must exist in order to be able delete it.

Example: INST:DEL 'IQAnalyzer4'

Deletes the channel with the name 'IQAnalyzer4'.

Usage: Event

Manual operation: See "Closing an application" on page 109

Selecting the Operating Mode and Application

INSTrument:LIST?

This command queries all active measurement channels. This is useful in order to obtain the names of the existing measurement channels, which are required in order to replace or delete the channels.

Return values:

<ChannelType>, For each channel, the command returns the channel type and

<ChannelName> channel name (see tables below).

Tip: to change the channel name, use the INSTrument:

REName command.

Example: INST:LIST?

Result for 3 measurement channels:
'ADEM', 'Analog Demod', 'IQ', 'IQ
Analyzer', 'IQ', 'IQ Analyzer2'

Usage: Query only

Table 11-2: Available measurement channel types and default channel names in Signal and Spectrum Analyzer mode

Application	<channeltype> Parameter</channeltype>	Default Channel Name*)
Spectrum	SANALYZER	Spectrum
1xEV-DO BTS (R&S FSW-K84)	BDO	1xEV-DO BTS
1xEV-DO MS (R&S FSW-K85)	MDO	1xEV-DO MS
3GPP FDD BTS (R&S FSW-K72)	BWCD	3G FDD BTS
3GPP FDD UE (R&S FSW-K73)	MWCD	3G FDD UE
802.11ad (R&S FSW-K95)	WIGIG	802.11ad
Amplifier Measurements (R&S FSW-K18)	AMPLifier	Amplifier
Analog Demodulation (R&S FSW-K7)	ADEM	Analog Demod
Avionics (R&S FSW-K15)	AVIonics	Avionics
cdma2000 BTS (R&S FSW-K82)	BC2K	CDMA2000 BTS
cdma2000 MS (R&S FSW-K83)	MC2K	CDMA2000 MS
DOCSIS 3.1 (R&S FSW-K192/193)	DOCSis	DOCSIS 3.1
GSM (R&S FSW-K10)	GSM	GSM
I/Q Analyzer	IQ	IQ Analyzer
LTE (R&S FSW-K10x)	LTE	LTE
Multi-Carrier Group Delay (R&S FSW-K17)	MCGD	MC Group Delay
Noise (R&S FSW-K30)	NOISE	Noise
Phase Noise (R&S FSW-K40)	PNOISE	Phase Noise

^{*)} the default channel name is also listed in the table. If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel.

Selecting the Operating Mode and Application

Application	<channeltype> Parameter</channeltype>	Default Channel Name*)
Pulse (R&S FSW-K6)	PULSE	Pulse
Real-Time Spectrum (R&S FSW-B160R/- K160RE)	RTIM	Real-Time Spectrum
TD-SCDMA BTS (R&S FSW-K76)	BTDS	TD-SCDMA BTS
TD-SCDMA UE (R&S FSW-K77)	MTDS	TD-SCDMA UE
Transient Analysis (R&S FSW-K60)	TA	Transient Analysis
VSA (R&S FSW-K70)	DDEM	VSA
WLAN (R&S FSW-K91)	WLAN	WLAN

^{*)} the default channel name is also listed in the table. If the specified name for a new channel already exists, the default name, extended by a sequential number, is used for the new channel.

INSTrument:MODE < OpMode>

The operating mode of the R&S FSW determines which applications are available and active. Whenever you change the operating mode, the currently active measurement channels are closed. The default operating mode is Signal and Spectrum Analyzer mode, however, the presetting can be changed.

(See the "Instrument Setup" chapter in the R&S FSW User Manual).

For details on operating modes and applications see Chapter 4, "Applications and Operating Modes", on page 100.

Parameters:

<OpMode> SANalyzer

Signal and Spectrum Analyzer mode

MSRanalyzer

Multi-Standard Radio Analysis (MSRA) mode

RTMStandard

Multi-Standard Real-Time (MSRT) mode

Only available if one of the real-time options is installed.

*RST: SAN

Example: INST:MODE MSR

Switches to Multi-Standard Radio Analysis (MSRA) mode.

Manual operation: See "Switching the operating mode" on page 108

INSTrument:REName < ChannelName1>, < ChannelName2>

This command renames a measurement channel.

Parameters:

<ChannelName1> String containing the name of the channel you want to rename.

Selecting the Operating Mode and Application

<ChannelName2> String containing the new channel name.

Note that you cannot assign an existing channel name to a new

channel; this will cause an error.

Example: INST:REN 'IQAnalyzer2', 'IQAnalyzer3'

Renames the channel with the name 'IQAnalyzer2' to 'IQAna-

lyzer3'.

Usage: Setting only

Manual operation: See "Changing the Channel Name" on page 80

INSTrument[:SELect] <ChannelType> | <ChannelName>

This command activates a new measurement channel with the defined channel type, or selects an existing measurement channel with the specified name.

Also see

• INSTrument:CREate[:NEW] on page 716

Chapter 11.4.3, "Programming Example: Performing a Sequence of Measurements", on page 724

Parameters:

<ChannelType> Channel type of the new channel.

For a list of available channel types see INSTrument:LIST?

on page 718.

<ChannelName> String containing the name of the channel.

Example: INST IQ

Activates a measurement channel for the I/Q Analyzer applica-

tion (evaluation mode).
INST 'MyIQSpectrum'

Selects the measurement channel named 'MyIQSpectrum' (for example before executing further commands for that channel).

Usage: SCPI confirmed

Selecting the Operating Mode and Application

Manual operation: See "Spectrum" on page 103

See "1xEV-DO BTS" on page 103 See "1xEV-DO MS" on page 103 See "3G FDD BTS" on page 104 See "3G FDD UE" on page 104 See "802.11ad" on page 104 See "Amplifier" on page 104

See "Analog Demodulation" on page 104

See "Avionics" on page 105

See "cdma2000 BTS" on page 105

See "cdma2000 MS" on page 105

See "(Multi-Carrier) Group Delay" on page 105

See "GSM" on page 105

See "I/Q Analyzer" on page 105

See "LTE" on page 106

See "Noise Figure" on page 106

See "Phase Noise" on page 106

See "Pulse Measurements" on page 106

See "Real-Time Spectrum" on page 106

See "TD-SCDMA BTS" on page 106

See "TD-SCDMA UE" on page 107 See "Transient Analysis" on page 107

See "Vector Signal Analysis (VSA)" on page 107

See "WLAN" on page 107

See "DOCSIS 3.1" on page 107

See "Selecting an application" on page 108

See "New Channel" on page 109

11.4.2 Performing a Sequence of Measurements

The following commands control the sequencer.

For details on the Sequencer see Chapter 4.4.1, "The Sequencer Concept", on page 110.

INITiate <n>:SEQuencer:ABORt</n>	721
INITiate <n>:SEQuencer:IMMediate</n>	
INITiate <n>:SEQuencer:MODE</n>	
SYSTem:SEQuencer	

INITiate<n>:SEQuencer:ABORt

This command stops the currently active sequence of measurements. The Sequencer itself is not deactivated, so you can start a new sequence immediately using INITiate<n>: SEQuencer: IMMediate on page 722.

To deactivate the Sequencer use SYSTem: SEQuencer on page 723.

Suffix:

<n> irrelevant

Selecting the Operating Mode and Application

Usage: Event

Manual operation: See "Sequencer State" on page 112

INITiate<n>:SEQuencer:IMMediate

This command starts a new sequence of measurements by the Sequencer.

Its effect is similar to the <code>INITiate<n>[:IMMediate]</code> command used for a single measurement.

Before this command can be executed, the Sequencer must be activated (see SYSTem: SEQuencer on page 723).

Suffix:

<n> irrelevant

Example: SYST:SEQ ON

Activates the Sequencer. INIT:SEQ:MODE SING

Sets single sequence mode so each active measurement will be

performed once.
INIT:SEQ:IMM

Starts the sequential measurements.

Usage: Event

Manual operation: See "Sequencer State" on page 112

INITiate<n>:SEQuencer:MODE < Mode>

This command selects the way the R&S FSW application performs measurements sequentially.

Before this command can be executed, the Sequencer must be activated (see SYSTem: SEQuencer on page 723).

A detailed programming example is provided in Chapter 11.4.3, "Programming Example: Performing a Sequence of Measurements", on page 724.

Note: In order to synchronize to the end of a sequential measurement using *OPC, *OPC? or *WAI you must use SINGle Sequence mode.

For details on synchronization see Chapter 10.1.6, "Command Sequence and Synchronization", on page 652

Suffix:

<n> irrelevant

Selecting the Operating Mode and Application

Parameters:

<Mode> SINGle

Each measurement is performed once (regardless of the channel's sweep mode), considering each channels' sweep count, until all measurements in all active channels have been performed.

CONTinuous

The measurements in each active channel are performed one after the other, repeatedly (regardless of the channel's sweep mode), in the same order, until the Sequencer is stopped.

CDEFined

First, a single sequence is performed. Then, only those channels in continuous sweep mode (INIT: CONT ON) are repeated.

*RST: CONTinuous

Example: SYST:SEQ ON

Activates the Sequencer. INIT:SEQ:MODE SING

Sets single sequence mode so each active measurement will be

performed once. INIT: SEQ: IMM

Starts the sequential measurements.

Manual operation: See "Sequencer Mode" on page 112

SYSTem:SEQuencer <State>

This command turns the Sequencer on and off. The Sequencer must be active before any other Sequencer commands (INIT:SEQ...) are executed, otherwise an error will occur.

A detailed programming example is provided in Chapter 11.4.3, "Programming Example: Performing a Sequence of Measurements", on page 724.

Parameters:

<State> ON | OFF | 0 | 1

ON | 1

The Sequencer is activated and a sequential measurement is started immediately.

OFF | 0

The Sequencer is deactivated. Any running sequential measurements are stopped. Further Sequencer commands (INIT:

SEQ...) are not available.

*RST: 0

Selecting the Operating Mode and Application

Example: SYST:SEQ ON

Activates the Sequencer. INIT:SEQ:MODE SING

Sets single Sequencer mode so each active measurement will

be performed once. INIT: SEQ: IMM

Starts the sequential measurements.

SYST:SEQ OFF

Manual operation: See "Sequencer State" on page 112

11.4.3 Programming Example: Performing a Sequence of Measurements

This example demonstrates how to perform several measurements in a sequence in a remote environment.

```
//2xSpectrumanalyzer + 2xIQ, start Sequencer at the end, test OPC?
//----Preparing the instrument and first channel -----
*RST
//Activate new IQ channel
INSTrument:CREate:NEW IQ,'IQ 1'
//Set sweep count for new IQ channel
SENS:SWEEP:COUNT 6
//Change trace modes for IQ channel
DISP:TRAC1:MODE BLANK
DISP:TRAC2:MODE MAXH
DISP:TRAC3:MODE MINH
//Switch to single sweep mode
INIT: CONT OFF
//switch back to first (default) analyzer channel
INST:SEL 'Spectrum';*WAI
//Switch into SEM
SENSe:SWEep:MODE ESPectrum
//Load Sem standard file for W-CDMA
SENSe: ESPectrum: PRESet: STANdard 'WCDMA\3GPP\DL\3GPP DL.xml'
//Set sweep count in Spectrum channel
SENS:SWEEP:COUNT 5
//----Creating a second measurement channel -----
//Create second IQ channel
INSTrument:CREate:NEW IQ,'IQ 2'
//Set sweep count
SENS:SWEEP:COUNT 2
//Change trace modes
DISP:TRAC1:MODE MAXH
```

Selecting the Operating Mode and Application

```
DISP:TRAC2:MODE MINH
//Create new analyzer channel
INSTrument:CREate:NEW SANalyzer,'Spectrum 2'
//Activate ACLR measurement in channel 'Spectrum 2'
CALCulate:MARKer:FUNCtion:POWer:SELect ACPower
//Load W-CDMA Standard
CALCulate:MARKer:FUNCtion:POWer:PRESet FW3Gppcdma
//Change trace modes
DISP:TRAC2:MODE MAXH
DISP:TRAC1:MODE MINH
//-----Performing a sweep and retrieving results-----
//Change sweep count
SENS:SWEep:COUNt 7
//Single Sweep mode
INIT: CONT OFF
//Switch back to first IQ channel
INST:SEL 'IQ 1'; *WAI
//Perform a measurement
INIT:IMM; *OPC?
//Retrieve results
CALC:MARK:Y?
//Activate Multiview
DISPlay:ATAB ON
//----Performing a sequence of measurements with the Sequencer-----
//Activate Sequencer
SYSTem:SEQuencer ON
//Start sweep in Sequencer
INITiate:SEQuencer:IMMediate; *OPC?
//Switch into first IQ channel to get results
INST:SEL 'IQ 1'; *WAI
CALCulate:MARKer:MAXimum
CALC:MARK:Y?
//Change sweep time in IQ
SENS:SWE:TIME 300us
//Switch to single Sequencer mode
INITiate:SEQuencer:MODE SINGle
//Sweep all channels once, taking the sweep count in each channel into account
INITiate:SEQuencer:IMMediate;*OPC?
//Set marker to maximum in IQ1 and query result
CALCulate:MARKer:MAXimum
CALC: MARK: Y?
//Switch to second IQ channel and retrieve results
INST:SEL 'IQ 2';*WAI
CALCulate:MARKer:MIN
CALC:MARK:Y?
//Switch to first Spectrum channel
INST:SEL 'Spectrum'; *WAI
```

Configuring and Performing Measurements

```
//Query one of the SEM results
CALCulate:MARKer:FUNCtion:POWer:RESult? CPOWer
//Switch to second Spectrum channel
INST:SEL 'Spectrum 2';*WAI
//Query channel power result
CALCulate:MARKer:FUNCtion:POWer:RESult? ACPower
```

11.5 Configuring and Performing Measurements

The following commands are required to configure measurements in a remote environment. The tasks for manual operation are described in Chapter 5, "Measurements", on page 114.

•	Performing Measurements	726
•	Configuring Power Measurements	729
•	Measuring the Channel Power and ACLR	734
•	Measuring the Carrier-to-Noise Ratio	771
•	Measuring the Occupied Bandwidth	771
•	Measuring the Spectrum Emission Mask	773
•	Measuring Spurious Emissions	809
•	Analyzing Statistics (APD, CCDF)	823
•	Measuring the Time Domain Power	833
•	Measuring the Harmonic Distortion	843
•	Measuring the Third Order Intercept Point	847
•	Measuring the AM Modulation Depth	849
•	Remote Commands for EMI Measurements	851
•	List Evaluations	861
•	Measuring the Pulse Power	866

11.5.1 Performing Measurements

Useful commands for performing measurements described elsewhere

- INITiate<n>:ESPectrum on page 775
- INITiate<n>:SPURious on page 810

Remote commands exclusive for performing measurements:

ABORt	727
INITiate <n>:CONMeas</n>	727
INITiate <n>:CONTinuous</n>	728
INITiate <n>[:IMMediate]</n>	729
[SENSe:]SWEep:COUNt:CURRent?	

Configuring and Performing Measurements

ABORt

This command aborts the measurement in the current measurement channel and resets the trigger system.

To prevent overlapping execution of the subsequent command before the measurement has been aborted successfully, use the *OPC? or *WAI command after ABOR and before the next command.

For details see Chapter 10.1.6.1, "Preventing Overlapping Execution", on page 653.

Note on blocked remote control programs:

If a sequential command cannot be completed, for example because a triggered sweep never receives a trigger, the remote control program will never finish and the remote channel to the R&S FSW is blocked for further commands. In this case, you must interrupt processing on the remote channel first in order to abort the measurement.

To do so, send a "Device Clear" command from the control instrument to the R&S FSW on a parallel channel to clear all currently active remote channels. Depending on the used interface and protocol, send the following commands:

• Visa: viClear()

• **GPIB**: ibclr()

• RSIB: RSDLLibclr()

Now you can send the ABORt command on the remote channel performing the measurement.

Example: ABOR;:INIT:IMM

Aborts the current measurement and immediately starts a new

one.

Example: ABOR; *WAI

INIT:IMM

Aborts the current measurement and starts a new one once

abortion has been completed.

Usage: Event

SCPI confirmed

INITiate<n>:CONMeas

This command restarts a (single) measurement that has been stopped (using ABORt) or finished in single sweep mode.

The measurement is restarted at the beginning, not where the previous measurement was stopped.

As opposed to InITiate < n > [:IMMediate], this command does not reset traces in maxhold, minhold or average mode. Therefore it can be used to continue measurements using maxhold or averaging functions.

Suffix:

<n> irrelevant

Configuring and Performing Measurements

Example: INIT: CONT OFF

Switches to single sweep mode. DISP:WIND:TRAC:MODE AVER Switches on trace averaging.

SWE: COUN 20

Setting the sweep counter to 20 sweeps.

INIT; *WAI

Starts the measurement and waits for the end of the 20 sweeps.

INIT:CONM; *WAI

Continues the measurement (next 20 sweeps) and waits for the

end.

Result: Averaging is performed over 40 sweeps.

Usage: Event

Manual operation: See "Continue Single Sweep" on page 426

INITiate<n>:CONTinuous <State>

This command controls the sweep mode for an individual measurement channel.

Note that in single sweep mode, you can synchronize to the end of the measurement with *OPC, *OPC? or *WAI. In continuous sweep mode, synchronization to the end of the measurement is not possible. Thus, it is not recommended that you use continuous sweep mode in remote control, as results like trace data or markers are only valid after a single sweep end synchronization.

For details on synchronization see Chapter 10.1.6, "Command Sequence and Synchronization", on page 652.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF | 0 | 1

ON | 1

Continuous sweep

OFF | 0 Single sweep *RST: 1

Example: INIT:CONT OFF

Switches the sweep mode to single sweep.

INIT: CONT ON

Switches the sweep mode to continuous sweep.

Manual operation: See "Frequency Sweep" on page 115

See "Zero Span" on page 116

See "Continuous Sweep/RUN CONT" on page 426

Configuring and Performing Measurements

INITiate<n>[:IMMediate]

This command starts a (single) new measurement.

With sweep count or average count > 0, this means a restart of the corresponding number of measurements. With trace mode MAXHold, MINHold and AVERage, the previous results are reset on restarting the measurement.

You can synchronize to the end of the measurement with *OPC, *OPC? or *WAI.

For details on synchronization see Chapter 10.1.6, "Command Sequence and Synchronization", on page 652.

Suffix:

<n> irrelevant

Example: INIT:CONT OFF

Switches to single sweep mode.

DISP:WIND:TRAC:MODE AVER

Switches on trace averaging.

SWE:COUN 20

Sets the sweep counter to 20 sweeps.

INIT; *WAI

Starts the measurement and waits for the end of the 20 sweeps.

Usage: Event

Manual operation: See "Frequency Sweep" on page 115

See "Zero Span" on page 116

See "Single Sweep/ RUN SINGLE" on page 425

[SENSe:]SWEep:COUNt:CURRent?

This query returns the current number of started sweeps or measurements. This command is only available if a sweep count value is defined and the instrument is in single sweep mode.

Example: SWE:COUNt 64

Sets sweep count to 64 INIT: CONT OFF

Switches to single sweep mode

INIT

Starts a sweep (without waiting for the sweep end!)

SWE: COUN: CURR?

Queries the number of started sweeps

Usage: Query only

11.5.2 Configuring Power Measurements

The following commands work for several power measurements.

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE < Mode>

This command selects the trace display mode for power measurements.

Suffix:

<n> Window <m> Marker

Parameters:

<Mode> WRITe

The power is calculated from the current trace.

MAXHold

The power is calculated from the current trace and compared with the previous power value using a maximum algorithm.

Manual operation: See "Power Mode" on page 159

CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? < Measurement>

This command queries the results of power measurements.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <m> irrelevant <sb> 1 | 2 | 3 (4 | 5)

Sub block in a Multi-standard radio measurement;

MSR ACLR: 1 to 5 Multi-SEM: 1 to 3

for all other measurements: irrelevant

Configuring and Performing Measurements

Query parameters:

<Measurement>

ACPower | MCACpower

ACLR measurements (also known as adjacent channel power or multicarrier adjacent channel measurements).

Returns the power for every active transmission and adjacent channel. The order is:

- power of the transmission channels
- power of adjacent channel (lower,upper)
- power of alternate channels (lower,upper)

MSR ACLR results:

For MSR ACLR measurements, the order of the returned results is slightly different:

- power of the transmission channels
- total power of the transmission channels for each sub block
- power of adjacent channels (lower, upper)
- power of alternate channels (lower, upper)
- power of gap channels (lower1, upper1, lower2, upper2) The unit of the return values depends on the scaling of the y-axis:
- logarithmic scaling returns the power in the current unit
- linear scaling returns the power in W

GACLr

For MSR ACLR measurements only: returns a list of ACLR values for each gap channel (lower1, upper1, lower2, upper2)

MACM

For MSR ACLR measurements only: returns a list of CACLR values for each gap channel (lower1, upper1, lower2, upper2)

CN

Carrier-to-noise measurements.

Returns the C/N ratio in dB.

CN₀

Carrier-to-noise measurements.

Returns the C/N ratio referenced to a 1 Hz bandwidth in dBm/Hz.

CPOWer

Channel power measurements.

Returns the channel power. The unit of the return values depends on the scaling of the y-axis:

- logarithmic scaling returns the power in the current unit
- linear scaling returns the power in W

For SEM measurements, the return value is the channel power of the reference range (in the specified sub block).

PPOWer

Peak power measurements.

Returns the peak power. The unit of the return values depends on the scaling of the y-axis:

- logarithmic scaling returns the power in the current unit
- · linear scaling returns the power in W

Configuring and Performing Measurements

For SEM measurements, the return value is the peak power of

the reference range (in the specified sub block).

OBANdwidth | OBWidth

Occupied bandwidth.

Returns the occupied bandwidth in Hz.

Usage: Query only

Manual operation: See "Ch Power ACLR" on page 116

See "C/N, C/No" on page 116 See "OBW" on page 117

See "Spectrum Emission Mask" on page 117

See "C/N" on page 193 See "C/N $_0$ " on page 193

CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect < MeasType>

This command selects a power measurement and turns the measurement on.

Suffix:

<n> Window <m> Marker

Parameters:

<MeasType> ACPower | MCACpower

Adjacent channel leakage ratio (ACLR) aka adjacent channel

power or multicarrier adjacent channel.

The R&S FSW performs the measurement on the trace selected

with [SENSe:] POWer: TRACe.

CPOWer

Channel power measurement with a single carrier.

The R&S FSW performs the measurement on the trace selected

with [SENSe:] POWer: TRACe.

OBANdwidth | OBWidth

Occupied bandwidth measurement.

The R&S FSW performs the measurement on the trace that

marker 1 is positioned on.

CN

Carrier-to-noise ratio measurement.

CN₀

Carrier-to-noise ratio measurement referenced to 1 Hz band-

width

Manual operation: See "Ch Power ACLR" on page 116

See "C/N, C/No" on page 116 See "OBW" on page 117 See "C/N" on page 193 See "C/N₀" on page 193

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] <State>

This command turns a power measurement on and off.

Suffix:

<n>, <m> irrelevant

Parameters:

<State> ON | OFF

ON | 1

The power measurement selected with CALCulate<n>: MARKer<m>: FUNCtion: POWer: SELect is activated.

OFF | 0

A standard frequency sweep is activated.

*RST: OFF

Usage: Setting only

Manual operation: See "C/N" on page 193

See " C/N_0 " on page 193

[SENSe:]POWer:ACHannel:PRESet < Measurement>

This command determines the ideal span, bandwidths and detector for the current power measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Parameters:

<Measurement> ACPower | MCACpower

ACLR measurement

CPOWer

channel power measurement

OBANdwidth | OBWidth

Occupied bandwidth measurement

CN

Carrier to noise ratio

CN₀

Carrier to noise ration referenced to a 1 Hz bandwidth

Manual operation: See "Optimized Settings (Adjust Settings)" on page 159

See "Adjust Settings" on page 194 See "Adjust Settings" on page 199

[SENSe:]POWer:ACHannel:PRESet:RLEVel

This command determines the ideal reference level for the current measurement.

Configuring and Performing Measurements

This automatic routine makes sure that the that the signal power level does not overload the R&S FSW or limit the dynamic range by too small a S/N ratio.

To determine the best reference level, the R&S FSW aborts current measurements and performs a series of test sweeps. After it has finished the test, it continues with the actual measurement.

To get a valid result, you have to perform a complete sweep with synchronization to the sweep end. This is only possible in single sweep mode.

Usage: Event

[SENSe:]POWer:TRACe <TraceNumber>

This command selects the trace channel power measurements are performed on.

For the measurement to work, the corresponding trace has to be active.

Parameters:

<TraceNumber> Range: 1 to 6

*RST: 1

Example: POW:TRAC 2

Assigns the measurement to trace 2.

Manual operation: See "Selected Trace" on page 158

11.5.3 Measuring the Channel Power and ACLR

All remote control commands specific to channel power or ACLR measurements are described here.

See also Chapter 11.5.2, "Configuring Power Measurements", on page 729.

•	Managing Measurement Configurations	734
•	Configuring the Channels	.736
	Defining Weighting Filters	
•	Selecting the Reference Channel	743
	Checking Limits	
•	General ACLR Measurement Settings	750
•	Configuring MSR ACLR Measurements	750
•	Performing an ACLR Measurement	764
	Analyzing Measurement Results	
	Programming Examples for Channel Power Measurements	

11.5.3.1 Managing Measurement Configurations

The following commands control measurement configurations for ACLR measurements.

Configuring and Performing Measurements

CALCulate <n>:MARKer<m>:FUNCtion:POWer:PRESet</m></n>	735
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?</m></n>	735
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete</m></n>	735
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE</m></n>	736

CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet <Standard>

This command loads a measurement configuration.

The measurement configuration for power measurements consists of weighting filter, channel bandwidth and spacing, resolution and video bandwidth, detector and sweep time.

If the "Multi-Standard Radio" standard is selected (see "Standard" on page 155), different commands are required to configure ACLR measurements (see Chapter 11.5.3.7, "Configuring MSR ACLR Measurements", on page 750).

Suffix:

<n> Window <m> Marker

Parameters:

<Standard> For more information see Chapter 5.3.9, "Reference: Predefined

CP/ACLR Standards", on page 190.

If you want to load a customized configuration, the parameter is

a string containing the file name.

Manual operation: See "Predefined Standards" on page 155

See "User-Defined Standards" on page 155

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?

This command queries all files containing ACLR standards.

Suffix:

<n> Window <m> Marker

Return values:

<Standards> List of standard files.

Usage: Query only

Manual operation: See "User-Defined Standards" on page 155

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete <Standard>

This command deletes a file containing an ACLR standard.

Suffix:

<n> Window <m> Marker

Configuring and Performing Measurements

Parameters:

<Standard> String containing the file name of the standard.

Usage: Event

Manual operation: See "User-Defined Standards" on page 155

CALCulate<n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE <Standard>

This command saves the current ACLR measurement configuration as a new ACLR standard.

The measurement configuration for power measurements consists of weighting filter, channel bandwidth and spacing, resolution and video bandwidth, detector and sweep time.

Suffix:

<n> Window <m> Marker

Parameters:

<Standard> String containing the file name. The file format is xml.

Manual operation: See "User-Defined Standards" on page 155

11.5.3.2 Configuring the Channels

The following commands configure channels for channel power and ACLR measurements.

[SENSe:]POWer:ACHannel:ACPairs	736
[SENSe:]POWer:ACHannel:BWIDth:ACHannel	737
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel	737
[SENSe:]POWer:ACHannel:BWIDth:ALTernate <ch></ch>	737
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate <ch></ch>	737
[SENSe:]POWer:ACHannel:BWIDth[:CHANnel <ch>]</ch>	738
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel <ch>]</ch>	738
[SENSe:]POWer:ACHannel:NAME:ACHannel	738
[SENSe:]POWer:ACHannel:NAME:ALTernate <ch></ch>	738
[SENSe:]POWer:ACHannel:NAME:CHANnel <ch></ch>	738
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]	739
[SENSe:]POWer:ACHannel:SPACing:ALTernate <ch></ch>	739
[SENSe:]POWer:ACHannel:SPACing:CHANnel <ch></ch>	740
[SENSe:]POWer:ACHannel:TXCHannel:COUNt	740

[SENSe:]POWer:ACHannel:ACPairs < ChannelPairs >

This command defines the number of pairs of adjacent and alternate channels.

Parameters:

<ChannelPairs> Range: 0 to 12

*RST:

Configuring and Performing Measurements

Manual operation: See "Number of Channels (Tx, ADJ)" on page 157

See "Number of Adjacent Channels (ADJ Count)" on page 173

[SENSe:]POWer:ACHannel:BWIDth:ACHannel <Bandwidth> [SENSe:]POWer:ACHannel:BANDwidth:ACHannel <Bandwidth>

This command defines the channel bandwidth of the adjacent channels.

The adjacent channels are the first channels to the left and right of the transmission channels. If you set the channel bandwidth for these channels, the R&S FSW sets the bandwidth of the alternate channels to the same value (not for MSR signals).

For asymmetrical MSR signals, this command defines the bandwidth of the lower adjacent channel. To configure the bandwidth for the upper adjacent channel, use the [SENSe:]POWer:ACHannel:BANDwidth|BWIDth:UACHannel command.

Steep-edged channel filters are available for fast ACLR measurements.

Parameters:

<Bandwidth> Range: 100 Hz to 1000 MHz

*RST: 14 kHz

Manual operation: See "Channel Bandwidths" on page 161

See "Adjacent Channel Bandwidths" on page 174

[SENSe:]POWer:ACHannel:BWIDth:ALTernate<ch> <Bandwidth> [SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> <Bandwidth>

This command defines the channel bandwidth of the alternate channels.

For MSR signals, this command defines the bandwidth of the lower alternate channels in asymmetrical configurations. To configure the bandwidth for the upper alternate channel, use the [SENSe:]POWer:ACHannel:BANDwidth|BWIDth:
UALTernate<ch> command.

If you set the channel bandwidth for the first alternate channel, the R&S FSW sets the bandwidth of the other alternate channels to the same value, but not the other way round (not for MSR signals). The command works hierarchically: to set a bandwidth of the 3rd and 4th channel, you have to set the bandwidth of the 3rd channel first.

Steep-edged channel filters are available for fast ACLR measurements.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Bandwidth> Range: 100 Hz to 1000 MHz

*RST: 14 kHz

Manual operation: See "Channel Bandwidths" on page 161

See "Adjacent Channel Bandwidths" on page 174

Configuring and Performing Measurements

[SENSe:]POWer:ACHannel:BWIDth[:CHANnel<ch>] <Bandwidth> [SENSe:]POWer:ACHannel:BANDwidth[:CHANnel<ch>] <Bandwidth>

This command defines the channel bandwidth of the transmission channels.

Steep-edged channel filters are available for fast ACLR measurements.

Suffix:

<ch> 1 to 18

Tx channel number

Parameters:

<Bandwidth> Range: 100 Hz to 1000 MHz

*RST: 14 kHz

Manual operation: See "Channel Bandwidths" on page 161

See "Channel Bandwidth" on page 194 See "Channel Bandwidth" on page 199

[SENSe:]POWer:ACHannel:NAME:ACHannel < Name >

This command defines a name for the adjacent channel.

For MSR ACLR measurements, this command defines the name for the lower adjacent channel in asymmetric channel definitions. To define the name for the upper adjacent channel use the [SENSe:]POWer:ACHannel:NAME:UACHannel command.

Parameters:

<Name> String containing the name of the channel

*RST: ADJ

Manual operation: See "Channel Names" on page 163

[SENSe:]POWer:ACHannel:NAME:ALTernate<ch> <Name>

This command defines a name for an alternate channel.

For MSR ACLR measurements, this command defines the name for the lower alternate channel in asymmetric channel definitions. To define the name for the upper alternate channels use the [SENSe:]POWer:ACHannel:NAME:UALTernate<ch> command.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Name> String containing the name of the channel

*RST: ALT<1...11>

Manual operation: See "Channel Names" on page 163

[SENSe:]POWer:ACHannel:NAME:CHANnel<ch> <Name>

This command defines a name for a transmission channel.

Configuring and Performing Measurements

Suffix:

<ch> 1 to 18

Tx channel number

Parameters:

<Name> String containing the name of the channel

*RST: TX<1...12>

Manual operation: See "Channel Names" on page 163

[SENSe:]POWer:ACHannel:SPACing[:ACHannel] < Spacing>

This command defines the distance from transmission channel to adjacent channel.

For MSR signals, this command defines the distance from the CF of the first Tx channel in the first sub block to the lower adjacent channel. To configure the spacing for the upper adjacent channel in asymmetrical configurations, use the [SENSe:]POWer: ACHannel:SPACing:UACHannel command.

A change of the adjacent channel spacing causes a change in the spacing of all alternate channels below the adjacent channel (not for MSR signals).

Parameters:

<Spacing> Range: 100 Hz to 2000 MHz

*RST: 14 kHz

Usage: SCPI confirmed

Manual operation: See "Channel Spacings" on page 161

See "Adjacent Channel Spacings" on page 174

[SENSe:]POWer:ACHannel:SPACing:ALTernate<ch> <Spacing>

This command defines the distance from transmission channel to alternate channels.

For MSR signals, this command defines the distance from the CF of the first Tx channel in the first sub block to the lower alternate channel. To configure the spacing for the upper alternate channel in asymmetrical configurations, use the [SENSe:]POWer: ACHannel:SPACing:UALTernate<ch> command.

If you set the channel spacing for the first alternate channel, the R&S FSW adjusts the spacing of alternate channels of a lower order, but not the other way round (not for MSR signals). The command works hierarchically: to set a distance from the transmission channel to the 2nd and 3rd alternate channel, you have to define a spacing for the 2nd alternate channel first.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Spacing> Range: 100 Hz to 2000 MHz

*RST: 40 kHz (ALT1), 60 kHz (ALT2), 80 kHz (ALT3), ...

Configuring and Performing Measurements

Manual operation: See "Channel Spacings" on page 161

See "Adjacent Channel Spacings" on page 174

[SENSe:]POWer:ACHannel:SPACing:CHANnel<ch> < Spacing>

This command defines the distance between transmission channels.

If you set the channel spacing for a transmission channel, the R&S FSW sets the spacing of the lower transmission channels to the same value, but not the other way round. The command works hierarchically: to set a distance between the 2nd and 3rd and 3rd and 4th channel, you have to set the spacing between the 2nd and 3rd channel first.

Suffix:

<ch> 1 to 18

Tx channel number

Parameters:

<Spacing> Range: 14 kHz to 2000 MHz

*RST: 20 kHz

Manual operation: See "Channel Spacings" on page 161

[SENSe:]POWer:ACHannel:TXCHannel:COUNt < Number>

This command defines the number of transmission channels.

The command works for measurements in the frequency domain.

Parameters:

<Number> Range: 1 to 18

*RST: 1

Manual operation: See "Number of Channels (Tx, ADJ)" on page 157

11.5.3.3 Defining Weighting Filters

The following commands define weighting filters for ACLR measurements.

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel	740
[SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL]	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate <ch></ch>	741
[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <ch></ch>	741
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <ch></ch>	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <ch></ch>	743

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel <Alpha>

This command defines the roll-off factor for the adjacent channel weighting filter.

Configuring and Performing Measurements

For asymmetrical MSR signals, this command defines the roll-off factor for the lower adjacent channel. To configure the factor for the upper adjacent channel, use the [SENSe:]POWer:ACHannel:FILTer:ALPHa:UACHannel command.

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 163

See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL] < Value>

This command defines the alpha value for the weighting filter for all channels.

Parameters:

<Value> <numeric value>

*RST: 0.22

Example: POW:ACH:FILT:ALPH:ALL 0.35

[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate<ch> <Alpha>

This command defines the roll-off factor for the alternate channel weighting filter.

For asymmetrical MSR signals, this command defines the roll-off factor for the lower alternate channels. To configure the factor for the upper alternate channels, use the [SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate<ch> command.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 163

See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel<ch> <Alpha>

This command defines the roll-off factor for the transmission channel weighting filter.

Suffix:

<ch> 1 to 18

Tx channel number

Configuring and Performing Measurements

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 163

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel <State>

This command turns the weighting filter for the adjacent channel on and off.

For asymmetrical MSR signals, this command turns the weighting filter for the lower adjacent channel on and off. To configure the filter state for the upper adjacent channel, use the [SENSe:]POWer:ACHannel:FILTer[:STATe]:UACHannel command.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 163

See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL <State>

This command turns the weighting filters for all channels on and off.

Parameters:

<State> ON | OFF

*RST: OFF

[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> <State>

This command turns the weighting filter for an alternate channel on and off.

For asymmetrical MSR signals, this command turns the weighting filter for the lower alternate channels on and off. To configure the filter state for the upper alternate channels, use the [SENSe:]POWer:ACHannel:FILTer[:STATe]:UALTernate<ch>command.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 163

See "Weighting Filters" on page 174

Configuring and Performing Measurements

[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel<ch> <State>

This command turns the weighting filter for a transmission channel on and off.

Suffix:

<ch> 1 to 18

Tx channel number

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 163

11.5.3.4 Selecting the Reference Channel

The following commands define the reference channel for relative ACLR measurements.

743	[SENSe:]POWer:ACHannel:REFerence:AUTO ONCE
743	[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUT
744	ISENSe:1POWer:ACHannel:REFerence:TXCHannel:MAN

[SENSe:]POWer:ACHannel:REFerence:AUTO ONCE

This command sets the channel power as the reference for relative ACLR measurements.

Example: POW:ACH:REF:AUTO ONCE

Usage: Event

Manual operation: See "Setting a Fixed Reference for Channel Power Measure-

ments (Set CP Reference)" on page 159

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO <RefChannel>

This command selects the reference channel for relative measurements.

You need at least one channel for the command to work.

Parameters:

<RefChannel> MINimum

Transmission channel with the lowest power

MAXimum

Transmission channel with the highest power

LHIGhest

Lowest transmission channel for lower adjacent channels and highest transmission channel for upper adjacent channels

Example: POW:ACH:REF:TXCH:AUTO MAX

Selects the channel with the peak power as reference channel.

Manual operation: See "Reference Channel" on page 157

Configuring and Performing Measurements

[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual <ChannelNumber>

This command defines a reference channel for relative ACLR measurements.

You need at least one channel for the command to work.

Note that this command is not available for MSR ACLR measurements (see CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735).

Parameters:

<ChannelNumber> Range: 1 to 18

*RST: 1

Manual operation: See "Reference Channel" on page 157

11.5.3.5 Checking Limits

The following commands configure and query limit checks for channel power and ACLR measurements.

The results of the power limit checks are also indicated in the STAT: QUES: ACPL status registry (see "STATus:QUEStionable: ACPL imit Register" on page 664).

CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute</k></n>	744
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe</k></n>	745
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]</k></n>	745
CALCulate <n>:LIMit<k>:ACPower:ACHannel:RESult?</k></n>	746
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe</k></n>	746
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute</ch></k></n>	747
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute:STATe</ch></k></n>	747
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]</ch></k></n>	748
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:RESult?</ch></k></n>	748
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe</ch></k></n>	749
CALCulate <n>:LIMit<k>:ACPower[:STATe]</k></n>	749

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute <LowerLimit>, <UpperLimit>

This command defines the absolute limit of the adjacent channels.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant

Parameters:

<LowerLimit> The limit of the lower adjacent channel.

Range: -200 dBm to 200 dBm

*RST: -200 dBm

Configuring and Performing Measurements

<UpperLimit> The limit of the upper adjacent channel.

Range: -200 dBm to 200 dBm

*RST: -200 dBm

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe <State>,<State>

This command turns the absolute limit check for the adjacent channels on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant

Parameters:

<State> ON | OFF

Absolute limit check for lower adjacent channel

*RST: OFF

<State> ON | OFF

Absolute limit check for upper adjacent channel

*RST: OFF

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate < n>:LIMit < k>:ACPower:ACHannel[:RELative] < LowerLimit>,

<UpperLimit>

This command defines the relative limit of the adjacent channels. The reference value for the relative limit is the measured channel power.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n> irrelevant <k> irrelevant

Parameters:

<LowerLimit> The limit of the lower adjacent channel.

Range: 0 dB to 100 dB

*RST: 0 dB Default unit: dB

<UpperLimit> The limit of the upper adjacent channel.

Range: 0 dB to 100 dB

*RST: 0 dB Default unit: dB

Configuring and Performing Measurements

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ACHannel:RESult?

This command queries the state of the limit check for the adjacent channels in an ACLR measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <k> irrelevant

Return values:

<LowerACH>, text value

<UpperACH> The command returns two results. The first is the result for the

lower, the second for the upper adjacent channel.

PASSED

Limit check has passed.

FAIL

Limit check has failed.

Example: INIT:IMM; *WAI;

CALC:LIM:ACP:ACH:RES?

PASSED, PASSED

Usage: Query only

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe <State>,<State>

This command turns the relative limit check for the adjacent channels on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant

Parameters:

<State> ON | OFF

Relative limit check for lower adjacent channel

*RST: OFF

<State> ON | OFF

Relative limit check for upper adjacent channel

*RST: OFF

Configuring and Performing Measurements

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute <LowerLimit>,

<UpperLimit>

This command defines the absolute limit of the alternate channels.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant <ch> 1 to 11

Alternate channel number

Parameters:

<LowerLimit> The limit of the lower adjacent channel.

Range: -200 dBm to 200 dBm

*RST: -200 dBm

<UpperLimit> The limit of the upper adjacent channel.

Range: -200 dBm to 200 dBm

*RST: -200 dBm

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute:STATe

<State>,<State>

This command turns the absolute limit check for the alternate channels on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant <ch> 1 to 11

Alternate channel number

Parameters:

<State> ON | OFF

Absolute limit check for lower alternate channel

*RST: OFF

<State> ON | OFF

Absolute limit check for upper alternate channel

*RST: OFF

Configuring and Performing Measurements

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative] <LowerLimit>, <UpperLimit>

This command defines the relative limit of the alternate channels. The reference value for the relative limit is the measured channel power.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant <ch> 1 to 11

Alternate channel number

Parameters:

<LowerLimit> The limit of the lower alternate channel.

Range: 0 dB to 100 dB

*RST: 0 dB Default unit: dB

<UpperLimit> The limit of the upper alternate channel.

Range: 0 dB to 100 dB

*RST: 0 dB Default unit: dB

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>:RESult?

This command queries the state of the limit check for the adjacent or alternate channels in an ACLR measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <k> irrelevant <ch> 1 to 11

Alternate channel number

Configuring and Performing Measurements

Return values:

<LowerChan>, text value

<UpperChan> The command returns two results. The first is the result for the

lower, the second for the upper adjacent or alternate channel.

PASSED

Limit check has passed.

FAIL

Limit check has failed.

Example: INIT:IMM; *WAI;

CALC:LIM:ACP:ACH:RES?

PASSED, PASSED

Usage: Query only

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe

<State>,<State>

This command turns the relative limit check for the alternate channels on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant <ch> 1 to 11

Alternate channel number

Parameters:

<State> ON | OFF

Relative limit check for lower alternate channel

*RST: OFF

<State> ON | OFF

Relative limit check for upper alternate channel

*RST: OFF

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 175

CALCulate<n>:LIMit<k>:ACPower[:STATe] <State>

This command turns the limit check for ACLR measurements on and off.

In addition, limits must be defined and activated individually for each channel (see

```
CALCulate<n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe,
```

CALCulate<n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe,

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ABSolute:STATe,

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative:]STATe and CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative:]STATe).

Configuring and Performing Measurements

Suffix:

<n>, <k> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Limit Checking" on page 162

See "Limit Checking" on page 169 See "Limit Checking" on page 175 See "Limit Checking" on page 177

11.5.3.6 General ACLR Measurement Settings

The following commands control the measurement algorithm.

Useful commands for the ACLR measurement described elsewhere:

- [SENSe:] POWer:NCORrection on page 897
- [SENSe:] POWer: ACHannel: PRESet on page 733
- [SENSe:] POWer: ACHannel: PRESet: RLEVel on page 733
- [SENSe:] POWer:TRACe on page 734
- CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE on page 730

Remote commands exclusive to ACLR measurement

[SENSe:]POWer:HSPeed <State>

This command turns high speed ACLR and channel power measurements on and off.

If on, the R&S FSW performs a measurement on each channel in the time domain. It returns to the frequency domain when the measurement is done.

In some telecommunications standards, high speed measurements use weighting filters with characteristic or steep-edged channel filters for band limitation.

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW: HSP ON

Manual operation: See "Fast ACLR" on page 158

11.5.3.7 Configuring MSR ACLR Measurements

If the "Multi-Standard Radio" standard is selected (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735), the channels for the ACLR measurement are configured differently. (For more information see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.)

Configuring and Performing Measurements

In this case, use the following commands.

•	General MSR ACLR Measurement Settings	.751
	MSR Sub Block and Tx Channel Setup	
	MSR Adjacent Channel Setup	
•	MSR Gap Channel Setup	.758
•	MSR Channel Names	763

General MSR ACLR Measurement Settings

Useful commands for configuring general MSR ACLR settings described elsewhere:

- CALCulate<n>:MARKer<m>:FUNCtion:POWer:PRESet on page 735
- CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730
- CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ on page 765
- CALCulate<n>:MARKer<m>:FUNCtion:POWer:MODE on page 730
- CALCulate<n>:LIMit<k>:ACPower[:STATe] on page 749
- [SENSe:] POWer: ACHannel: REFerence: TXCHannel: AUTO on page 743
- [SENSe:] POWer:NCORrection on page 897
- [SENSe:] POWer:TRACe on page 734
- [SENSe:] POWer: ACHannel: MODE on page 766
- [SENSe:] POWer: ACHannel: PRESet on page 733
- [SENSe:]POWer:ACHannel:SSETup on page 756

MSR Sub Block and Tx Channel Setup

The functions for manual operation are described in Chapter 5.3.5.2, "MSR Sub Block and Tx Channel Definition", on page 169.

Useful commands for configuring Tx channels described elsewhere:

• [SENSe:]POWer:ACHannel:SBLock<sb>:NAME[:CHANnel<ch>]
on page 764

Remote commands exclusive to configuring sub blocks and Tx channels

[SENSe:]POWer:ACHannel:FILTer:ALPHa:SBLock <sb>:CHANnel<ch></ch></sb>	751
[SENSe:]POWer:ACHannel:FILTer:STATe:SBLock <sb>:CHANnel<ch></ch></sb>	752
[SENSe:]POWer:ACHannel:SBCount	752
[SENSe:]POWer:ACHannel:SBLock <sb>:BANDwidth BWIDth[:CHANnel<ch>]</ch></sb>	752
[SENSe:]POWer:ACHannel:SBLock <sb>:CENTer[:CHANnel<ch>]</ch></sb>	753
[SENSe:]POWer:ACHannel:SBLock <sb>:FREQuency:CENTer</sb>	753

[SENSe:]POWer:ACHannel:FILTer:ALPHa:SBLock<sb>:CHANnel<ch> <Alpha>

This command defines the roll-off factor for the specified transmission channel's weighting filter.

Suffix:

<sb> 1 | 2 | 3 | 4 | 5 sub block number

Configuring and Performing Measurements

<ch> 1 to 18

Tx channel number

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 172

[SENSe:]POWer:ACHannel:FILTer:STATe:SBLock<sb>:CHANnel<ch> < State>

This command turns the weighting filter for the specified transmission channel on and off.

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

<ch> 1 to 18

Tx channel number

Parameters:

<State> ON | OFF

*RST: W-CDMA: ON, other technologies: OFF

Manual operation: See "Weighting Filters" on page 172

[SENSe:]POWer:ACHannel:SBCount < Number>

This command defines the number of sub blocks, i.e. groups of transmission channels in an MSR signal.

For more information see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Parameters:

<Number> Range: 1 to 5

*RST: 1

Manual operation: See "Number of Sub Blocks" on page 167

[SENSe:]POWer:ACHannel:SBLock<sb>:BANDwidth|BWIDth[:CHANnel<ch>]

<Bandwidth>

This command defines the bandwidth of the specified MSR Tx channel.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

Configuring and Performing Measurements

<ch> 1 to 18

Tx channel number

Parameters:

<Bandwidth> Bandwidth in Hz

Manual operation: See "Tx Channel Bandwidth" on page 172

[SENSe:]POWer:ACHannel:SBLock<sb>:CENTer[:CHANnel<ch>] < Frequency>

This command defines the (absolute) center frequency of the specified MSR Tx channel.

Note that the position of the first Tx channel in the first sub block and the last Tx channel in the last sub block also affect the position of the adjacent channels.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion: POWer: PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

<ch> 1 to 18

Tx channel number

Parameters:

<Frequency> absolute frequency in Hz

Manual operation: See "Tx Center Frequency" on page 171

[SENSe:]POWer:ACHannel:SBLock<sb>:FREQuency:CENTer <Frequency>

This command defines the center of the specified MSR sub block. Note that the position of the sub block also affects the position of the adjacent gap (CACLR) channels.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

Parameters:

<Frequency> absolute frequency in Hz

Manual operation: See "Sub Block Center Frequency" on page 171

MSR Adjacent Channel Setup

The functions for manual operation are described in Chapter 5.3.5.3, "MSR Adjacent Channel Setup", on page 172.

Useful commands for MSR adjacent channel setup described elsewhere:

Chapter 11.5.3.5, "Checking Limits", on page 744

Configuring and Performing Measurements

"MSR Channel Names" on page 763

Remote commands exclusive to MSR adjacent channel setup:

[SENSe:]POWer:ACHannel:SBLock <sb>:RFBWidth</sb>	754
[SENSe:]POWer:ACHannel:SBLock <sb>:TECHnology[:CHANnel<ch>]</ch></sb>	754
[SENSe:]POWer:ACHannel:SBLock <sb>:TXCHannel:COUNt</sb>	755
[SENSe:]POWer:ACHannel:SPACing:UACHannel	755
[SENSe:]POWer:ACHannel:SPACing:UALTernate <ch></ch>	756
[SENSe:]POWer:ACHannel:SSETup	756
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:UACHannel	756
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:UALTernate <ch></ch>	757
[SENSe:]POWer:ACHannel:FILTer:ALPHa:UACHannel	757
[SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate <ch></ch>	757
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UACHannel	758
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UALTernate <ch></ch>	758

[SENSe:]POWer:ACHannel:SBLock<sb>:RFBWidth <Bandwidth>

This command defines the bandwidth of the individual MSR sub block. Note that sub block ranges also affect the position of the adjacent gap channels (CACLR).

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

Parameters:

<Bandwidth> Bandwidth in Hz

Manual operation: See "RF Bandwidth" on page 171

[SENSe:] POWer: A CHannel: SBLock < sb>: TECHnology[:CHANnel < ch>]

<Standard>

This command defines the technology used for transmission by the specified MSR Tx channel.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

<ch> 1 to 18

Tx channel number

Configuring and Performing Measurements

Parameters:

<Standard> GSM | WCDMa | LTE 1 40 | LTE 3 00 | LTE 5 00 |

LTE_10_00 | LTE_15_00 | LTE_20_00 | USER

Technology used for transmission

GSM

Transmission according to GSM standard

WCDMa

Transmission according to W-CDMA standard

LTE_1_40 | LTE_3_00 | LTE_5_00 | LTE_10_00 | LTE_15_00 |

LTE 20 00

Transmission according to LTE standard for different channel

bandwidths

USER

User-defined transmission; no automatic preconfiguration possi-

ble

Manual operation: See "Technology Used for Transmission" on page 171

[SENSe:]POWer:ACHannel:SBLock<sb>:TXCHannel:COUNt <Number>

This command defines the number of transmission channels the specific sub block contains.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

Parameters:

<Number> Range: 1 to 18

*RST: 1

Manual operation: See "Number of Tx Channels (Tx Count)" on page 171

[SENSe:]POWer:ACHannel:SPACing:UACHannel <Spacing>

This command defines the distance from the transmission channel to the upper adjacent channel.

For MSR signals, this command defines the distance from the CF of the last Tx channel in the last sub block to the upper adjacent channel in asymmetrical configurations. To configure the spacing for the lower adjacent channel use the [SENSe:]POWer:

ACHannel:SPACing[:ACHannel] command.

Parameters:

<Spacing> Range: 100 Hz to 2000 MHz

*RST: 14 kHz

Usage: SCPI confirmed

Configuring and Performing Measurements

Manual operation: See "Adjacent Channel Spacings" on page 174

[SENSe:]POWer:ACHannel:SPACing:UALTernate<ch> <Spacing>

This command defines the distance from transmission channel to the upper alternate channels.

For MSR signals, this command defines the distance from the CF of the last Tx channel in the last sub block to the upper alternate channel in asymmetrical configurations. To configure the spacing for the lower alternate channel, use the <code>[SENSe:]POWer: ACHannel:SPACing:ALTernate<ch> command</code>.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Spacing> Range: 100 Hz to 2000 MHz

*RST: 40 kHz (ALT1), 60 kHz (ALT2), 80 kHz (ALT3), ...

Manual operation: See "Adjacent Channel Spacings" on page 174

[SENSe:]POWer:ACHannel:SSETup <State>

This command defines whether adjacent channels are defined symmetrically or not.

For more information see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Parameters:

<State> ON | OFF | 1 | 0

ON | 1

The upper and lower adjacent and alternate channels are defined symmetrically. This is the default behaviour and corresponds to the behavior in firmware versions before 2.10.

OFF | 0

The upper and lower channels can be configured differently.

*RST: ON

Manual operation: See "Symmetrical Adjacent Setup" on page 169

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:UACHannel <Bandwidth>

This command defines the channel bandwidth of the upper adjacent channel in asymmetrical configurations.

The adjacent channel is the first pair of channels next to the transmission channels. To configure the bandwidth for the lower adjacent channel, use the [SENSe:]POWer: ACHannel:BANDwidth:ACHannel command.

Steep-edged channel filters are available for fast ACLR measurements.

Configuring and Performing Measurements

Parameters:

<Bandwidth> Range: 100 Hz to 1000 MHz

*RST: 14 kHz

Manual operation: See "Adjacent Channel Bandwidths" on page 174

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:UALTernate<ch> <Bandwidth>

This command defines the channel bandwidth of the upper alternate channels in asymmetrical configurations. To configure the bandwidth for the lower alternate channel, use the [SENSe:]POWer:ACHannel:BANDwidth:ALTernate<ch> command.

Steep-edged channel filters are available for fast ACLR measurements.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Bandwidth> Range: 100 Hz to 1000 MHz

*RST: 14 kHz

Manual operation: See "Adjacent Channel Bandwidths" on page 174

[SENSe:]POWer:ACHannel:FILTer:ALPHa:UACHannel <Alpha>

This command defines the roll-off factor for the upper adjacent channel weighting filter for asymmetrical MSR signals. To configure the factor for the upper adjacent channel, use the [SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel command.

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate<ch> <Alpha>

This command defines the roll-off factor for the upper alternate channels' weighting filter for asymmetrical MSR signals. To configure the factor for the upper alternate channels, use the [SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate<ch> command.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Configuring and Performing Measurements

Manual operation: See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer[:STATe]:UACHannel <State>

This command turns the weighting filter for the upper adjacent channel on and off for asymmetrical MSR signals. To configure the factor for the lower adjacent channel, use the [SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel command.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 174

[SENSe:]POWer:ACHannel:FILTer[:STATe]:UALTernate<ch> <State>

This command turns the weighting filter for the upper alternate channels on and off for asymmetrical MSR signals. To configure the factor for the lower alternate channels, use the [SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate<ch> command.

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 174

MSR Gap Channel Setup

The functions for manual operation are described in Chapter 5.3.5.4, "MSR Gap Channel Setup", on page 175.

CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ABSolute</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ABSolute:STATe</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative]</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative:]STATe</gap></k></n>	760
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative]</gap></k></n>	760
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative:]STATe</gap></k></n>	760
[SENSe:]POWer:ACHannel:AGCHannels	761
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:GAP <gap></gap>	761
[SENSe:]POWer:ACHannel:FILTer:ALPHa:GAP <gap></gap>	762
[SENSe:]POWer:ACHannel:FILTer:STATe:GAP <gap></gap>	762
[SENSe:]POWer:ACHannel:GAP <gap>:MSIZe</gap>	762
[SENSe:]POWer:ACHannel:SPACing:GAP <gap></gap>	763

Configuring and Performing Measurements

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ABSolute <Limit>, <Reserved>

This command defines the absolute limit of the specified gap (CACLR) channel.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap (CACLR) channel number

Parameters:

<Limit> Defines the absolute limit of the specified gap channel in dBm.

<Reserved> Ignored.

Example: CALC:LIM:ACP:GAP2:ABS 44.2dBm,0

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ABSolute:STATe <State>

This command turns the absolute limit check for the specified gap (CACLR) channel on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap (CACLR) channel number

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative] <Limit>

This command defines the relative limit for the ACLR power in the specified gap channel. The reference value for the relative limit is the measured channel power.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap channel number

Configuring and Performing Measurements

Parameters:

<Limit> Defines the relative limit for the ACLR power in the specified gap

channel in dB.

Example: CALC:LIM:ACP:GAP1:ACLR:REL 3dB

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative:]STATe <State>

This command turns the relative limit check for the ACLR power in the specified gap channel on and off.

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap channel number

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP:GAP1:ACLR:REL:STAT ON

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative] <Limit>

This command defines the relative limit for the CACLR power in the specified gap channel. The reference value for the relative limit is the measured channel power.

If you have defined an absolute limit as well as a relative limit, the R&S FSW uses the lower value for the limit check.

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap channel number

Parameters:

<Limit> Defines the relative limit of the specified gap channel in dB.

Example: CALC:LIM:ACP:GAP1:REL 3dB

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative:]STATe <State>

This command turns the relative limit check for the CACLR power in the specified gap channel on and off.

Configuring and Performing Measurements

You have to activate the general ACLR limit check before using this command with CALCulate<n>:LIMit<k>:ACPower[:STATe].

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

Gap channel number

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ACP:GAP1:REL:STAT ON

Manual operation: See "Limit Checking" on page 177

[SENSe:]POWer:ACHannel:AGCHannels <State>

This command activates or deactivates gap channels in an MSR signal.

For more information see Chapter 5.3.3.4, "Measurement on Multi-Standard Radio (MSR) Signals", on page 149.

Parameters:

<State> ON | OFF | 1 | 0

ON | 1

The gap channels are displayed and channel power results are

calculated and displayed in the Result Summary.

OFF | 0

The gap channels are not displayed in the diagram and channel power results are not calculated nor displayed in the Result

Summary.

*RST: ON

Manual operation: See "Activate Gaps" on page 176

[SENSe:]POWer:ACHannel:BANDwidth|BWIDth:GAP<gap> <Bandwidth>

This command defines the bandwidth of the specified MSR gap (CACLR) channel.

This command is for MSR signals only (see CALCulate<n>:MARKer<m>: FUNCtion:POWer:PRESet on page 735).

Suffix:

<gap> 1 | 2

Gap (CACLR) channel number

Parameters:

<Bandwidth> numeric value in Hz

*RST: 3.84 MHz

Manual operation: See "Gap Channel Bandwidths" on page 177

Configuring and Performing Measurements

[SENSe:]POWer:ACHannel:FILTer:ALPHa:GAP<gap> < Alpha>

This command defines the roll-off factor for the specified gap (CACLR) channel's weighting filter.

Suffix:

<gap> 1 | 2

Gap (CACLR) channel number

Parameters:

<Alpha> Roll-off factor

Range: 0 to 1 *RST: 0.22

Manual operation: See "Weighting Filters" on page 177

[SENSe:]POWer:ACHannel:FILTer:STATe:GAP<gap> <State>

This command turns the weighting filter for the specified gap (CACLR) channel on and off.

Suffix:

<gap> 1 | 2

Gap (CACLR) channel number

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Weighting Filters" on page 177

[SENSe:]POWer:ACHannel:GAP<gap>:MSIZe <Bandwidth>

If the gap between the sub blocks does not exceed the specified bandwidth, the gap channels are not displayed in the diagram, and the gap channel results are not calculated in the result summary.

Suffix:

<gap> 1 | 2

Gap channel number

Parameters:

<Bandwidth> numeric value in Hz

*RST: gap1: 5 MHz; gap2: 10 MHz

Example: POW:ACH:GAP2:MSIZ 5MHZ

Usage: SCPI confirmed

Manual operation: See "Minimum gap size to show gap 1/2" on page 176

Configuring and Performing Measurements

[SENSe:]POWer:ACHannel:SPACing:GAP<gap> <Spacing>

This command defines the distance from sub block to the specified gap channel.

The channels in the upper gap are identical to those in the lower gap. Thus, in the R&S FSW MSR ACLR measurement, only 2 gap channels are configured.

The spacing for gap channels is defined in relation to the outer edges of the surrounding sub blocks, i.e.

Spacing = [CF of the gap channel] - [left sub block center] + ([RF bandwidth of left sub block] /2)

(See also Figure 5-24 and Figure 5-25.)

Suffix:

<gap> 1 | 2

Gap channel number

Parameters:

<Spacing> numeric value in Hz

*RST: 2.5 MHz

Usage: SCPI confirmed

Manual operation: See "Gap Channel Spacings" on page 177

MSR Channel Names

The functions for manual operation are described in Chapter 5.3.5.5, "MSR Channel Names", on page 178.

[SENSe:]POWer:ACHannel:NAME:UACHannel	763
[SENSe:]POWer:ACHannel:NAME:UALTernate <ch></ch>	763
[SENSe:]POWer:ACHannel:SBLock <sb>:NAME[:CHANnel<ch>]</ch></sb>	764

[SENSe:]POWer:ACHannel:NAME:UACHannel <Name>

This command defines the name for the upper adjacent channel in asymmetrical MSR channel definitions. To define the name for the lower adjacent channel use the [SENSe:]POWer:ACHannel:NAME:ACHannel command.

Parameters:

<Name> String containing the name of the channel

*RST: ADJ

[SENSe:]POWer:ACHannel:NAME:UALTernate<ch> < Name>

This command defines the name for the specified upper alternate channel in asymmetrical MSR channel definitions. To define the name for the lower adjacent channels use the [SENSe:]POWer:ACHannel:NAME:ALTernate<ch> command.

Configuring and Performing Measurements

Suffix:

<ch> 1 to 11

Alternate channel number

Parameters:

<Name> String containing the name of the channel

*RST: ALT<1...11>

[SENSe:]POWer:ACHannel:SBLock<sb>:NAME[:CHANnel<ch>] <Name>

This command defines the name of the specified MSR Tx channel.

This command is for MSR signals only.

Suffix:

<sb> 1 | 2 | 3 | 4 | 5

sub block number

<ch> 1 to 18

Tx channel number

Parameters:

<Name> String containing the name of the channel

Example: POW:ACH:SBL2:NAME:CHAN2 'B:WCDMA'

Manual operation: See "Tx Channel Definition" on page 171

11.5.3.8 Performing an ACLR Measurement

The following commands are required to perform an ACLR measurement:

```
CALC:MARK:FUNC:POW:SEL ACP, see CALCulate<n>:MARKer<m>:FUNCtion:
POWer:SELect on page 732
```

```
CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733
```

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.3.9 Analyzing Measurement Results

The following commands analyze and retrieve measurement results for ACLR measurements.

Useful commands for channel power measurements described elsewhere

- CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730
- TRACe<n>[:DATA] on page 980

Configuring and Performing Measurements

Remote commands exclusive to channel power measurements

CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:RESult?</gap></k></n>	. 765
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ</m></n>	. 765
[SENSe:]POWer:ACHannel:MODE	766

CALCulate<n>:LIMit<k>:ACPower:GAP<gap>:RESult?

This command queries the state of the limit check for *all* gap (CACLR) channels in an MSR ACLR measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

The results of the power limit checks are also indicated in the STAT: QUES: ACPL status registry (see "STATus:QUEStionable: ACPL imit Register" on page 664).

Suffix:

<n>, <k> irrelevant

<gap> 1 | 2

irrelevant

Return values:

<LowerGap1>, The command returns the results for the four gap channels for

<UpperGap1>, each gap (max. 4).

<LowerGap2>, PASSED

<UpperGap2> Limit check has passed.

FAIL

Limit check has failed.

NONE

No results available, e.g. because limit checking was deactiva-

ted

Example: INIT: IMM; *WAI;

CALC:LIM:ACP:GAP2:RES?

PASSED, PASSED,

Usage: Query only

Manual operation: See "Limit Checking" on page 177

CALCulate<n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ <State>

This command selects the way the R&S FSW returns results for power measurements.

You can query results with CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>: RESult?.

Suffix:

<n> Window

Configuring and Performing Measurements

<m> Marker

Parameters:

<State> ON | OFF

ON

Channel power density in dBm/Hz

OFF

Channel power in dBm *RST: OFF

Example: CALC:MARK:FUNC:POW:RES:PHZ ON

Output of results referred to the channel bandwidth.

Manual operation: See "Channel Power Levels and Density (Power Unit)"

on page 158

[SENSe:]POWer:ACHannel:MODE < Mode>

This command selects the way the R&S FSW displays the power of adjacent channels.

You need at least one adjacent channel for the command to work.

Parameters:

<Mode> ABSolute

Shows the absolute power of all channels

RELative

Shows the power of adjacent and alternate channels in relation

to the transmission channel

*RST: RELative

Manual operation: See "Absolute and Relative Values (ACLR Mode)" on page 158

11.5.3.10 Programming Examples for Channel Power Measurements

The following programming examples are meant to demonstrate the most important commands to perform channel power measurements in a remote environment.

- Example: Configuring and Performing an ACLR Measurement......766
- Example: Configuring and Performing an MSR ACLR Measurement......768

Example: Configuring and Performing an ACLR Measurement

In this example we will configure and perform an adjacent-channel power measurement. Note that this example is primarily meant to demonstrate the remote control commands, it does not necessarily reflect a useful measurement task. For most common measurement standards, the R&S FSW performs the measurement optimally with the predefined settings, without further configuration.

```
//----Preparing the measurement-----*RST
//Resets the instrument
INIT:CONT OFF
```

Configuring and Performing Measurements

```
//Selects single sweep mode.
CALC:MARK:FUNC:POW:SEL ACP
//Activates adjacent-channel power measurement.
CALC:MARK:FUNC:POW:PRES GSM
//Selects the user standard "GSM"
//----Setting Up Channels-----
POW:ACH:TXCH:COUN 1
//Creates one transmission channel.
POW:ACH:NAME:CHAN1 'TX Channel'
//Names the first transmission channel 'TX Channel'.
POW:ACH:ACP 2
//Creates two adjacent channels - one adjacent channel and one alternate channel.
POW:ACH:NAME:ACH 'ABC'
//Names the adjacent channel 'ABC'
POW: ACH: NAME: ALT1 'XYZ'
//Names the first alternate channel 'XYZ'.
POW:ACH:BWID:CHAN1 30kHz
//Defines a bandwidth of 30 kHz for the transmission channel.
POW:ACH:BWID:ACH 30kHz
//Defines a bandwidth of 30 kHz for the adjacent channel.
POW:ACH:BWID:ALT1 30kHz
//Defines a bandwidth of 30 kHz for the first alternate channel.
POW:ACH:SPAC 33kHz
//Defines a distance of 33 kHz from the center of the transmission channel to the
//center of the adjacent channel.
//Also adjusts the distance to the alternate channels (66 kHz).
POW:ACH:SPAC:ALT1 100kHz
//Defines a distance of 100 kHz from the center of the transmission channel to the
//center of the first alternate channel.
//-----Selecting a Reference Channel--
POW:ACH:MODE REL
//Selects relative display of the channel power.
POW:ACH:REF:TXCH:MAN 1
//Defines transmission channel 1 as the reference channel.
//----Saving the settings as a user standard-----
CALC:MARK:FUNC:POW:STAN:SAVE 'my_aclr_standard'
//Saves the user standard with the name "my aclr standard".
//Weighting filters can only be defined for user-defined standards.
//-----Defining Weighting Filters----
POW:ACH:FILT:ALPH:CHAN1 0.35
//Defines a roll-off factor of 0.35 for the weighting filter of the first
//transmission channel.
POW:ACH:FILT:CHAN1 ON
//Turns the weighting filter for the first transmission channel on.
POW:ACH:FILT:ALPH:ACH 0.35
```

Configuring and Performing Measurements

```
//Defines a roll-off factor of 0.35 for the weighting filter of the adjacent
//channel.
POW:ACH:FILT:ACH ON
//Turns the weighting filter for the adjacent channel on.
POW:ACH:FILT:ALPH:ALT1 0.35
//Defines a roll-off factor of 0.35 for the weighting filter of the first
//alternate channel.
POW:ACH:FILT:ALT1 ON
//Turns the weighting filter for the first alternate channel on.
//-----Working with Limits-----
CALC:LIM:ACP:ACH 30DB,30DB
//Defines a relative limit of 30 dB below the power of the reference channel
//for both adjacent channels.
CALC:LIM:ACP:ALT1 25DB, 25DB
//Defines a relative limit of 25 dB below the power of the reference channel
//for the first alternate channels.
CALC:LIM:ACP:ACH:ABS -35DBM, -35DBM
//Defines an absolute limit of -35 dBm for both adjacent channels.
CALC: LIM: ACP ON
//Turns the ACLR limit check on.
CALC:LIM:ACP:ACH:STAT ON
//Turns the relative limit check for adjacent channels on.
CALC:LIM:ACP:ACH:ABS:STAT ON
//Turns the absolute limit check for adjacent channels on.
CALC:LIM:ACP:ALT1:ABS:STAT ON
//Turns the absolute limit check for the first alternate channel on.
//----Performing the Measurement----
POW:ACH:PRES ACP; *WAI
//Determines the ideal ACLR measurement configuration.
POW: ACH: PRES: RLEV; *WAI
//Determines the ideal reference level for the measurement.
INIT; *WAI
//Initiates a new measurement and waits until the sweep has finished.
//-----Limit Check-----
CALC:LIM:ACP:ACH:RES?
//Queries the results of the limit check for the adjacent channels.
CALC:LIM:ACP:ALT1:RES?
//Queries the results of the limit check for the first alternate channels.
//-----Retrieving Results-----
CALC:MARK:FUNC:POW:RES? ACP
//Returns the results for the ACLR measurement.
```

Example: Configuring and Performing an MSR ACLR Measurement

This example demonstrates how to configure and perform an ACLR measurement on a multi-standard radio signal in a remote environment.

Configuring and Performing Measurements

```
//----Preparing the instrument -----
//Reset the instrument
*RST
// Select ACLR measurement
:CALCulate:MARKer:FUNCtion:POWer:SELect ACPower
// Select MSR Standard :CALCulate:MARKer:FUNCtion:POWer:PRESet MSR
//Configure general measurement settings
:SENSe:FREQuency:CENTer 1.25GHz
:SENSe:FREQuency:SPAN 62.0MHz
:SENSe:POWer:ACHannel:SBCount 3
//---- Configuring Sub block A
:SENSe:POWer:ACHannel:SBLock1:TXCHannel:COUNt 3
:SENSe:POWer:ACHannel:SBLock1:FREQuency:CENTer 1.230GHZ
:SENSe:POWer:ACHannel:SBLock1:RFBWidth 12MHZ
:SENSe:POWer:ACHannel:SBLock1:CENTer:CHANnel1 1.226GHZ
:SENSe:POWer:ACHannel:SBLock1:CENTer:CHANnel2 1.230GHZ
:SENSe:POWer:ACHannel:SBLock1:CENTer:CHANnel3 1.234GHZ
:SENSe:POWer:ACHannel:SBLock1:TECHnology:CHANnel1 WCDMA
:SENSe:POWer:ACHannel:SBLock1:TECHnology:CHANnel2 WCDMA
:SENSe:POWer:ACHannel:SBLock1:TECHnology:CHANnel3 GSM
:SENSe:POWer:ACHannel:SBLock1:BANDwidth:CHANnel1 2.5MHZ
:SENSe:POWer:ACHannel:SBLock1:BANDwidth:CHANnel2 2.5MHZ
:SENSe:POWer:ACHannel:SBLock1:BANDwidth:CHANnel3 2.5MHZ
//---- Configuring Sub block B
:SENSe:POWer:ACHannel:SBLock2:TXCHannel:COUNt 1
:SENSe:POWer:ACHannel:SBLock2:FREQuency:CENTer 1.255GHZ
:SENSe:POWer:ACHannel:SBLock2:RFBWidth 4MHZ
:SENSe:POWer:ACHannel:SBLock2:CENTer:CHANnel1 1.255GHZ
:SENSe:POWer:ACHannel:SBLock2:TECHnology:CHANnel1 LTE_1_40
:SENSe:POWer:ACHannel:SBLock2:BANDwidth:CHANnell 3.25MHZ
//---- Configuring Sub block C
:SENSe:POWer:ACHannel:SBLock3:TXCHannel:COUNt 2
:SENSe:POWer:ACHannel:SBLock3:FREQuency:CENTer 1.268GHZ
:SENSe:POWer:ACHannel:SBLock3:RFBWidth 8MHZ
```

Configuring and Performing Measurements

```
:SENSe:POWer:ACHannel:SBLock3:CENTer:CHANnel1 1.266GHZ
:SENSe:POWer:ACHannel:SBLock3:CENTer:CHANnel2 1.270GHZ
:SENSe:POWer:ACHannel:SBLock3:BANDwidth:CHANnel1 2.75MHZ
:SENSe:POWer:ACHannel:SBLock3:BANDwidth:CHANnel2 2.75MHZ
//---- Configuring ADJ channels
:SENSe:POWer:ACHannel:BANDwidth:ACHannel 1.60MHZ
:SENSe:POWer:ACHannel:BANDwidth:ALTernate1 1.60MHZ
:SENSe:POWer:ACHannel:SPACing:ACHannel 3MHZ
:SENSe:POWer:ACHannel:SPACing:ALTernate1 5MHZ
//---- Configuring gap (CACLR) channels
:SENSe:POWer:ACHannel:SPACing:GAP1 2.0MHZ
:SENSe:POWer:ACHannel:SPACing:GAP2 5.0MHZ
:SENSe:POWer:ACHannel:BANDwidth:GAP1 2.0MHZ
:SENSe:POWer:ACHannel:BANDwidth:GAP2 2.0MHZ
//----Performing the Measurement----
//Select single sweep mode.
INIT: CONT OFF
//Initiate a new measurement and wait until the sweep has finished.
INIT; *WAI
//----Retrieving Results-----
//Return the results for the ACLR measurement.
CALC:MARK:FUNC:POW:RES? MCAC
//Results:
//Transmission channels in sub block A
//-13.2346727385,-13.2346723793,-13.2390131759,
//Transmission channels in sub block B
//-17.0863336597,
//Transmission channels in sub block C
//-13.2390127767,-13.2390134744,
//Totals for each sub block
//-8.4649064021,-17.0863336597,-10.2287131689,
//Adjacent channels
//-67.9740721019,-67.9740728014,-0.00434041734,-0.00434041734,
//CACLR channels
//-0.52933512766,-64.9990115835,-64.5012521492,-0.33507330922,
//-64.4924159646,-0.52932552499,-0.52932552495,-64.4934163414
```

Configuring and Performing Measurements

11.5.4 Measuring the Carrier-to-Noise Ratio

The following commands are necessary to perform carrier-to-noise measurements.

```
    CALC:MARK:FUNC:POW:SEL CN | CN0, See CALCulate<n>:MARKer<m>:
FUNCtion:POWer:SELect
```

- CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe]
- CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult?
- [SENSe:] POWer: ACHannel: BANDwidth [:CHANnel < ch >]
- [SENSe:]POWer:ACHannel:PRESet

Programming example: Measuring the carrier-to-noise ratio

This programming example demonstrates how to perform a Carrier-to-noise measurement in a remote environment.

```
//----Preparing the measurement-----
*RST
//Reset the instrument
FREQ:CENT 800MHz
//Sets the center frequency to the carrier frequency of 800 MHz.
CALC:MARK:FUNC:POW:SEL CN
//Activates carrier-to-noise ratio measurement.
POW:ACH:PRES CN
//Optimizes the instrument settings according to the channel bandwidth.
//Determines the ideal reference level for the measurement.
//----Performing the Measurement----
INIT:CONT OFF
//Selects single sweep mode.
INIT: *WAI
//Initiates a new measurement and waits until the sweep has finished.
// Now turn off the carrier signal and repeat the measurement:
INIT; *WAI
//Initiates a new measurement and waits until the sweep has finished.
//-----Retrieving Results-----
CALC:MARK:FUNC:POW:RES? CN
//Returns the carrier-to-noise ratio.
```

11.5.5 Measuring the Occupied Bandwidth

All remote control commands specific to occupied bandwidth measurements are described here.

Configuring and Performing Measurements

11.5.5.1 Configuring the Measurement

The following commands configure measurements of the occupied bandwidth.

Useful commands for occupied bandwidth measurements described elsewhere

Configuring the channel:

- [SENSe:] POWer:ACHannel:BANDwidth[:CHANnel<ch>]
- [SENSe:] POWer: ACHannel: PRESet
- [SENSe:]POWer:ACHannel:PRESet:RLEVel

Defining search limits:

- CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] on page 994
- CALCulate<n>:MARKer<m>:X:SLIMits:LEFT on page 995
- CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT on page 995

Performing the measurement:

- CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 732
- CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733

Retrieving results:

- CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730
- CALCulate<n>:MARKer<m>:FUNCtion:POWer:SELect on page 732
- CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe] on page 733

Remote commands exclusive to occupied bandwidth measurements

[SENSe:]POWer:BANDwidth|BWIDth......772

[SENSe:]POWer:BANDwidth|BWIDth < Percentage>

This command selects the percentage of the total power that defines the occupied bandwidth.

Parameters:

<Percentage> Range: 10 PCT to 99.9 PCT

*RST: 99 PCT

Example: POW:BWID 95PCT

Manual operation: See "% Power Bandwidth" on page 198

11.5.5.2 Programming Example: OBW Measurement

This programming example demonstrates the measurement example described in Chapter 5.5.5, "Measurement Example", on page 200 in a remote environment.

```
//-----Configuring the Measurement-----*RST
//Resets the instrument
```

Configuring and Performing Measurements

```
FREQ:CENT 800MHz
//Sets the center frequency to 800 MHz.
DISP:TRAC:Y:RLEV -10dBm
//{\rm Sets} the reference level to -10 dBm.
CALC:MARK:FUNC:POW:SEL OBW
//Activates occupied bandwidth measurement.
POW:BWID 99PCT
//Sets the percentage of power to 99%.
POW:ACH:BAND 21kHz
//Sets the channel bandwidth to 21 kHz.
POW: ACH: PRES OBW
//Optimizes the instrument settings according to the channel bandwidth.
POW: ACH: PRES: RLEV
//Determines the ideal reference level for the measurement.
//Sets the trace detector to positive peak.
//----Performing the Measurement----
INIT: CONT OFF
//Selects single sweep mode.
TNTT: *WAT
//Initiates a new measurement and waits until the sweep has finished.
//-----Retrieving Results-----
CALC:MARK:FUNC:POW:RES? OBW
//Returns the occupied bandwidth.
```

11.5.6 Measuring the Spectrum Emission Mask

All remote control commands specific to spectrum emission mask measurements are described here.

See also Chapter 11.5.2, "Configuring Power Measurements", on page 729.

Configuring and Performing Measurements

11.5.6.1 Managing Measurement Configurations

The following commands control measurement configurations for SEM measurements.

CALCulate <n>:LIMit<k>:ESPectrum<sb>:RESTore</sb></k></n>	774
[SENSe:]ESPectrum <sb>:PRESet[:STANdard]</sb>	774
[SENSe:]ESPectrum <sb>:PRESet:RESTore</sb>	774
[SENSe:]ESPectrum <sb>:PRESet:STORe</sb>	775

CALCulate<n>:LIMit<k>:ESPectrum<sb>:RESTore

This command restores the predefined limit lines for the selected Spectrum Emission Mask standard.

All modifications made to the predefined limit lines are lost and the factory-set values are restored.

Suffix:

<n>, <k>, <sb> irrelevant

Example: CALC:LIM:ESP:REST

Resets the limit lines for the current Spectrum Emission Mask

standard to the default setting.

[SENSe:]ESPectrum<sb>:PRESet[:STANdard] <Standard>

This command loads a measurement configuration.

Standard definitions are stored in an xml file. The default directory for SEM standards is $C: \r_s\$ instr\sem_std.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Standard> String containing the file name.

If you have stored the file in a subdirectory of the directory mentioned above, you have to include the relative path to the file.

Return values:

<Standard> The query returns the name of the currently loaded standard.

Manual operation: See "Standard / MSR Settings" on page 223

See "Load Standard" on page 230

[SENSe:]ESPectrum<sb>:PRESet:RESTore

This command restores the default configurations of predefined SEM standards.

Note that the command will overwrite customized standards that have the same name as predefined standards.

Configuring and Performing Measurements

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Usage: Event

Manual operation: See "Restore Standard Files" on page 231

[SENSe:]ESPectrum<sb>:PRESet:STORe <Standard>

This command saves the current SEM measurement configuration.

Standard definitions are stored in an xml file. The default directory for SEM standards is $C:\r$ s\instr\sem std.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Standard> String containing the file name.

You can save the file in a subdirectory of the directory mentioned above. In that case, you have to include the relative path

to the file.

Manual operation: See "Save Standard" on page 231

11.5.6.2 Controlling the Measurement

The following commands control the measurement itself.

NITiate <n>:ESPectrum</n>	ate <n>:ESPectrum</n>	INITi
SENSe:]SWEep:MODE	NSe:]SWEep:MODE	[SEN

INITiate<n>:ESPectrum

This command initiates a Spectrum Emission Mask measurement.

Suffix:

<n> irrelevant
Usage: Event

[SENSe:]SWEep:MODE < Mode>

This command selects the spurious emission and spectrum emission mask measurements.

You can select other measurements with

• CALCulate<n>:MARKer<m>:FUNCtion:POWer[:STATe]

Configuring and Performing Measurements

Parameters:

<Mode> AUTO

Turns on basic spectrum measurements.

ESPectrum

Turns on spectrum emission mask measurements.

LIST

Turns on spurious emission measurements.

*RST: AUTO

Usage: SCPI confirmed

Manual operation: See "Spectrum Emission Mask" on page 117

See "Spurious Emissions" on page 117

11.5.6.3 Configuring a Multi-SEM Measurement

In the Spectrum application only, spectrum emissions can be measured for multiple sub blocks of channels (see Chapter 5.6.4.5, "SEM with Multiple Sub Blocks ("Multi-SEM")", on page 212). Up to three sub blocks (with two gaps) can be defined. For each sub block, the familiar configuration settings concerning ranges, limit lines and MSR can be defined in individual tabs (select the sub block using the <sb> suffix in the corresponding commands). In addition, settings on the sub blocks themselves must be configured.

Useful commands for multi-SEM measurements described elsewhere:

[SENSe:]ESPectrum<sb>:RANGe<range>:MLCalc on page 789

Remote commands exclusive to multi-SEM measurements

776	[SENSe:]ESPectrum <sb>:SBCENTER</sb>
776	[SENSe:]ESPectrum <sb>:SCENter</sb>
777	[SENSe:]ESPectrum <sb>:SBCOUNT</sb>
777	[SENSe:]ESPectrum <sb>:SCOunt</sb>

[SENSe:]ESPectrum<sb>:SBCENTER <Frequency> [SENSe:]ESPectrum<sb>:SCENter <Frequency>

This command defines the center frequency of the selected sub block in a Multi-SEM measurement.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Return values:

<Frequency> Frequency within the currently defined global span (see

[SENSe:] FREQuency: SPAN on page 884 and [SENSe:

] FREQuency: CENTer on page 882).

Range: 1 to 3 *RST: 1

Example: ESP1:SCEN 1GHZ

Configuring and Performing Measurements

Manual operation: See "Sub Block Center Frequency" on page 222

[SENSe:]ESPectrum<sb>:SBCOUNT <Sub blocks>
[SENSe:]ESPectrum<sb>:SCOunt <Sub blocks>

This command defines the number of sub blocks in the SEM measurement. (<sb> is irrelevant)

Return values:

<Sub blocks> Number of sub blocks in the SEM measurement.

Range: 1 to 3 *RST: 1

Example: ESP:SCO 2

Manual operation: See "Sub Block Count" on page 222

11.5.6.4 Configuring a Sweep List

The following commands define a sweep list for SEM measurements.

The sweep list cannot be configured using remote commands during an on-going sweep operation.

See also:

• CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:LIMit[:STATe] on page 796

```
[SENSe:]ESPectrum<sb>:RANGe<range>[:FREQuency]:STOP.......781
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:ABSolute:STOP......784
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt......785
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt:FUNCtion........786
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP:ABSolute...........787
[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP:FUNCtion..........788
```

Configuring and Performing Measurements

[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:STATe</pclass></range></sb>	788
[SENSe:]ESPectrum <sb>:RANGe<range>:POINts:MIN[:VALue]</range></sb>	789
[SENSe:]ESPectrum <sb>:RANGe<range>:MLCalc</range></sb>	789
[SENSe:]ESPectrum <sb>:RANGe<range>:RLEVel</range></sb>	
[SENSe:]ESPectrum <sb>:RANGe<range>:SWEep:TIME</range></sb>	790
[SENSe:]ESPectrum <sb>:RANGe<range>:SWEep:TIME:AUTO</range></sb>	
[SENSe:]ESPectrum <sb>:RANGe<range>:TRANsducer</range></sb>	

[SENSe:]ESPectrum<sb>:HighSPeed <State>

This command turns high speed mode for SEM measurements on and off.

For more information including restrictions see Chapter 5.6.4.3, "Fast SEM Measurements", on page 210.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<State> ON | OFF

*RST: OFF

Example: ESP:HSP ON

Manual operation: See "Fast SEM" on page 218

[SENSe:]ESPectrum<sb>:RANGe<range>:BANDwidth[:RESolution] <RBW>

This command defines the resolution bandwidth for a SEM range.

In case of high speed measurements, the resolution bandwidth has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Selects the measurement range.

Parameters:

<RBW> Resolution bandwidth.

Refer to the data sheet for available resolution bandwidths.

*RST: 30.0 kHz Default unit: Hz

Manual operation: See "RBW" on page 218

[SENSe:]ESPectrum<sb>:RANGe<range>:BANDwidth:VIDeo <VBW>

This command defines the video bandwidth for a SEM range.

Configuring and Performing Measurements

In case of high speed measurements, the video bandwidth has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Selects the measurement range.

Parameters:

<VBW> Video bandwidth.

Refer to the data sheet for available video bandwidths.

*RST: 10.0 MHz Default unit: Hz

Manual operation: See "VBW" on page 218

[SENSe:]ESPectrum<sb>:RANGe<range>:COUNt? <Ranges>

This command queries the number of ranges in the sweep list (<range> is irrelevant).

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Return values:

<Ranges> Number of ranges in the sweep list.

Usage: Query only

[SENSe:]ESPectrum<sb>:RANGe<range>:DELete

This command removes a range from the sweep list.

Note that

you cannot delete the reference range

a minimum of three ranges is mandatory.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Selects the measurement range.

Usage: Event

Manual operation: See "Delete Range" on page 221

[SENSe:]ESPectrum<sb>:RANGe<range>:FILTer:TYPE <FilterType>

This command selects the filter type for an SEM range.

Configuring and Performing Measurements

In case of high speed measurements, the filter has to be identical for all ranges.

The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Selects the measurement range.

Parameters:

<FilterType> NORMal

Gaussian filters

CFILter channel filters

RRC RRC filters CISPr | PULSe

CISPR (6 dB) - requires EMI (R&S FSW-K54) option

Return value for query is always PULS.

MIL

MIL Std (6 dB) - requires EMI (R&S FSW-K54) option

P5

5 Pole filters

*RST: NORM

Refer to the datasheet for available filter bandwidths.

Manual operation: See "Filter Type" on page 218

[SENSe:]ESPectrum<sb>:RANGe<range>[:FREQuency]:STARt <Frequency>

This command defines the start frequency of a SEM range.

Make sure to set an appropriate span. If you set a span that is

- smaller than the span the SEM sweep list covers, the R&S FSW will not measure the ranges that are outside the span - results may be invalid.
- greater than the span the SEM sweep list covers, the R&S FSW will adjust the start frequency of the first SEM range and the stop frequency of the last SEM range to the span

For more information see Chapter 5.6.4.1, "Ranges and Range Settings", on page 206.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Configuring and Performing Measurements

Parameters:

<Frequency> Numeric value. Note that the minimum frequency range of a

SEM range is 20 Hz.

*RST: -12.75 MHz (range 1), -2.515 MHz (range 2), 2.515

MHz (range 3)

Default unit: Hz

Manual operation: See "Range Start / Range Stop" on page 217

[SENSe:]ESPectrum<sb>:RANGe<range>[:FREQuency]:STOP <Frequency>

This command defines the stop frequency of a SEM range.

Make sure to set an appropriate span. If you set a span that is

• smaller than the span the SEM sweep list covers, the R&S FSW will not measure the ranges that are outside the span - results may be invalid.

 greater than the span the SEM sweep list covers, the R&S FSW will adjust the start frequency of the first SEM range and the stop frequency of the last SEM range to the span

For more information see Chapter 5.6.4.1, "Ranges and Range Settings", on page 206.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...30

Selects the measurement range.

Parameters:

<Frequency> Numeric value.

*RST: -2.52 MHz (range 1), 2.52 MHz (range 2), 250.0

MHz (range 3)

Default unit: Hz

Manual operation: See "Range Start / Range Stop" on page 217

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:ATTenuation < Attenuation>

This command defines the input attenuation for a SEM range.

In case of high speed measurements, the input attenuation has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1...20

Configuring and Performing Measurements

Parameters:

<Attenuation> Numeric value.

Refer to the data sheet for the attenuation range.

*RST: 10 dB Default unit: dB

Manual operation: See "RF Attenuator" on page 219

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:ATTenuation:AUTO <State>

This command turns automatic selection of the input attenuation for a SEM range on and off.

In case of high speed measurements, the input attenuation has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: ESP:RANG2:INP:ATT:AUTO OFF

Deactivates the RF attenuation auto mode for range 2.

Manual operation: See "RF Att. Mode" on page 219

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:GAIN <Gain>

This command selects the gain for a SEM range.

In case of high speed measurements, the level of the preamplifier has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Configuring and Performing Measurements

Parameters:

<Gain> 15 dB | 30 dB

The availability of preamplification levels depends on the

R&S FSW model.

R&S FSW8/13: 15dB and 30 dB
 R&S FSW26 or higher: 30 dB

All other values are rounded to the nearest of these two.

*RST: OFF

[SENSe:]ESPectrum<sb>:RANGe<range>:INPut:GAIN:STATe<State>

This command turns the preamplifier for a SEM range on and off.

In case of high speed measurements, the state of the preamplifier has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Preamp" on page 219

[SENSe:]ESPectrum<sb>:RANGe<range>:INSert < Mode>

This command inserts a new SEM range and updates the range numbers accordingly.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

Parameters:

<Mode> AFTer

Inserts a range after the selected range.

BEFore

Inserts a range before the selected range.

Manual operation: See "Insert before/after Range" on page 221

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:ABSolute:STARt

<Level>

This command defines an absolute limit for a SEM range.

Configuring and Performing Measurements

Unlike manual operation, you can define an absolute limit anytime and regardless of the limit check mode.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Absolute limit at the start frequency of a SEM range.

Range: -400 to 400

*RST: -13
Default unit: dBm

Example: SENSe:ESPectrum:RANGe:LIMit:ABSolute:STARt -10

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Abs Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:ABSolute:STOP

<Level>

This command defines an absolute limit for a SEM range.

Unlike manual operation, you can define an absolute limit anytime and regardless of the limit check mode.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Absolute limit at the stop frequency of a SEM range.

Range: -400 to 400

*RST: -13 Default unit: dBm

Example: SENSe:ESPectrum:RANGe:LIMit:ABSolute:STOP -15

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Abs Limit Start/Stop <n>" on page 220

Configuring and Performing Measurements

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt <Limit>

This command defines a relative limit for a SEM range.

Unlike manual operation, you can define a relative limit regardless of the limit check mode.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Relative limit at the start frequency of a SEM range.

Range: -400 to 400

*RST: -50 Default unit: dBc

Example: SENS:ESP:RANG:LIM:REL:STAR -10

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt:ABS

<Limit>

This command defines an absolute limit for the MAX function of the relative limit for a SEM range.

For more information see "Relative limit line functions" on page 209.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Absolute limit at the start frequency of a SEM range to be used

in addition to the relative limit if the MAX function is enabled (see

[SENSe:]ESPectrum<sb>:RANGe<range>:
LIMit<PClass>:RELative:STARt:FUNCtion

on page 786).

Range: -400 to 400

*RST: -13 Default unit: dBm

Configuring and Performing Measurements

Example: SENSe:ESPectrum:RANGe:LIMit:RELative:STARt:

ABSolute -10

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STARt: FUNCtion <Function>

This command enables the use of a function when defining the relative limit for a SEM range.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Function> Defines the function to be used to determine the relative limit

line start value

MAX

The maximum of the relative and the absolute level is used as the limit start value. Use the [SENSe:]ESPectrum<sb>:
RANGe<range>:LIMit<PClass>:RELative:STARt and

[SENSe:]ESPectrum<sb>:RANGe<range>:

LIMit<PClass>:RELative:STARt:ABS commands to define

these values.

OFF

No function is used, the relative limit line is defined by a fixed relative start value. Use the [SENSe:]ESPectrum<sb>:
RANGe<range>:LIMit<PClass>:RELative:STARt com-

mand to define this value.

*RST: OFF

Example: SENSe:ESPectrum:RANGe:LIMit:RELative:STARt:

FUNCtion MAX

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP <Limit>

This command defines a relative limit for a SEM range.

Configuring and Performing Measurements

Unlike manual operation, you can define a relative limit anytime and regardless of the limit check mode.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Relative limit at the stop frequency of a SEM range.

Range: -400 to 400

*RST: -50
Default unit: dBc

Example: SENSe:ESPectrum:RANGe:LIMit:RELative:STOP -15

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP: ABSolute <Limit>

This command defines an absolute limit for the MAX function of the relative limit for a SEM range.

For more information see "Relative limit line functions" on page 209.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Level> Absolute limit at the stop frequency of a SEM range to be used

in addition to the relative limit if the MAX function is enabled (see

[SENSe:]ESPectrum<sb>:RANGe<range>:
LIMit<PClass>:RELative:STOP:FUNCtion

on page 788).

Range: -400 to 400

*RST: -13 Default unit: dBm

Configuring and Performing Measurements

Example: SENSe:ESPectrum:RANGe:LIMit:RELative:STOP:

ABSolute -15

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:RELative:STOP: FUNCtion <Function>

This command enables the use of a function when defining the relative limit for a SEM range.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the SEM range.

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<Function> Defines the function to be used to determine the relative limit

line stop value

MAX

The maximum of the relative and the absolute level is used as the limit stop value. Use the [SENSe:]ESPectrum<sb>:
RANGe<range>:LIMit<PClass>:RELative:STOP and

[SENSe:]ESPectrum<sb>:RANGe<range>:

LIMit<PClass>:RELative:STOP:ABSolute commands to

define these values.

OFF

No function is used, the relative limit line is defined by a fixed relative stop value. Use the [SENSe:]ESPectrum<sb>:
RANGe<range>:LIMit<PClass>:RELative:STOP com-

mand to define this value.

*RST: OFF

Example: SENSe:ESPectrum:RANGe:LIMit:RELative:STOP:

FUNCtion MAX

For a detailed example see Chapter 11.5.6.11, "Example: SEM

Measurement", on page 806.

Manual operation: See "Rel Limit Start/Stop <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:LIMit<PClass>:STATe <State>

This command selects the limit check mode for all SEM ranges (<range> is irrelevant).

Configuring and Performing Measurements

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<PClass> 1..4

Power class for which the limit is defined.

Parameters:

<State> ABSolute | RELative | AND | OR

ABSolute

Checks only the absolute limits defined.

RELative

Checks only the relative limits. Relative limits are defined as rel-

ative to the measured power in the reference range.

AND

Combines the absolute and relative limit. The limit check fails

when both limits are violated.

OR

Combines the absolute and relative limit. The limit check fails

when one of the limits is violated.

*RST: RELative

Manual operation: See "Limit Check <n>" on page 220

[SENSe:]ESPectrum<sb>:RANGe<range>:POINts:MIN[:VALue] <SweepPoint>

Defines the minimum number of sweep points for the range.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<SweepPoints> Minimum number of sweep points per range

Range: 1 to 32001

*RST: 1

Example: SENSe1:ESPectrum:RANGe3:POINts:MIN:VALue 400

Manual operation: See "Minimum Sweep Points" on page 221

[SENSe:]ESPectrum<sb>:RANGe<range>:MLCalc <Function>

Defines the function used to calculate the limit line for the n-th power class for overlapping ranges in Multi-SEM measurements. For details see "Limit calculation for individual ranges" on page 213.

Configuring and Performing Measurements

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<Function> NONE

(reference ranges only:) the limit of the reference range is used;

Reference ranges always use the function "NONE".

SUM

sum of the two limit lines (calculated for linear powers) is used

MAX

maximum of the two limit lines is used

*RST: SUM (reference range: NONE)

Manual operation: See "Multi-Limit Calc <n>" on page 221

[SENSe:]ESPectrum<sb>:RANGe<range>:RLEVel <RefLevel>

This command defines the reference level for a SEM range.

In case of high speed measurements, the reference level has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<RefLevel> Reference level.

Refer to the data sheet for the reference level range.

*RST: 0 dBm

Manual operation: See "Ref. Level" on page 219

[SENSe:]ESPectrum<sb>:RANGe<range>:SWEep:TIME<SweepTime>

This command defines the sweep time for a SEM range.

In case of high speed measurements, the sweep time has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Configuring and Performing Measurements

Parameters:

<SweepTime> Sweep time.

The range depends on the ratios of the span to the RBW and the RBW to the VBW. Refer to the data sheet for more informa-

tion.

Manual operation: See "Sweep Time" on page 219

[SENSe:]ESPectrum<sb>:RANGe<range>:SWEep:TIME:AUTO <State>

This command turns automatic selection of the sweep time for a SEM range on and off

In case of high speed measurements, the sweep time has to be identical for all ranges.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: ESP:RANG3:SWE:TIME:AUTO OFF

Deactivates the sweep time auto mode for range 3.

Manual operation: See "Sweep Time Mode" on page 218

[SENSe:]ESPectrum<sb>:RANGe<range>:TRANsducer <Transducer>

This command selects a transducer factor for a SEM range.

Note that

- the transducer must cover at least the span of the range
- the x-axis has to be linear
- the unit has to be dB

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<range> 1..30

Selects the measurement range.

Parameters:

<Transducer> String containing the transducer file name, including the path

information.

Manual operation: See "Transd. Factor" on page 219

Configuring and Performing Measurements

11.5.6.5 Configuring the Reference Range

The following commands define the reference range for the SEM sweep list.

[SENSe:]ESPectrum <sb>:BWID</sb>	792
[SENSe:]ESPectrum <sb>:FILTer[:RRC]:ALPHa</sb>	
[SENSe:]ESPectrum <sb>:FILTer[:RRC][:STATe]</sb>	
[SENSe:]ESPectrum <sb>:RRANge?</sb>	
[SENSe:]ESPectrum <sb>:RTYPe</sb>	
· · ·	

[SENSe:]ESPectrum<sb>:BWID <Bandwidth>

This command defines the channel bandwidth of the reference range.

The bandwidth is available if the power reference is the channel power.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Bandwidth> minimum span ≤ value ≤ span of reference range

*RST: 3.84 MHz

Manual operation: See "Tx Bandwidth" on page 224

[SENSe:]ESPectrum<sb>:FILTer[:RRC]:ALPHa <Alpha>

This command defines the roll-off factor for the RRC filter.

The RRC filter is available if the power reference is the channel power.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Alpha> Range: 0 to 1

*RST: 0.22

Manual operation: See "Alpha" on page 224

[SENSe:]ESPectrum<sb>:FILTer[:RRC][:STATe] <State>

This command turns the RRC filter in the reference range on and off.

The RRC filter is available if the power reference is the channel power.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Configuring and Performing Measurements

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Manual operation: See "RRC Filter State" on page 224

[SENSe:]ESPectrum<sb>:RRANge? <RefRange>

This command queries the reference range.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Return values:

<RefRange> Number of the current reference range.

Range: 1 to 30

Usage: Query only

[SENSe:]ESPectrum<sb>:RTYPe <Type>

This command defines the type of the power reference.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Type> PEAK

Measures the highest peak within the reference range.

CPOWer

Measures the channel power within the reference range (integral

bandwidth method).
*RST: CPOWer

Manual operation: See "Power Reference Type" on page 224

11.5.6.6 Configuring the Power Classes

The following commands define the power classes for SEM measurements.

CALCulate <n>:LIMit<k>:ESPectrum<sb>:LIMits</sb></k></n>	794
CALCulate <n>:LIMit<k>:ESPectrum<sb>:MODE</sb></k></n>	795
CALCulate <n>:LIMit<k>:ESPectrum<sb>:VALue</sb></k></n>	795
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass:COUNt</sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>[:EXCLusive]</pclass></sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>:LIMit[:STATe]</pclass></sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>:MAXimum</pclass></sb></k></n>	797
CALCulate <n>:LIMit<k>:FSPectrum<sb>:PCLass<pclass>:MINimum</pclass></sb></k></n>	798

Configuring and Performing Measurements

CALCulate<n>:LIMit<k>:ESPectrum<sb>:LIMits <Max1>,<Max2>,<Max3>

This command sets or queries up to 4 power classes in one step. You can only define values for the number of power classes defined by CALCulate<n>:LIMit<k>: ESPectrum<sb>:PCLass:COUNt on page 796.

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Setting parameters:

<Max1> Defines the value range for power class 1 as -200 to

<Max1>.

Only available for CALC:LIM:ESP:PCL:COUNT >=2

If only 2 power classes are defined, the value range for power

class 2 is defined as <Max1> to 200.

Range: -199 to + 199

<Max2> Defines the value range for power class 2 as <Max1> to

<Max2>.

Only available for CALC:LIM:ESP:PCL:COUNT >=3

If only 3 power classes are defined, the value range for power

class 3 is defined as <Max2> to 200.

Range: -199 to + 199, <Max2> must be higher than

<Max1>

<Max3> Defines the value range for power class 3 as <Max2> to

<Max3>

The value range for power class 4 is defined as <Max3> to

200.

Only available for CALC:LIM:ESP:PCL:COUNT = 4

Range: -199 to + 199, <Max3> must be higher than

<Max2>

Return values:

<RangeLimits> As a result of the query, the range limits including the beginning

of the first power class (-200) and the end of the last power class

(+200) are indicated.

Example: CALC:LIM:ESP:LIM -50,50,70

Defines the following power classes:

<-200, -50> <-50, 50> <50, 70> <70, 200> **Query:**

CALC:LIM:ESP:LIM?

Response:

-200,-50,50,70,200

Configuring and Performing Measurements

CALCulate<n>:LIMit<k>:ESPectrum<sb>:MODE < Mode>

Which limit line is to be used for an SEM measurement depends on the power class the input signal power belongs to. This command defines wether the power class is determined automatically or manually.

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Mode> AUTO

The power class (and thus the limit line) is assigned dynamically

according to the currently measured channel power.

MANUAL

One of the specified power classes is selected manually for the

entire measurement. The selection is made with the
CALCulate<n>:LIMit<k>:ESPectrum<sb>:
PCLass<PClass>[:EXCLusive] command.

*RST: AUTO

Example: CALC:LIM:ESP:MODE AUTO

Activates automatic selection of the limit line.

CALCulate<n>:LIMit<k>:ESPectrum<sb>:VALue <Power>

This command activates the manual limit line selection as and specifies the expected power as a value. Depending on the entered value, the associated predefined limit lines is selected.

This command has the same effect as a combination of the CALC:LIM:ESP:MODE MAN and the CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>[:EXCLusive] commands; however, the power class to be used is not defined directly, but via the expected power. As opposed to CALC:LIM:ESP:MODE AUTO, the power class is not re-assigned to the input signal power dynamically, but only once when the command is executed.

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Power> integer

Range: -200 to 199

*RST: 0

Example: CALC:LIM:ESP:VAL 33

Activates manual selection of the limit line and selects the limit

line for P = 33.

Configuring and Performing Measurements

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass:COUNt <NoPowerClasses>

This command sets the number of power classes to be defined.

This command must be executed before any new power class values can be defined using CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MAXimum and CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MINimum.

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<NoPowerClasses> 1 to 4

*RST: 1

Example: CALC:LIM:ESP:PCL:COUN 2

Two power classes can be defined.

Manual operation: See "Adding or Removing a Power Class" on page 226

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>[:EXCLusive] <State>

This command selects the power class used by the measurement if CALCulate<n>: LIMit<k>:ESPectrum<sb>:MODE is set to manual.

Note that:

You can only use power classes for which limits are defined.

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<PClass> 1...4

power class

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:ESP:PCL1 ON

Activates the first defined power class.

Manual operation: See "Used Power Classes" on page 225

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:LIMit[:STATe] < State>

This command selects the limit check mode for each power class.

Suffix:

<n>, <k> irrelevant

Configuring and Performing Measurements

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<PClass> 1...4

power class

Parameters:

<State> ABSolute

Evaluates only limit lines with absolute power values

RELative

Evaluates only limit lines with relative power values

AND

Evaluates limit lines with relative and absolute power values. A

negative result is returned if both limits fail.

OR

Evaluates limit lines with relative and absolute power values. A

negative result is returned if at least one limit failed.

*RST: REL

Example: CALC:LIM:ESP:PCL:LIM ABS

Manual operation: See "Used Power Classes" on page 225

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MAXimum <Level>

This command defines the upper limit of a particular power class.

Note:

- The last power class always has an upper limit of 200 dBm.
- The upper limit of a power class must always be the same as the lower limit of the subsequent power class.
- The power class must already exist (see CALCulate<n>:LIMit<k>: ESPectrum<sb>:PCLass:COUNt on page 796).

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<PClass> 1...4

power class

Parameters:

<Level> Range: -199.9 dBm to 200 dBm

Example: CALC:LIM:ESP:PCL1:MAX -40 dBm

Sets the maximum power value of the first power class to -40

dBm.

Manual operation: See "PMin/PMax" on page 225

Configuring and Performing Measurements

CALCulate<n>:LIMit<k>:ESPectrum<sb>:PCLass<PClass>:MINimum <Level>

This command defines the lower limit of a particular power class.

Note:

- The first power class always has a lower limit of -200 dBm.
- The lower limit of a power class must always be the same as the upper limit of the previous power class.
- The power class must already exist (see CALCulate<n>:LIMit<k>: ESPectrum<sb>:PCLass:COUNt on page 796).

Suffix:

<n>, <k> irrelevant <sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

<PClass> 1...4

power class

Parameters:

<Level> Range: -200 dBm to 199.9 dBm

Example: CALC:LIM:ESP:PCL2:MIN -40 dBm

Sets the minimum power value of the second power class to -40

dBm.

Manual operation: See "PMin/PMax" on page 225

11.5.6.7 Configuring MSR SEM Measurements

The following commands configure MSR SEM measurements. For details see Chapter 5.6.4.4, "Multi-Standard Radio (MSR) SEM Measurements", on page 212.

For manual operation see Chapter 5.6.5.5, "MSR Settings", on page 226.

[SENSe:]ESPectrum <sb>:MSR:APPLy</sb>	798
[SENSe:]ESPectrum <sb>:MSR:BAND</sb>	799
[SENSe:]ESPectrum <sb>:MSR:BCATegory</sb>	
[SENSe:]ESPectrum <sb>:MSR:CLAS</sb>	
[SENSe:]ESPectrum <sb>:MSR:GSM:CARR</sb>	
[SENSe:]ESPectrum <sb>:MSR:GSM:CPResent</sb>	
[SENSe:]ESPectrum <sb>:MSR:LTE:CPResent</sb>	802
[SENSe:]ESPectrum <sb>:MSR:MPOWer</sb>	803
[SENSe:]ESPectrum <sb>:MSR:RFBWidth</sb>	803
[SENSe:]ESPectrum <sb>:MSR:GSM:CPResent</sb>	802 802 803

[SENSe:]ESPectrum<sb>:MSR:APPLy

This command configures the SEM sweep list according to the MSR settings defined by previous commands.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Configuring and Performing Measurements

Example: //Select the band category 1

ESP2:MSR:BCAT 1

//Set the base station class to medium range $\,$

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 $\ensuremath{\text{dBm}}\xspace.$

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 MHz

ESP2:MSR:RFBW 20MHZ

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Usage: Event

Manual operation: See "Apply to SEM" on page 229

[SENSe:]ESPectrum<sb>:MSR:BAND <Range>

Defines the frequency range of the bands used by the base station.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Range> LOW

≤ 3 GHz **HIGH** > 3 GHz

*RST: LOW

Example: //Select the band category 1

ESP2:MSR:BCAT 1

//Set the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 $\ensuremath{\text{MHz}}$

ESP2:MSR:RFBW 20MHZ

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Manual operation: See "Bands" on page 228

[SENSe:]ESPectrum<sb>:MSR:BCATegory < Category>

This command defines the band category for MSR measurements, i.e. the combination of available carriers to measure.

Configuring and Performing Measurements

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Category> 1 | 2 | 3

1

2 carriers: LTE FDD and W-CDMA

2

3 carriers: LTE FDD, W-CDMA and GSM/EDGE

3

2 carriers: LTE TDD and TD-SCDMA

*RST: 1

Example: //Select the band category 1

ESP2:MSR:BCAT 1

 $//{\rm Set}$ the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 $\ensuremath{\text{MHz}}$

ESP2:MSR:RFBW 20MHZ

 $//{\tt Calculate\ limits\ for\ MSR\ SEM}$

ESP2:MSR:APPL

Manual operation: See "Band Category" on page 227

[SENSe:]ESPectrum<sb>:MSR:CLAS <Class>

Defines the class of the base station according to its sending range.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Class> WIDE

Wide Area

MEDium

Medium Range

LOCal

Local Area

*RST: WIDE

Configuring and Performing Measurements

Example: //Select the band category 1

ESP2:MSR:BCAT 1

 $//{\rm Set}$ the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 MHz

ESP2:MSR:RFBW 20MHZ

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Manual operation: See "Base Station Class" on page 227

[SENSe:]ESPectrum<sb>:MSR:GSM:CARR <Power>

Defines the power of the GSM carrier (if available, see [SENSe:]ESPectrum<sb>: MSR:GSM:CPResent on page 802).

This command is only available for band category 2 (see [SENSe:]ESPectrum<sb>: MSR:BCATegory on page 799).

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Power> numeric value

Range: 0 dBm to 100 dBm

*RST: 39.0 dBm

Example: //Select the band category 2

ESP2:MSR:BCAT BC2

//Set the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the base station RF bandwidth to 20 ${
m MHz}$

ESP2:MSR:RFBW 20MHZ //GSM/Edge present ESP2:MSR:GSM:CPR ON

//Power of the GSM carrier is 20dBm

ESP2:MSR:GSM:CARR 20

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Manual operation: See "Power GSM Carrier" on page 228

Configuring and Performing Measurements

[SENSe:]ESPectrum<sb>:MSR:GSM:CPResent <State>

This command defines whether a GSM/Edge carrier is located at the edge of the specified RF bandwidth. In this case, the specification demands specific limits for the SEM ranges.

This command is only available for band category 2 (see [SENSe:]ESPectrum<sb>: MSR:BCATegory on page 799).

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<State> ON | OFF

*RST: OFF

Example: //Select the band category 2

ESP2:MSR:BCAT BC2

//Set the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 $\ensuremath{\text{dBm}}\xspace.$

ESP2:MSR:MPOW 10

//Set the base station RF bandwidth to 20 ${\rm MHz}$

ESP2:MSR:RFBW 20MHZ
//GSM/Edge present
ESP2:MSR:GSM:CPR ON

//Power of the GSM carrier is 20dBm

ESP2:MSR:GSM:CARR 20

Manual operation: See "Carrier Adjacent to RF Bandwidth Edge" on page 228

[SENSe:]ESPectrum<sb>:MSR:LTE:CPResent <State>

This command defines whether an LTE FDD 1.4 MHz or 3 MHz carrier is located at the edge of the specified RF bandwidth. In this case, the specification demands specific limits for the SEM ranges.

This command is only available for band category 2 (see [SENSe:]ESPectrum<sb>: MSR:BCATegory on page 799).

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<State> ON | OFF

*RST: OFF

Configuring and Performing Measurements

Example: //Select the band category 2

ESP2:MSR:BCAT BC2

//Set the base station class to medium range $\,$

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the base station RF bandwidth to 20 MHz

ESP2:MSR:RFBW 20MHZ

//LTE present

ESP2:MSR:LTE:CPR ON

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Manual operation: See "Carrier Adjacent to RF Bandwidth Edge" on page 228

[SENSe:]ESPectrum<sb>:MSR:MPOWer < Power>

Defines the maximum output power of the base station.

This setting is only available for base stations with a medium range base station class (see [SENSe:]ESPectrum<sb>:MSR:CLAS on page 800).

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Parameters:

<Power> Range: 0 dBm to 100 dBm

Increment: 1 dB

Example: //Select the band category 1

ESP2:MSR:BCAT 1

//Set the base station class to medium range $\,$

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 $\ensuremath{\text{dBm}}\xspace.$

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 ${\rm MHz}$

ESP2:MSR:RFBW 20MHZ

Manual operation: See "Base Station Maximum Output Power" on page 228

[SENSe:]ESPectrum<sb>:MSR:RFBWidth <Bandwidth>

This command defines the RF bandwidth of the base station for MSR measurements.

Suffix:

<sb> 1 | 2 | 3

Sub block in a Multi-SEM measurement

Configuring and Performing Measurements

Parameters:

<Bandwidth> Bandwidth in Hz

*RST: 10.0 MHz

Example: //Select the band category 1

ESP2:MSR:BCAT 1

 $//{\rm Set}$ the base station class to medium range

ESP2:MSR:CLAS MED

//Set the maximum output power to 10 dBm.

ESP2:MSR:MPOW 10

//Set the frequency range of the base station to > 3 GHz

ESP2:MSR:BAND:HIGH

//Set the base station RF bandwidth to 20 MHz

ESP2:MSR:RFBW 20MHZ

//Calculate limits for MSR SEM

ESP2:MSR:APPL

Manual operation: See "Base Station RF Bandwidth" on page 228

11.5.6.8 Configuring the List Evaluation

The following commands configure the list evaluation.

Useful commands for SEM measurements described elsewhere

• MMEMory:STORe<n>:LIST on page 1091

Remote commands exclusive to SEM measurements

CALCulate <n>:ESPectrum:PSEarch:AUTO</n>	804
CALCulate <n>:ESPectrum:PEAKsearch:AUTO</n>	804
CALCulate <n>:ESPectrum:PSEarch[:IMMediate]</n>	805
CALCulate <n>:ESPectrum:PEAKsearch[:IMMediate]</n>	805
CALCulate <n>:ESPectrum:PSEarch:MARGin</n>	805
CALCulate <n>:ESPectrum:PEAKsearch:MARGin</n>	805
CALCulate <n>:ESPectrum:PSEarch:PSHow</n>	805
CALCulate <n>:ESPectrum:PEAKsearch:PSHow.</n>	805

CALCulate<n>:ESPectrum:PSEarch:AUTO <State>
CALCulate<n>:ESPectrum:PEAKsearch:AUTO <State>

This command turns the list evaluation on and off.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Configuring and Performing Measurements

Example: CALC:ESP:PSE:AUTO OFF

Deactivates the list evaluation.

Manual operation: See "List Evaluation (Result Summary) State" on page 232

See "List Evaluation State" on page 254

CALCulate<n>:ESPectrum:PSEarch[:IMMediate]
CALCulate<n>:ESPectrum:PEAKsearch[:IMMediate]

This command initiates a list evaluation.

Suffix:

<n> Window <m> Marker Usage: Event

CALCulate<n>:ESPectrum:PSEarch:MARGin <Threshold>
CALCulate<n>:ESPectrum:PEAKsearch:MARGin <Threshold>

This command defines the threshold of the list evaluation.

Suffix:

<n> Window

<m> Marker

Parameters:

<Margin> Range: -200 to 200

*RST: 200 Default unit: dB

Example: CALC:ESP:PSE:MARG 100

Sets the margin to 100 dB.

Manual operation: See "Margin" on page 232

See "Margin" on page 254

CALCulate<n>:ESPectrum:PSEarch:PSHow <State>
CALCulate<n>:ESPectrum:PEAKsearch:PSHow <State>

This command turns the peak labels in the diagram on and off.

Peak labels are blue squares.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Configuring and Performing Measurements

Example: CALC:ESP:PSE:PSH ON

Marks all peaks with blue squares.

Manual operation: See "Show Peaks" on page 232

See "Show Peaks" on page 254

11.5.6.9 Performing an SEM Measurement

The following commands are required to perform an SEM measurement:

```
SENS:SWE:MODE ESP, see [SENSe:]SWEep:MODE on page 775
```

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.6.10 Retrieving Results

The following commands analyze and retrieve measurement results for SEM measurements.

- CALCulate<n>:LIMit<k>:FAIL? on page 1059
- CALCulate<n>:MARKer<m>:FUNCtion:POWer<sb>:RESult? on page 730
- TRACe<n>[:DATA] on page 980
- TRACe<n>[:DATA]:MEMory? on page 982
- TRACe<n>[:DATA]:X? on page 983

11.5.6.11 Example: SEM Measurement

In this example we will configure and perform an SEM measurement. Note that this example is primarily meant to demonstrate the remote control commands, it does not necessarily reflect a useful measurement task. For most common measurement standards, the R&S FSW performs the measurement optimally with the predefined settings, without further configuration.

```
//----- Preparing the measurement-----
*RST
//Resets the instrument
SWE:MODE ESP
//Activates SEM Measurement
INIT:CONT OFF
//Selects single sweep mode.
```

//SEM has to be in single sweep mode to be configured and no sweep operation //may be running!

```
// If required, a sweep stop can be ensured by INIT:IMM;*WAI
//----- Managing Measurement Configurations-----
```

Configuring and Performing Measurements

```
ESP:PRES 'WCDMA\3GPP\UL\3GPP UL.xml'
//Loads the 3GPP configuration stored in the file '3GPP UL.xml'
//---- Defining the Reference Range-----
ESP:RRAN?
//Queries the current reference range.
ESP:RTYP CPOW
//Selects the channel power as the power reference.
ESP:BWID 4 MHZ
//Defines a channel bandwidth of 4 MHz for the power reference.
ESP:FILT:RRC ON
ESP:FILT:ALPH 0.5
//Uses an RRC filter with a roll-off factor of 0.5 when measuring
//the reference power.
//---- Configuring Power Classes-----
CALC:LIM:ESP:PCL:COUN 3
//Defines 3 power classes.
CALC:LIM:ESP:LIM -100,0
//Defines the value ranges of the three power classes as [dBm]:
//power class 1: -200 to -100
//power class 2: -100 to 0
//power class 3: 0 to 200
CALC:LIM:ESP:PCL1:LIM ABS
//Defines an absolute limit check for class 1.
CALC:LIM:ESP:PCL2:LIM REL
//Defines a relative limit check for class 2.
CALC:LIM:ESP:MODE MAN
//Defines a manual selection of the power class.
CALC:LIM:ESP:PCL2 ON
//Activates the use of the second power class for the entire measurement.
//---- Configuring a Sweep List-----
ESP:RANG2:INS AFT
//Inserts a range after range 2.
ESP:RANG1:INS BEF
//Inserts a range before range 1.
ESP:RANG:COUNt?
//Returns the number of measurement ranges in the sweep list (currently 11).
ESP:RANG5:DEL
//Deletes the 11th range.
ESP:RANG1:STOP -10000000
//Defines a stop frequency of -9 MHz for range 1.
ESP:RANG2:STAR -9000000
//Defines a start frequency of -10 MHz for range 2.
ESP:HSP OFF
//Switches off Fast SEM mode so the ranges can be configured individually.
```

Configuring and Performing Measurements

```
ESP:RANG2:BAND:RES 1000000
//Defines a resolution bandwidth of 1 MHz for range 2.
ESP:RANG2:FILT:TYPE RRC
//Selects an RRC filter for range 2.
ESP:RANG2:BAND:VID 5000000
//Defines a video bandwidth of 5 MHz for range 2.
ESP:RANG2:SWE:TIME 1
//Defines a sweep time of 1 second for range 2.
ESP:RANG2:RLEV 0
//Defines a reference level of 0 dBm for range 2.
ESP:RANG2:INP:ATT 10
//Defines an input attenuation of 10 dB for range 2.
// Create a transducer that can be used.
// It has to cover the corresponding frequency range
SENSel:CORRection:TRANsducer:SELect 'Transducer'
SENSel:CORRection:TRANsducer:UNIT 'DB'
SENSel:CORRection:TRANsducer:COMMent 'Test Transducer'
// Frequency Span 0 MHz bis 20 Ghz
SENSel:CORRection:TRANsducer:DATA 0e6,5, 20e9,3
ESP:RANG2:TRAN 'Transducer'
//Includes a transducer called 'transducer' for range 2.
//---- Configuring the limit check-----
ESP:RANG:LIM1:STAT AND
//Checks the absolute and relative limits for all ranges in power class 1 and
//fails if both limits are violated. Since power class 2 is set to be used for
//{\rm the} entire measurement, values for Limit Check 1 are irrelevant. They are
//defined here to demonstrate the use of the MAX function for relative limits.
ESP:RANG2:LIM1:REL:STAR:FUNC MAX
//Enables the use of maximum function for relative limit start. If the value
//exceeds the larger of the absolute (-13 dBm) and relative (-10 dBc) start
//values, the check fails.
ESP:RANG2:LIM1:REL:STAR -10
ESP:RANG2:LIM1:REL:STAR:ABS -13
ESP:RANG2:LIM1:REL:STOP:FUNC MAX
ESP:RANG2:LIM1:REL:STOP -10
ESP:RANG2:LIM1:REL:STOP:ABS -13
ESP:RANG:LIM2:STAT OR
//Checks the absolute and relative limits for all ranges in power class 2 and
//fails if either limit is violated. Since power class 2 is set to be used for
//the entire measurement, values for Limit Check 1 are irrelevant.
```

Configuring and Performing Measurements

```
ESP:RANG2:LIM2:ABS:STAR 10
ESP:RANG2:LIM2:ABS:STOP 10
//Defines an absolute limit of 10 dBm for the entire range 2 for power class 2.
ESP:RANG2:LIM2:REL:STAR -20
ESP:RANG2:LIM2:REL:STOP -20
//Defines a relative limit of -20 dBc for the entire range 2 for power class 2.
//---- Configuring List Evaluation-----
CALC: ESP: PSE: AUTO ON
//Activates list evaluation, i.e. the peak is determined for each range
//after each sweep.
CALC:ESP:PSE:MARG 10dB
//Defines a peak threshold of 10 dB.
//---- Managing Measurement Configurations-----
ESP:PRES:STOR 'WCDMA\3GPP\UL\3GPP_UL_User.xml'
//Saves the current configuration in a new file named '3GPP UL User'
//in the same directory so the standard is not overwritten.
//---- Performing the measurement-----
INIT:ESP
//One sweep
//---- Checking the Results-----
CALC: LIM: FAIL?
//Queries the result of the limit check for all ranges.
TRAC:DATA? LIST
//Returns the peak for each range of the SEM measurement as a list.
```

11.5.7 Measuring Spurious Emissions

All remote control commands specific to spurious emissions measurements are described here.

•	Initializing the Measurement	809
	Configuring a Sweep List	
	Configuring the List Evaluation	
	Performing a Spurious Measurement	
	Retrieving and Saving Settings and Results	
	Programming Example: Spurious Emissions Measurement	

11.5.7.1 Initializing the Measurement

Note that with the R&S FSW, the spurious measurement must be initialized before you can start configuring the sweep list or list evaluation.

Configuring and Performing Measurements

INITiate<n>:SPURious

This command initiates a Spurious Emission measurement.

Suffix:

<n> irrelevant Usage: Event

11.5.7.2 Configuring a Sweep List

The following commands configure the sweep list for spurious emission measurements.

The sweep list cannot be configured using remote commands during an on-going sweep operation.

Useful commands for configuring the sweep described elsewhere:

• [SENSe:] SWEep:MODE on page 775

Remote commands exclusive to spurious measurements:

[SENSe:]LIST:RANGe <range>:BANDwidth[:RESolution]</range>	810
[SENSe:]LIST:RANGe <range>:BANDwidth:VIDeo</range>	811
[SENSe:]LIST:RANGe <range>:BREak</range>	811
[SENSe:]LIST:RANGe <range>:COUNt?</range>	811
[SENSe:]LIST:RANGe <range>:DELete</range>	812
[SENSe:]LIST:RANGe <range>:DETector</range>	812
[SENSe:]LIST:RANGe <range>:FILTer:TYPE</range>	812
[SENSe:]LIST:RANGe <range>[:FREQuency]:STARt</range>	813
[SENSe:]LIST:RANGe <range>[:FREQuency]:STOP</range>	813
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation</range>	814
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation:AUTO</range>	814
[SENSe:]LIST:RANGe <range>:INPut:GAIN:STATe</range>	815
[SENSe:]LIST:RANGe <range>:INPut:GAIN[:VALue]</range>	
[SENSe:]LIST:RANGe <range>:LIMit:STARt</range>	815
[SENSe:]LIST:RANGe <range>:LIMit:STATe</range>	816
[SENSe:]LIST:RANGe <range>:LIMit:STOP</range>	816
[SENSe:]LIST:RANGe <range>:POINts[:VALue]</range>	816
[SENSe:]LIST:RANGe <range>:RLEVel</range>	816
[SENSe:]LIST:RANGe <range>:SWEep:TIME</range>	817
[SENSe:]LIST:RANGe <range>:SWEep:TIME:AUTO</range>	817
[SENSe:]LIST:RANGe <range>:TRANsducer</range>	817

[SENSe:]LIST:RANGe<range>:BANDwidth[:RESolution] < RBW>

This command defines the resolution bandwidth for a spurious emission measurement range.

Configuring and Performing Measurements

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<RBW> Resolution bandwidth.

Refer to the data sheet for available resolution bandwidths.

Default unit: Hz

Manual operation: See "RBW" on page 251

[SENSe:]LIST:RANGe<range>:BANDwidth:VIDeo <VBW>

This command defines the video bandwidth for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<VBW> Video bandwidth.

Refer to the data sheet for available video bandwidths.

Default unit: Hz

Manual operation: See "VBW" on page 251

[SENSe:]LIST:RANGe<range>:BREak <State>

This command controls the sweep (for all ranges, <range> is irrelevant).

Parameters:

<State> ON

The R&S FSW stops after measuring one range. To continue with the next range, you have to use

INITiate<n>:CONMeas.

OFF

The R&S FSW sweeps all ranges in one go.

*RST: OFF

Manual operation: See "Stop After Sweep" on page 252

[SENSe:]LIST:RANGe<range>:COUNt?

This command queries the number of ranges in the sweep list (<range> is irrelevant).

Return values:

<Ranges> Number of ranges in the sweep list.

Usage: Query only

Configuring and Performing Measurements

[SENSe:]LIST:RANGe<range>:DELete

This command removes a range from the sweep list.

Note that

• you cannot delete the reference range

• a minimum of three ranges is mandatory.

Suffix:

<range> 1..30

Selects the measurement range.

Usage: Event

[SENSe:]LIST:RANGe<range>:DETector < Detector>

This command selects the detector for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Detector> NEGative

minimum peak detector

POSitive peak detector SAMPle

sample detector

RMS

RMS detector **AVERage**average detector

*RST: RMS

Manual operation: See "Detector" on page 251

[SENSe:]LIST:RANGe<range>:FILTer:TYPE <FilterType>

This command selects the filter type for a spurious emission measurement range.

The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

Suffix:

<range> 1..30

Selects the measurement range.

Configuring and Performing Measurements

Parameters:

<FilterType> NORMal

Gaussian filters

CFILter channel filters

RRC RRC filters CISPr | PULSe

CISPR (6 dB) - requires EMI (R&S FSW-K54) option

Return value for query is always PULS.

MIL

MIL Std (6 dB) - requires EMI (R&S FSW-K54) option

P5

5 Pole filters

*RST: NORM

The available bandwidths of the filters are specified in the data

sheet.

Manual operation: See "Filter Type" on page 250

[SENSe:]LIST:RANGe<range>[:FREQuency]:STARt <Frequency>

This command defines the start frequency of a spurious emission measurement range.

Make sure to set an appropriate span. If you set a span that is

- smaller than the span the sweep list covers, the R&S FSW will not measure the ranges that are outside the span - results may be invalid.
- greater than the span the sweep list covers, the R&S FSW will adjust the start frequency of the first range and the stop frequency of the last range to the span

For more information see Chapter 5.7, "Spurious Emissions Measurement", on page 245.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Frequency> Numeric value.

*RST: -12.75 MHz (range 1), -2.515 MHz (range 2), 2.515

MHz (range 3)

Default unit: Hz

Manual operation: See "Range Start / Range Stop" on page 250

[SENSe:]LIST:RANGe<range>[:FREQuency]:STOP <Frequency>

This command defines the stop frequency of a spurious emission measurement range.

Make sure to set an appropriate span. If you set a span that is

Configuring and Performing Measurements

 smaller than the span the sweep list covers, the R&S FSW will not measure the ranges that are outside the span - results may be invalid.

greater than the span the sweep list covers, the R&S FSW will adjust the start frequency of the first range and the stop frequency of the last range to the span

For more information seeChapter 5.7, "Spurious Emissions Measurement", on page 245 .

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Frequency> Numeric value.

*RST: -2.52 MHz (range 1), 2.52 MHz (range 2), 250.0

MHz (range 3)

Default unit: Hz

Manual operation: See "Range Start / Range Stop" on page 250

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation < Attenuation>

This command defines the input attenuation for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Attenuation> Numeric value.

Refer to the data sheet for the attenuation range.

*RST: 10 dB Default unit: dB

Manual operation: See "RF Attenuator" on page 252

[SENSe:]LIST:RANGe<range>:INPut:ATTenuation:AUTO <State>

This command turns automatic selection of the input attenuation for a spurious emission measurement range on and off.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Manual operation: See "RF Att. Mode" on page 252

Configuring and Performing Measurements

[SENSe:]LIST:RANGe<range>:INPut:GAIN:STATe <State>

This command turns the preamplifier for a spurious emission measurement range on and off.

The gain level is defined by [SENSe:]LIST:RANGe<range>:INPut:GAIN[: VALue] on page 815.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Preamp" on page 252

[SENSe:]LIST:RANGe<range>:INPut:GAIN[:VALue] <Gain>

This command selects the preamplification level for the range.

The command requires option R&S FSW-B24.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Gain> 15 dB | 30 dB

The availability of preamplification levels depends on the

R&S FSW model.

R&S FSW8/13: 15dB and 30 dB
 R&S FSW26 or higher: 30 dB

All other values are rounded to the nearest of these two.

*RST: OFF

[SENSe:]LIST:RANGe<range>:LIMit:STARt <Level>

This command defines an absolute limit for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Level> Absolute limit at the start frequency of a SEM range.

Range: -400 to 400

*RST: 13
Default unit: dBm

Manual operation: See "Abs Limit Start/Stop" on page 253

Configuring and Performing Measurements

[SENSe:]LIST:RANGe<range>:LIMit:STATe

This command turns the limit check for all spurious emission measurement ranges on and off (<range> is irrelevant).

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Limit Check" on page 253

[SENSe:]LIST:RANGe<range>:LIMit:STOP <Level>

This command defines an absolute limit for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Level> Absolute limit at the stop frequency of a SEM range.

Range: -400 to 400

*RST: 13 Default unit: dBm

Manual operation: See "Abs Limit Start/Stop" on page 253

[SENSe:]LIST:RANGe<range>:POINts[:VALue] <Points>

This command defines the number of sweep points in a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<Points> For more information on sweep points see Chapter 6.5.1.8,

"How Much Data is Measured: Sweep Points and Sweep

Count", on page 418. *RST: 1001

Manual operation: See "Sweep Points" on page 252

[SENSe:]LIST:RANGe<range>:RLEVeI < RefLevel>

This command defines the reference level for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Configuring and Performing Measurements

Parameters:

<RefLevel> Reference level.

Refer to the data sheet for the reference level range.

*RST: 0 dBm

Manual operation: See "Ref. Level" on page 251

[SENSe:]LIST:RANGe<range>:SWEep:TIME <SweepTime>

This command defines the sweep time for a spurious emission measurement range.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<SweepTime> Sweep time.

The range depends on the ratios of the span to the RBW and the RBW to the VBW. Refer to the data sheet for more informa-

tion.

Manual operation: See "Sweep Time" on page 251

[SENSe:]LIST:RANGe<range>:SWEep:TIME:AUTO <State>

This command turns automatic selection of the sweep time for a spurious emission measurement range on and off.

Suffix:

<range> 1..30

Selects the measurement range.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Manual operation: See "Sweep Time Mode" on page 251

[SENSe:]LIST:RANGe<range>:TRANsducer < Transducer>

This command selects a transducer factor for a spurious emission measurement range.

Note that

- the transducer must cover at least the span of the range
- the x-axis has to be linear
- the unit has to be dB

Suffix:

<range> 1..30

Selects the measurement range.

Configuring and Performing Measurements

Parameters:

<Transducer> String containing the transducer file name, including the path

information.

Manual operation: See "Transducer" on page 252

11.5.7.3 Configuring the List Evaluation

The following commands configure the list evaluation.

Useful commands for spurious emission measurements described elsewhere

• MMEMory:STORe<n>:LIST on page 1091

Remote commands exclusive to spurious emission measurements

CALCulate <n>:PSEarch:AUTO</n>	818
CALCulate <n>:PEAKsearch:AUTO</n>	818
CALCulate <n>:PSEarch:DETails</n>	818
CALCulate <n>:ESPectrum:PEAKsearch:DETails</n>	818
CALCulate <n>:PSEarch:MARGin</n>	819
CALCulate <n>:PEAKsearch:MARGin</n>	819
CALCulate <n>:PSEarch:PSHow</n>	819
CALCulate <n>:PEAKsearch:PSHow</n>	819
CALCulate <n>:PSEarch:SUBRanges</n>	820
CALCulate <n>:PEAKsearch:SUBRanges</n>	820

CALCulate<n>:PSEarch:AUTO <State> CALCulate<n>:PEAKsearch:AUTO <State>

This command turns the list evaluation on and off.

Suffix:

<n> Window

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: CALC:PSE:AUTO OFF

Deactivates the list evaluation.

CALCulate<n>:PSEarch:DETails <State>

CALCulate<n>:ESPectrum:PEAKsearch:DETails <State>

This command configures how detailed the list in the Result Summary is.

Suffix:

<n> Window

Configuring and Performing Measurements

Parameters:

<State> ON | OFF | 1 | 0

ON | 1

Includes all detected peaks (up to a maximum defined by CALCulate<n>: PEAKsearch: SUBRanges on page 820).

OFF | 0

Includes only one peak per range.

*RST: OFF

Example: CALC:ESP:PSE:DET ON

CALC:PSE:SUBR 10

Includes up to 10 peaks per range in the list.

Usage: Event

Manual operation: See "Details" on page 254

CALCulate<n>:PSEarch:MARGin <Threshold>
CALCulate<n>:PEAKsearch:MARGin <Threshold>

This command defines the threshold of the list evaluation.

Suffix:

<n> Window

Parameters:

<Margin> Range: -200 to 200

*RST: 200 Default unit: dB

Example: CALC:PSE:MARG 100

Sets the threshold to 100 dB.

CALCulate<n>:PSEarch:PSHow <State>
CALCulate<n>:PEAKsearch:PSHow <State>

This command turns the peak labels in the diagram on and off.

Peak labels are blue squares.

Suffix:

<n> Window

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:PSE:PSH ON

Marks all peaks with blue squares.

Configuring and Performing Measurements

CALCulate<n>:PSEarch:SUBRanges <NumberPeaks> CALCulate<n>:PEAKsearch:SUBRanges <NumberPeaks>

This command defines the number of peaks included in the peak list.

After this number of peaks has been found, the R&S FSW stops the peak search and continues the search in the next measurement range.

Suffix:

<n> Window

Parameters:

<NumberPeaks> Range: 1 to 50

*RST: 25

Example: CALC:PSE:SUBR 10

Sets 10 peaks per range to be stored in the list.

Manual operation: See "Peaks per Range" on page 255

11.5.7.4 Performing a Spurious Measurement

The following commands are required to perform a Spurious measurement:

```
SENS:SWE:MODE LIST, see [SENSe:] SWEep:MODE on page 775
```

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.7.5 Retrieving and Saving Settings and Results

The following commands analyze and retrieve measurement results for Spurious measurements.

Useful commands for spurious emission measurements described elsewhere

- CALCulate<n>:LIMit<k>:FAIL? on page 1059
- TRACe<n>[:DATA] on page 980
- TRACe<n>[:DATA]:MEMory? on page 982
- TRACe<n>[:DATA]:X? on page 983

11.5.7.6 Programming Example: Spurious Emissions Measurement

In the following example, the Spurious Emissions measurement is configured by defining ranges and parameters to create the following sweep list.

Configuring and Performing Measurements

Spurious Emissions				
	Range 1	Range 2	Range 3	
Range Start	10 MHz	100 MHz	100.0000	
Range St p	100 MHz	100.0000	1 GHz	
Filter Type	RRC	Normal(3	Normal(3	
Res BW	24.3 kHz	10 kHz	100 kHz	
Video BW	5 MHz	30 kHz	300 kHz	
Sweep Time Mode	Manual	Auto	Auto	
Sweep Time	1 s	4.01 ms	32.1 ms	
Detector	Sample	RMS	RMS	
Ref. Level	-20 dBm	0 dBm	0 dBm	
RF Att. Mode	Manual	Auto	Auto	
RF Attenuator	10 dB	10 dB	10 dB	
Preamp	On	Off	Off	
Sweep Points	601	4001	32001	
Stop After Sweep	Off	Off	Off	
Transducer	None	None	None	
Limit Check	Absolute	Absolute	Absolute	
Abs Limit Start	10 dBm	-13 dBm	-13 dBm	
Abs Limit Stop	10 dBm	-13 dBm	-13 dBm	

Note that this example is primarily meant to demonstrate the remote control commands, it does not necessarily reflect a useful measurement task.

```
//-----
*RST
//Resets the instrument

SWE:MODE LIST
//Activates spurious emissions measurement

INIT:CONT OFF
//Selects single sweep mode.
```

//Spurious measurement has to be in single sweep mode to be configured //and no sweep operation may be running!

```
// If required, a sweep stop can be ensured by INIT:IMM;*WAI
//-----Configuring a Sweep List-----
LIST:RANG:COUNt?
//Returns the number of measurement ranges in the sweep list.
LIST:RANG4:DEL
```

Configuring and Performing Measurements

```
//Deletes the fourth range.
LIST:RANG1:STAR 10000000
//Defines a start frequency of 10 MHz for range 1.
LIST:RANG1:STOP 100000000
//Defines a stop frequency of 100 MHz for range 1.
LIST:RANG1:BAND 500000
//Defines a resolution bandwidth of 500 kHz in range 1.
LIST:RANG1:BAND:VID 5000000
//Defines a video bandwidth of 5 MHz for range 1.
LIST:RANG1:INP:ATT:AUTO OFF
//Turns automatic selection of the input attenuation in range 1 off.
LIST:RANG1:INP:ATT 10
//Defines a input attenuation of 10 dBm for range 1.
LIST:RANG1:FILT:TYPE CFILter
//Selects an Channel filter for range 1.
LIST:RANG1:DET SAMP
//Selects a sample detector for range 1.
LIST:RANG1:POIN 601
//Defines 601 sweep points for range 1.
LIST:RANG1:RLEV -20
//Defines a reference level of -20 dBm for range 1.
LIST:RANG1:SWE:TIME 5
//Defines a manual sweep time of 5 second for range 1.
// Create a transducer that can be used.
// It has to cover the corresponding frequency range
//
SENSel:CORRection:TRANsducer:SELect 'Test'
SENSe1:CORRection:TRANsducer:UNIT 'DB'
SENSel:CORRection:TRANsducer:COMMent 'Test Transducer'
// Frequency Span 0 MHz to 20 Ghz
SENSel:CORRection:TRANsducer:DATA 0e6,5, 20e9,3
SENS:LIST:RANG1:TRAN 'Test'
//Includes a transducer called 'Test' for range 1.
LIST:RANG1:LIM:STAR 10
LIST:RANG1:LIM:STOP 10
//Defines an absolute limit of 10 dBm at the start and stop frequencies of range 1.
LIST:RANG:LIM:STAT ON
//Turns the limit check for all ranges on.
//-----Configuring the List Evaluation-----
CALC:PSE:MARG 100
//Sets the threshold to 100 dB.
CALC: PSE: PSH ON
//Marks all peaks in the diagram with blue squares.
```

Configuring and Performing Measurements

```
CALC:PSE:SUBR 10

//Sets 10 peaks per range to be stored in the list.

//-----Performing the Measurement----

INIT:SPUR; *WAI

//Performs a spurious emission measurement and waits until the sweep has finished.

//-----Retrieving Results-----

CALC:LIM1:FAIL?

//Queries the result of the check for limit line 1.

TRAC? SPUR

//Queries the peak list of the spurious emission measurement.
```

11.5.8 Analyzing Statistics (APD, CCDF)

All remote control commands specific to statistical measurements are described here.

 Activating : 	Statistical Measurements	823
	Statistical Measurements	
	Ranges for Statistical Measurements	
 Scaling the 	Diagram	827
	a Statistical Measurement	
•	Results	
	ng Example: Measuring Statistics	

11.5.8.1 Activating Statistical Measurements

The following commands activate statistical measurements.

CALCulate <n>:STATistics:APD[:STATe]</n>	823
CALCulate <n>:STATistics:CCDF[:STATe]</n>	824

CALCulate<n>:STATistics:APD[:STATe] <State>

This command turns the APD measurement on and off.

Suffix:

<n> Window

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:STAT:APD ON

Switches on the APD measurement.

Manual operation: See "APD" on page 117

Configuring and Performing Measurements

CALCulate<n>:STATistics:CCDF[:STATe] <State>

This command turns the CCDF on and off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:STAT:CCDF ON

Switches on the CCDF measurement.

Manual operation: See "CCDF" on page 118

11.5.8.2 Configuring Statistical Measurements

The following commands configure the measurement.

Useful commands for configuring statistical measurements described elsewhere:

• [SENSe:]BANDwidth[:RESolution] on page 887

Remote commands exclusive to statistical measurements:

CALCulate <n>:MARKer<m>:Y:PE</m></n>	ERCent824	4
CALCulate <n>:STATistics:NSAM</n>	ples	4

CALCulate<n>:MARKer<m>:Y:PERCent < Probability>

This command sets a marker to a particular probability value. You can query the corresponding level with CALCulate<n>:MARKer<m>:X.

Using the command turns delta markers into normal markers.

This command is available for CCDF measurements.

Suffix:

<n> Window <m> Marker

Parameters:

<Probability> Range: 0 % to 100 %

Example: CALC1:MARK:Y:PERC 95PCT

Positions marker 1 to a probability of 95 %.

Manual operation: See "Percent Marker (CCDF only)" on page 264

CALCulate<n>:STATistics:NSAMples <Samples>

This command defines the number of samples included in the analysis of statistical measurement functions.

Configuring and Performing Measurements

Suffix:

<n> Window

Parameters:

<Samples> Range: Min: 100, Max: depends on the RBW filter

*RST: 100000

Example: CALC:STAT:NSAM 500

Sets the number of measurement points to be acquired to 500.

Manual operation: See "Number of Samples" on page 265

11.5.8.3 Using Gate Ranges for Statistical Measurements

The following commands control gated statistical measurements.

[SENSe:]SWEep:EGATe:TRACe <t>:COMMent</t>	825
[SENSe:]SWEep:EGATe:TRACe:PERiod	825
[SENSe:]SWEep:EGATe:TRACe <t>:STARt<range></range></t>	826
[SENSe:]SWEep:EGATe:TRACe <t>[:STATe<range>]</range></t>	
[SENSe:]SWEep:EGATe:TRACe <t>:STOP<range></range></t>	

[SENSe:]SWEep:EGATe:TRACe<t>:COMMent < Comment>

This command defines a comment for the gate of a particular trace.

Suffix:

<t> Trace

Parameters:

<Comment> String containing the comment.

Example: SWE:EGAT:TRAC1:COMM 'MyComment'

Defines a comment for the gate in trace 1.

Manual operation: See "Comment" on page 266

[SENSe:]SWEep:EGATe:TRACe:PERiod <Length>

This command defines the length of the gate for all traces.

The gate length applies to all traces.

Parameters:

<Length> Range: 100 ns to 1000 s

*RST: 2 ms

Example: SWE:EGAT:TRAC1:PER 5ms

Defines the period for gated triggering to 5 ms.

Manual operation: See "Period" on page 266

Configuring and Performing Measurements

[SENSe:]SWEep:EGATe:TRACe<t>:STARt<range> <Time>

This command defines the start time for a gate range.

Suffix:

<t> Trace < 1...3

gate range

Parameters:

<Time> The value range depends on the gate period you have set for

the selected trace with [SENSe:]SWEep:EGATe:TRACe:

PERiod. The following rules apply:

• the start time may not be higher than the length of the gate

• the start time may not be lower than the stop time of the gate

range of a lower order

The reset values depend on the gate range.

• for gate range 1, the start time is 0 ms

• for gate range 3, the start time is 2 ms

• for gate range 5, the start time is 4 ms

Example: SWE:EGAT:TRAC1:STAR1 3ms

Sets the Starting point for range 1 on trace 1 at 3 ms.

Manual operation: See "Range <x> Start/Stop" on page 266

[SENSe:]SWEep:EGATe:TRACe<t>[:STATe<range>] <State>

This command includes or excludes a gate range for a particular trace.

Suffix:

<t> Trace < range> 1...3

gate range

Parameters:

<State> ON | OFF

*RST: OFF

Example: SWE:EGAT:TRAC1:STAT1 ON

Activates gate range 1 for trace 1.

Manual operation: See "Gated Trigger" on page 265

See "Range <x> Use" on page 266

[SENSe:]SWEep:EGATe:TRACe<t>:STOP<range> <Time>

This command defines the stop time for a gate range.

Suffix:

<t> Trace

Configuring and Performing Measurements

<range> 1...3

gate range

Parameters:

<Time> The value range depends on the gate period you have set for

the selected trace with [SENSe:] SWEep:EGATe:TRACe:

PERiod. The following rules apply:

• the stop time may not be higher than the length of the gate

• the stop time may not be lower than the start time

The reset values depend on the gate range.

• for gate range 1, the stop time is 1 ms

• for gate range 3, the stop time is 3 ms

• for gate range 5, the stop time is 5 ms

Example: SWE:EGAT:TRAC1:STOP1 5ms

Sets the stopping point for range 1 on trace 1 at 5 ms.

Manual operation: See "Range <x> Start/Stop" on page 266

11.5.8.4 Scaling the Diagram

The following commands set up the diagram for statistical measurements.

CALCulate <n>:STATistics:PRESet</n>	827
CALCulate <n>:STATistics:SCALe:AUTO ONCE</n>	828
CALCulate <n>:STATistics:SCALe:X:RANGe</n>	828
CALCulate <n>:STATistics:SCALe:X:RLEVel</n>	828
CALCulate <n>:STATistics:SCALe:Y:LOWer</n>	829
CALCulate <n>:STATistics:SCALe:Y:UNIT</n>	
CALCulate <n>:STATistics:SCALe:Y:UPPer</n>	829

CALCulate<n>:STATistics:PRESet

This command resets the scale of the diagram (x- and y-axis).

- Reference level (x-axis)
 0.0 dBm
- Display range (x-axis) for APD measurements 100 dB
- Display range (x-axis) for CCDF measurements 20 dB
- Upper limit of the y-axis
- Lower limit of the y-axis 1E-6

Suffix:

<n> Window

Example: CALC:STAT:PRES

Resets the scaling for statistical functions

Configuring and Performing Measurements

Usage: Event

Manual operation: See "Default Settings" on page 268

CALCulate<n>:STATistics:SCALe:AUTO ONCE

This command initiates an automatic scaling of the diagram (x- and y-axis).

To obtain maximum resolution, the level range is set as a function of the measured spacing between peak power and the minimum power for the APD measurement and of the spacing between peak power and mean power for the CCDF measurement. In addition, the probability scale for the number of test points is adapted.

To get valid results, you have to perform a complete sweep with synchronization to the end of the auto range process. This is only possible in single sweep mode.

Suffix:

<n> Window

Parameters:

ONCE

Example: CALC:STAT:SCAL:AUTO ONCE; *WAI

Adapts the level setting for statistical measurements.

Usage: Event

Manual operation: See "Adjust Settings" on page 265

CALCulate<n>:STATistics:SCALe:X:RANGe <Range>

This command defines the display range of the x-axis for statistical measurements.

The effects are identical to DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe].

Suffix:

<n> Window

Parameters:

<Range> Range: 1 dB to 200 dB

*RST: 100 dB

Example: CALC:STAT:SCAL:X:RANG 20dB

Manual operation: See "Range" on page 268

CALCulate<n>:STATistics:SCALe:X:RLEVel <RefLevel>

This command sets the reference level for statistical measurements. The effects are identical to DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel.

Note that in case of statistical measurements the reference level applies to the x-axis.

Suffix:

<n> Window

Configuring and Performing Measurements

Parameters:

<RefLevel> The unit is variable.

If a reference level offset is included, the range is adjusted by

that offset.

Range: -130 dBm to 30 dBm

*RST: 0 dBm

Example: CALC:STAT:SCAL:X:RLEV -60dBm

Manual operation: See "Ref Level" on page 268

CALCulate<n>:STATistics:SCALe:Y:LOWer < Magnitude>

This command defines the lower vertical limit of the diagram.

Suffix:

<n> Window

Parameters:

<Magnitude> The number is a statistical value and therefore dimensionless.

Range: 1E-9 to 0.1

*RST: 1E-6

Example: CALC:STAT:SCAL:Y:LOW 0.001

Manual operation: See "Y-Max / Y-Min" on page 268

CALCulate<n>:STATistics:SCALe:Y:UNIT <Unit>

This command selects the unit of the y-axis.

Suffix:

<n> Window

Parameters:

<Unit> PCT | ABS

*RST: ABS

Example: CALC:STAT:SCAL:Y:UNIT PCT

Sets the percentage scale.

Manual operation: See "Y-Unit" on page 268

CALCulate<n>:STATistics:SCALe:Y:UPPer <Magnitude>

This command defines the upper vertical limit of the diagram.

Suffix:

<n> Window

Configuring and Performing Measurements

Parameters:

<Magnitude> The number is a statistical value and therefore dimensionless.

Range: 1E-5 to 1.0

*RST: 1.0

Example: CALC:STAT:SCAL:Y:UPP 0.01

Manual operation: See "Y-Max / Y-Min" on page 268

11.5.8.5 Performing a Statistical Measurement

The following commands are required to perform a statistical measurement:

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.8.6 Retrieving Results

The following commands are required to retrieve the measurement results.

Useful commands for retrieving results described elsewhere:

CALCulate<n>:MARKer<m>:X on page 991

Remote commands exclusive to statistical results

CALCulate <n>:STATistics:CCDF:X<t>?</t></n>	830
CALCulate <n>:STATistics:RESult<t>?</t></n>	831

CALCulate<n>:STATistics:CCDF:X<t>? < Probability>

This command queries the results of the CCDF.

Suffix:

<n> Window <t> Trace

Query parameters:

<Probability> P0_01

Level value for 0.01 % probability

P0 1

Level value for 0.1 % probability

P1

P1: Level value for 1 % probability

P10

Level value for 10 % probability

Example: CALC:STAT:CCDF:X1? P10

Returns the level values that are over 10 % above the mean

value.

Usage: Query only

Configuring and Performing Measurements

Manual operation: See "CCDF" on page 118

CALCulate<n>:STATistics:RESult<t>? <ResultType>

This command queries the results of a CCDF or ADP measurement for a specific trace.

Suffix:

<n> irrelevant <t> Trace

Parameters:

<ResultType> MEAN

Average (=RMS) power in dBm measured during the measure-

ment time.

PEAK

Peak power in dBm measured during the measurement time.

CFACtor

Determined crest factor (= ratio of peak power to average

power) in dB.

ALL

Results of all three measurements mentioned before, separated

by commas: <mean power>,<peak power>,<crest factor>

Example: CALC:STAT:RES2? ALL

Reads out the three measurement results of trace 2. Example of

answer string: 5.56,19.25,13.69 i.e. mean power: 5.56 dBm,

peak power 19.25 dBm, crest factor 13.69 dB

Usage: Query only

Manual operation: See "APD" on page 117

See "CCDF" on page 118

11.5.8.7 Programming Example: Measuring Statistics

This example demonstrates how to determine statistical values for a measurement in a remote environment using the gated statistics example described in Chapter 5.8.4, "APD and CCDF Basics - Gated Triggering", on page 262.

Configuring and Performing Measurements

Gate Ranges				
		Trace 1		
	Comment	GSM - useful part		
-	Period	4.615 ms		
	Range 1 Use	On		
	Range 1 Start	15 μ s		
	Range 1 Stop	557.8 µs		
	Range 2 Use	Off		
	Range 2 Start	2 ms		
1	Range 2 Stop	3 ms		
	Range 3 Use	Off		
-	Range 3 Start	4 ms		
1	n 0.0.	_		

```
//----Configuring the measurement -----
*RST
//Reset the instrument
TRIG:SOUR EXT
\ensuremath{\text{//Defines}} the use of an external trigger.
TRIG:HOLD 25us
//Defines a trigger offset of 25 \mu s_{\star}
CALC:STAT:APD ON
//Activates APD measurement.
CALC:STAT:NSAM 1000
//Sets the number of samples to be included in the statistical evaluation to 1000.
//-----Defining Gate ranges -----
SWE:EGAT:TRAC1:COMM 'GSM - useful part'
//{\tt Defines} a comment for the gate
SWE:EGAT:TRAC1:PER 4.61536ms
//{\rm Sets} the gate period to 4.61536ms.
SWE:EGAT:TRAC1:STAR1 15us
//Sets the start of range 1 to 15 \mu s.
SWE:EGAT:TRAC1:STOP1 557.8us
//Sets the end of range 1 to 15 \mu s (start time) + 542.77 \mu s (useful part) = 557.8 \mu s.
SWE:EGAT:TRAC1:STAT1 ON
//Activates the use of range 1.
//----Performing the Measurement----
INIT: CONT OFF
//Selects single sweep mode.
INIT; *WAI
//Initiates a new measurement and waits until the sweep has finished.
//-----Retrieving Results-----
```

Configuring and Performing Measurements

```
CALC:STAT:RES1? MEAN
//Returns the mean average power for the useful part of the GSM signal.
//---- Determining the CCDF values-----
CALC:STAT:CCDF ON
//Activates CCDF measurement.
CALC:MARK2:Y:PERC 95PCT
//Sets marker 2 to the 95% probability value.
INIT: *WAI
//Initiates a new measurement and waits until the sweep has finished.
CALC:STAT:CCDF:X? P1
//Returns the level value for 10% probability for the CCDF.
CALC:MARK2:X?
//Returns the level for a probability of 95%.
//---- Scaling the diagram -----
CALC:STAT:SCAL:X:RLEV -70dBm
//Sets the reference level to -70 dBm (x-axis!)
CALC:STAT:SCAL:X:RANG 20dB
//Defines a power level range of 20 dB for the x-axis
CALC:STAT:SCAL:Y:LOW 0.0001
//Sets the minimum of the y-axis to 0.01% probability
CALC:STAT:SCAL:Y:UPP 1.0
//Sets the maximum of the y-axis to 100% probability
CALC:STAT:SCAL:Y:UNIT PCT
//Displays percentage values on y-axis scale
```

11.5.9 Measuring the Time Domain Power

All remote control commands specific to time domain power measurements are described here.

	Configuring the Measurement	833
•	Performing a Time Domain Power Measurement	836
•	Retrieving Measurement Results	837
•	Programming Example: Time Domain Power.	842

11.5.9.1 Configuring the Measurement

The following remote commands measure the time domain power.

Useful commands for time domain power measurements described elsewhere

- CALCulate<n>:MARKer<m>:X:SLIMits:LEFT
- CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT
- CALCulate<n>:MARKer<m>:X:SLIMits[:STATe]

Configuring and Performing Measurements

Remote commands exclusive to time domain power measurements

CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AOFF</m></n>	834
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AVERage</m></n>	834
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PHOLd</m></n>	835
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary[:STATe]</m></n>	835
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe]</m></n>	835
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe]</m></n>	836
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe]</m></n>	836
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe]</m></n>	836

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AOFF

This command turns all time domain power evaluation modes off.

Suffix:

<n> Window <m> Marker Usage: Event

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AVERage <State>

This command switches on or off averaging for the active power measurement in zero span in the window specified by the suffix <n>. If activated, a time domain value is calculated from the trace after each sweep; in the end, all values are averaged to calculate the final result.

The number of results required for the calculation of average is defined with [SENSe:] AVERage<n>: COUNt .

Averaging is reset by switching it off and on again.

Synchronization to the end of averaging is only possible in single sweep mode.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: SUMM: AVER ON

Switches on the calculation of average.

AVER: COUN 200

Sets the measurement counter to 200.

INIT; *WAI

Starts a sweep and waits for the end.

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd <State>

This command switches on or off the peak-hold function for the active power measurement in zero span in the window specified by the suffix <n>. If activated, the peak for each sweep is compared to the previously stored peak; the maximum of the two is stored as the current peak.

The peak-hold function is reset by switching it off and on again.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary[:STATe] <State>

This command turns time domain power measurements on and off. This measurement in only available in zero span.

When you turn the measurement on, the R&S FSW activates a marker and positions it on the peak power level in the marker search range.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Time Domain Power" on page 118

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe] <State>

This command turns the evaluation to determine the mean time domain power on and off.

The R&S FSW performs the measurement on the trace marker 1 is positioned on.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Results" on page 274

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe] <State>

This command turns the evaluation to determine the positive peak time domain power on and off.

The R&S FSW performs the measurement on the trace marker 1 is positioned on.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Results" on page 274

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe] <State>

This command turns the evaluation to determine the RMS time domain power on and off.

The R&S FSW performs the measurement on the trace marker 1 is positioned on.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Results" on page 274

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe] < State>

This command turns the evaluation to determine the standard deviation of the time domain power on and off.

The R&S FSW performs the measurement on the trace marker 1 is positioned on.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

11.5.9.2 Performing a Time Domain Power Measurement

The following commands are required to perform a Time Domain Power measurement:

Configuring and Performing Measurements

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.9.3 Retrieving Measurement Results

The following commands query the results for time domain measurements.

Measuring the Mean Power

CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:AVERage:RESult?</m></n>	837	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:PHOLd:RESult?</m></n>		
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult?</m></n>	838	

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:AVERage:RESult?

This command queries the average mean time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>:MARKer<m>:
FUNCtion:SUMMary:AVERage on page 834.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:PHOLd:RESult?

This command queries the maximum mean time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Configuring and Performing Measurements

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult?

This command queries the mean time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<MeanPower> Mean power of the signal during the measurement time.

Usage: Query only

Manual operation: See "Results" on page 274

Measuring the Peak Power

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:AVERage:RESult?

This command queries the average positive peak time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: AVERage on page 834.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<PeakPower> Peak power of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:PHOLd:RESult?

This command queries the maximum positive peak time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd.

Configuring and Performing Measurements

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<PeakPower> Peak power of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult?

This command queries the positive peak time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<PeakPower> Peak power of the signal during the measurement time.

Usage: Query only

Manual operation: See "Results" on page 274

Measuring the RMS Power

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:AVERage:RESult?

This command queries the average RMS of the time domain power. The query is only possible if averaging has been activated previously using CALCulate < n >:

MARKer<m>: FUNCtion: SUMMary: AVERage on page 834.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Configuring and Performing Measurements

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:PHOLd:RESult?

This command queries the maximum RMS of the time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult?

This command gueries the RMS of the time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<RMSPower> RMS power of the signal during the measurement time.

Usage: Query only

Manual operation: See "Results" on page 274

Measuring the Standard Deviation

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:AVERage:RESult?

This command queries the average standard deviation of the time domain power. The query is only possible if averaging has been activated previously using CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:AVERage on page 834.

Configuring and Performing Measurements

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:PHOLd:RESult?

This command queries the maximum standard deviation of the time domain power. The query is only possible if the peak hold function has been activated previously using CALCulate<n>: MARKer<m>: FUNCtion: SUMMary: PHOLd.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?

This command queries the standard deviation of the time domain power.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<StandardDeviation> Standard deviation of the signal during the measurement time.

Usage: Query only

Configuring and Performing Measurements

11.5.9.4 Programming Example: Time Domain Power

This programming example demonstrates the measurement example described in Chapter 5.9.6, "Measurement Example", on page 276 in a remote environment.

```
//----Configuring the Measurement-----
*RST
//Resets the instrument
INIT: CONT OFF
//Turns on single sweep mode.
FREQ:CENT 1.8GHz
//Sets the center frequency to 1.8 GHz.
BAND:RES 100kHz
//Sets the bandwidth to 100 kHz.
SWE:TIME 10ms
//Sets the sweep time to 640 \mu s. \,
FREQ:SPAN 0
//Sets the instrument to zero span.
CALC:MARK:FUNC:SUMM:STAT ON
//Turns on time domain power measurements.
CALC:MARK:FUNC:SUMM:MEAN ON
CALC:MARK:FUNC:SUMM:PPE ON
CALC:MARK:FUNC:SUMM:RMS ON
//Turns the evalution of the mean, peak and RMS time domain power.
CALC:MARK:X:SLIM ON
//Activates limit lines for evaluation.
CALC:MARK:X:SLIM:LEFT 1ms
//Sets the left limit line to 326 \mu s.
CALC:MARK:X:SLIM:RIGH 6ms
//Sets the right limit line to 538 \mu s.
//----Performing the Measurement-----
INIT; *WAI
//Initiates the measurement and waits until the measurement is finished.
//-----Retrieving the Results-----
CALC: MARK: FUNC: SUMM: MEAN: RES?
```

CALC: MARK: FUNC: SUMM: PPE: RES?

Configuring and Performing Measurements

CALC:MARK:FUNC:SUMM:RMS:RES?
//Queries the mean, peak and RMS time domain power.

11.5.10 Measuring the Harmonic Distortion

All remote control commands specific to harmonic distortion measurements are described here.

•	Activating the Measurement	843
	Configuring the Measurement	
	Performing the Measurement	
	Retrieving Results	
		846

11.5.10.1 Activating the Measurement

The following command activates harmonic distortion measurement.

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics[:STATe] <State>

This command turns the harmonic distortion measurement on and off.

Note the following:

- If you perform the measurement in the frequency domain, the search range for the frequency of the first harmonic, whose power is determined, is defined by the last span.
- If you perform the measurement in the time domain, the current center frequency is used as the frequency of the first harmonic. Thus, the frequency search is bypassed. The first harmonic frequency is set by a specific center frequency in zero span before the harmonic measurement is started.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:HARM ON

Activates the harmonic distortion measurement.

Manual operation: See "Harmonic Distortion" on page 118

11.5.10.2 Configuring the Measurement

The following commands control the harmonic distortion measurement.

Configuring and Performing Measurements

Useful commands for harmonic distortion measurements described elsewhere

- CALCulate<n>:MARKer<m>:FUNCtion:CENTer on page 881
- [SENSe:] SWEep:TIME:AUTO on page 894

Remote commands exclusive to harmonic distortion measurements

844	CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO</m></n>
844	CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics</m></n>
844	CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:PRESet</m></n>

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO <State>

This command selects the resolution bandwidth of the harmonic in respect to the bandwidth of the first harmonic.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF | 0 | 1

OFF | 0 identical ON | 1 a multiple *RST: 1

Manual operation: See "Harmonic RBW Auto" on page 282

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics < NoHarmonics>

This command selects the number of harmonics that the R&S FSW looks for.

Suffix:

<n> Window <m> Marker

Parameters:

<NoHarmonics> Range: 1 to 26

*RST: 10

Manual operation: See "No. of Harmonics" on page 281

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:PRESet

This command initiates a measurement to determine the ideal configuration for the harmonic distortion measurement.

The method depends on the span.

Frequency domain (span > 0)

Configuring and Performing Measurements

Frequency and level of the first harmonic are determined and used for the measurement list.

Time domain (span = 0)
 The level of the first harmonic is determined. The frequency remains unchanged.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Adjust Settings" on page 282

11.5.10.3 Performing the Measurement

The following commands are required to perform a harmonic distortion measurement:

INITiate<n>[:IMMediate] on page 729, see Chapter 11.5.1, "Performing Measurements", on page 726

11.5.10.4 Retrieving Results

The following commands retrieve the results of the harmonic distortion measurement.

CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?84</m></n>	15
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:LIST?84</m></n>	45

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:DISTortion? TOTal

This command queries the total harmonic distortion of the signal.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<Result> <Distortion_%>,<Distortion_dB>

Pair of values, one showing the THD in %, one in dB.

Usage: Query only

Manual operation: See "Harmonic Distortion" on page 118

CALCulate<n>:MARKer<m>:FUNCtion:HARMonics:LIST?

This command queries the position of the harmonics.

Configuring and Performing Measurements

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<Harmonics> Returns one value for every harmonic.

The first value is the absolute power of the first harmonic. The

unit is variable.

The other values are power levels relative to the first harmonic.

The unit for these is dB.

Usage: Query only

Manual operation: See "Harmonic Distortion" on page 118

11.5.10.5 Example: Measuring the Harmonic Distortion

```
//----Configuring the Measurement-----
*RST
//Resets the instrument.
INIT: CONT OFF
//Turns on single sweep mode.
CALC:MARK:FUNC:HARM ON
//Turns on the harmonic distortion measurement.
CALC:MARK:FUNC:HARM:NHAR 3
//Defines three harmonics to be found.
CALC:MARK:FUNC:HARM:BAND:AUTO OFF
//Turns off automatic bandwidth selection.
CALC:MARK:FUNC:HARM:PRES
//Determines the ideal configuration.
//----Performing the Measurement-----
INIT; *WAI
//Initiates the measurement and finishes the sweep.
//-----Retrieving the Results-----
CALC:MARK:FUNC:HARM:LIST?
//Queries the position of the harmonics.
CALC:MARK:FUNC:HARM:DIST? TOT
//Queries the total harmonic distortion.
```

Configuring and Performing Measurements

11.5.11 Measuring the Third Order Intercept Point

Determining the TOI	847
Programming Evample: Measuring the TOI	2/18

11.5.11.1 Determining the TOI

All remote control commands specific to TOI measurements are described here.

Useful commands for TOI measurements described elsewhere

- CALCulate<n>:DELTamarker<m>:X on page 989
- CALCulate<n>:DELTamarker<m>:X:RELative? on page 1004
- CALCulate<n>:DELTamarker<m>:Y? on page 1004
- CALCulate<n>:MARKer<m>:X on page 991
- CALCulate<n>:MARKer<m>:Y? on page 1005

Remote commands exclusive to TOI measurements

847	CALCulate <n>:MARKer<m>:FUNCtion:TOI[:STATe]</m></n>
848	CALCulate <n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE.</m></n>
848	CALCulate <n>:MARKer<m>:FUNCtion:TOI:RESult?</m></n>

CALCulate<n>:MARKer<m>:FUNCtion:TOI[:STATe] <State>

This command initiates a measurement to determine the third intercept point.

A two-tone signal with equal carrier levels is expected at the RF input of the instrument. Marker 1 and marker 2 (both normal markers) are set to the maximum of the two signals. Delta marker 3 and delta marker 4 are positioned to the intermodulation products. The delta markers can be modified separately afterwards with the CALCulate<n>: DELTamarker<m>: X command.

The third-order intercept is calculated from the level spacing between the normal markers and the delta markers.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:TOI ON

Switches on the measurement of the third-order intercept.

Manual operation: See "TOI" on page 118

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE

This command initiates a search for signals in the current trace to determine the third intercept point.

Suffix:

<n>, <m> irrelevant

Parameters:

ONCE

Example: CALC:MARK:FUNC:TOI:SEAR ONCE

Executes the search for 2 signals and their intermodulation prod-

uct at the currently available trace.

Usage: Event

Manual operation: See "Search Signals" on page 289

CALCulate<n>:MARKer<m>:FUNCtion:TOI:RESult?

This command queries the results for the third order intercept point measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<TOI> Third order intercept point.

Example: INIT:CONT OFF

Switches to single sweep mode. CALC: MARK: FUNC: TOI ON

Switches the intercept measurement.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: TOI: RES?

Outputs the measured value.

Usage: Query only

Manual operation: See "TOI" on page 118

11.5.11.2 Programming Example: Measuring the TOI

This example demonstrates how to determine the TOI in a remote environment.

```
//-----Configuring the measurement -----*RST
```

Configuring and Performing Measurements

```
//Reset the instrument
CALC:MARK:FUNC:TOI ON
//Activate TOI measurement.
//----Performing the Measurement----
INIT:CONT OFF
//Selects single sweep mode.
CALC:MARK:FUNC:TOI:SEAR ONCE
//Initiates a search for signals in the current trace.
//-----Retrieving Results-----
CALC:MARK:FUNC:TOI:RES?
//Returns the TOI.
```

11.5.12 Measuring the AM Modulation Depth

All remote control commands specific to AM modulation depth measurements are described here.

- Example: Measuring the AM Modulation Depth......851

11.5.12.1 Configuring and Performing the Measurement

The following commands control the measurement.

Useful commands for AM modulation depth described elsewhere

- CALCulate<n>: DELTamarker<m>: X on page 989
- CALCulate<n>:DELTamarker<m>:X:RELative? on page 1004
- CALCulate<n>:MARKer<m>:X on page 991

Remote commands exclusive to AM modulation depth measurements

849	CALCulate <n>:MARKer<m>:FUNCtion:MDEPth[:STATe]</m></n>
850	CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE</m></n>
850	CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:RESult?</m></n>

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth[:STATe] <State>

This command turns the AM Modulation Depth measurement on and off.

To work correctly, the measurement requires an AM modulated signal.

Suffix:

Window <n> <m> Marker

Configuring and Performing Measurements

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "AM Mod Depth" on page 118

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE

This command initiates a search for the signals required for the AM depth measurement.

Note that the command does not perform a new measurement, but looks for the signals on the current trace.

Suffix:

<n> Window <m> Marker

Parameters:

ONCE

Example: CALC:MARK:FUNC:MDEP:SEAR ONCE

Executes the search of an AM modulated signal at the currently

available trace.

Usage: Event

Manual operation: See "Search Signals" on page 294

CALCulate<n>:MARKer<m>:FUNCtion:MDEPth:RESult?

This command queries the results of the AM modulation depth measurement...

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Return values:

<ModulationDepth> Modulation depth in %.

Usage: Query only

Manual operation: See "AM Mod Depth" on page 118

Configuring and Performing Measurements

11.5.12.2 Example: Measuring the AM Modulation Depth

This example demonstrates how to determine the AM modulation depth in a remote environment. Note that without a real input signal this measurement will not return useful results.

```
//----Configuring the measurement -----
//Reset the instrument
FREQ:CENT 100MHz
//Set center frequency
FREQ:SPAN 10KHz
// Set span
CALC:MARK:FUNC:MDEP ON
//Activate AM modulation depth measurement.
//----Performing the Measurement----
INIT: CONT OFF
//Selects single sweep mode.
INIT: IMM
// Perform a single measurement
CALC:MARK:FUNC:MDEP:SEAR ONCE
//Initiates a search for signals in the current trace.
//-----Retrieving Results-----
CALC:MARK:FUNC:MDEP:RES?
//Queries the measurement results.
//If the results are not accurate, change the position of the
//the temporary markers manually.
//----Changing the position of the temp markers----
CALC:MARK:X 100MHZ
//Positions the reference marker on 100 MHz.
CALC:DELT2:X 5KHZ
//Positions delta marker 2 and 3 at a distance of 5 kHz to the reference marker.
CALC:DELT3:X 1KHZ
//Corrects the position of delta marker 3 by 1 kHz.
CALC:MARK:FUNC:MDEP:RES?
//Queries the measurement results for the repositioned markers.
```

11.5.13 Remote Commands for EMI Measurements

The following commands are required to perform EMI measurements in a remote environment. This measurement requires the R&S FSW-K54 option.

The following tasks specific to the EMI application are described here:

Configuring and Performing Measurements

	 Activating EMI Measurement. Configuring EMI Markers. Configuring the EMI Final Test. Configuring EMI Limit Lines. Controlling LISN. Retrieving EMI Results. Evaluating the Results. Programming Example: EMI Measurement. 					
11.5.13.1	Activating EMI Meas	surement				
	EMI measurement m	ust be activated explicitely.				
		r <m>:FUNCtion:FMEasurement:STATe</m>	852			
	CALCulate <n>:MAF</n>	:Ker <m>:FUNCtion:FMEasurement:STATe <state></state></m>				
	This command turns	the EMI measurement marker functionality on and off.				
	Suffix: <n>, <m></m></n>	irrelevant				
	Parameters: <state></state>	ON OFF				
	Manual operation:	See "EMI" on page 119				
11.5.13.2	Configuring EMI Ma	rkers				
	The commands requ	red to configure EMI markers are described here.				
	Useful commands for	configuring EMI markers described elsewhere:				
		MARKer <m>[:STATe] on page 991 DELTamarker<m>[:STATe] on page 989</m></m>				
		MARKer <m>[:STATe] on page 991</m>				
		DELTamarker <m>[:STATe] on page 989</m>				
		DELTamarker <m>:MREF on page 988 MARKer<m>:LINK:TO:MARKer<m> on page 990</m></m></m>				
	CALCulate <n>:</n>	DELTamarker <m>:LINK:TO:MARKer<m> on page 987 DELTamarker<m>:LINK on page 987</m></m></m>				
		MARKer <m>: TRACe on page 991</m>				
	Remote commands	exclusive to configuring EMI markers				
		narker <m>:FUNCtion:FMEasurement:DETector</m>	853			
		r <m>:FUNCtion:FMEasurement:DETector</m>				

Configuring and Performing Measurements

CALCulate<n>:DELTamarker<m>:FUNCtion:FMEasurement:DETector < Detector>

This command selects the detector for a specific deltamarker during the final evaluation.

If the deltamarker is not yet active, the command also turns the deltamarker on.

Suffix:

<n> irrelevant <m> Marker

Parameters:

<Detector> OFF

no final measurement is performed

AVER

average detector

CAV

CISPR Average detector

CRMS

RMS Average detector

POS

maximum peak detector

QPE

quasipeak detector *RST: OFF

Manual operation: See "Final Test Detector" on page 308

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:DETector < Detector>

This command selects the detector for a specific marker during the final measurement.

If the marker is not yet active, the command also turns the marker on.

Suffix:

<n> Window <m> Marker

Configuring and Performing Measurements

Parameters:

<Detector> OFF

no final measurement is performed

AVER

average detector

CAV

CISPR Average detector

CRMS

RMS Average detector

POS

maximum peak detector

QPE

quasipeak detector *RST: OFF

Manual operation: See "Final Test Detector" on page 308

11.5.13.3 Configuring the EMI Final Test

The commands required to configure the EMI final test are described here.

Useful commands for configuring EMI final tests described elsewhere:

- [SENSe:]BANDwidth[:RESolution]:TYPE on page 888
- [SENSe:]BANDwidth[:RESolution] on page 887
- DISPlay[:WINDow<n>]:TRACe:X:SPACing on page 881

Remote commands exclusive to configuring EMI final tests

CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO854</m></n>
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO854</m></n>
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:DWELI</m></n>

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO <State>

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO <State>

This command turns an automatic peak search on and off. If enabled, the search is performed automatically after each sweep.

Suffix:

<n>, <k> irrelevant

Parameters:

<State> ON | OFF | 0 | 1

*RST: 0

Example: CALC:MARK:FUNC:FME:PEAK:AUTO ON

Activates automatic marker peak search after each sweep.

Configuring and Performing Measurements

Manual operation: See "Automatic Peak Search" on page 310

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:DWELI <Time>

This command defines the dwell time during the final measurement.

Suffix:

<n>, <m> irrelevant

Parameters:

<Time> Range: min value to max value

*RST: 1 s
Default unit: seconds

Manual operation: See "Dwell Time" on page 310

11.5.13.4 Configuring EMI Limit Lines

The commands required to define limit lines for EMI measurements are described in Chapter 11.8.4, "Configuring Display and Limit Lines", on page 1045.

11.5.13.5 Controlling LISN

The commands required to control a LISN are described here.

INPut:LISN:PHASe	855
INPut:LISN:FILTer:HPASs[:STATe]	855
INPut:LISN:TYPE	856

INPut:LISN:PHASe < Phase >

This command selects the phase of the LISN you want to measure.

Parameters:

<Phase> L1

L2 L3 N

*RST: L1

Example: INP:LISN:PHAS N

Selects the N phase.

Manual operation: See "Phase" on page 312

INPut:LISN:FILTer:HPASs[:STATe] <State>

This command turns the 150 kHz highpass filter for the ENV216 network on and off.

Configuring and Performing Measurements

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:LISN:HPAS ON

Turns the filter on.

Manual operation: See "150 kHz Highpass Filter" on page 312

INPut:LISN:TYPE <LISNType>

This command selects the type of network.

Parameters:

<LISNType> TWOPhase

2-Phase networks **FOURphase**

4-Phase networks

ESH3z5 ESH2z5 ENV4200 ENV216

*RST: ---

Example: INP:LISN:TYPE ESH3z5

Selects the ESH3z5 network.

Manual operation: See "LISN Type" on page 312

11.5.13.6 Retrieving EMI Results

The commands required to retrieve EMI measurement results are described here.

Useful commands for retrieving EMI measurement results described elsewhere:

- CALCulate<n>:MARKer<m>:X on page 991
 CALCulate<n>:DELTamarker<m>:X on page 989
- CALCulate<n>:MARKer<m>:Y? on page 1005
 CALCulate<n>:DELTamarker<m>:Y? on page 1004

Remote commands exclusive to retrieving EMI measurement results

CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:RESult?</m></n>	857
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:RESult?</m></n>	. 857
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>:CONDition ?</k></m></n>	. 857
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:LIMit<k>:CONDition ?</k></m></n>	.858
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>:DELTa?</k></m></n>	. 858
CALCulate <n>:MARKer<m>:FUNCtion:EMFasurement:LIMit<k>:DFLTa?</k></m></n>	859

Configuring and Performing Measurements

CALCulate<n>:DELTamarker<m>:FUNCtion:FMEasurement:RESult? <Result>

This command queries the result of the EMI measurement at the deltamarker position.

Suffix:

<n> irrelevant <m> Marker

Return values:

<Result> Absolute power level measured during final EMI measurement.

Example: CALC:DELT3:FUNC:FME:RES?

Queries the result of delta marker 3.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:RESult? <Result>

This command queries the result of the EMI measurement at the marker position.

Suffix:

<n> Window <m> Marker

Return values:

<Result> Power level. The unit depends on the one you have currently

set.

Example: CALC:MARK1:FUNC:FME:RES?

Queries the result of marker 1.

Usage: Query only

CALCulate<n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>: CONDition? <Condition>

This command queries the condition of a deltamarker position in relation to a certain limit line.

Suffix:

<n> irrelevant <m> Marker <k> Limit line

Return values:

<Condition>

The deltamarker has passed the limit check.

1

The deltamarker is inside the margins of a limit line.

2

The deltamarker has failed the limit check.

Configuring and Performing Measurements

Example: CALC: DELT2: FUNC: FME: LIM2: COND?

Queries the condition of deltamarker 2 in relation to limit line 2.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:LIMit<k>:CONDition ?

<Condition>

This command queries the condition of a marker position in relation to a certain limit line.

Suffix:

<n> Window <m> Marker <k> Limit line

Return values:

<Condition> 0

The marker has passed the limit check.

1

The marker is inside the margins of a limit line.

2

The marker has failed the limit check.

Example: CALC:MARK1:FUNC:FME:LIM2:COND?

Queries the condition of marker 1 in relation to limit line 2.

Usage: Query only

CALCulate<n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>:DELTa?

This command queries the vertical distance from the deltamarker position to the limit line. The unit is dB.

If the deltamarker has been assigned to a different trace than the limit line, or if no limit ine is defined for the marker position, the command returns -200.

Suffix:

<n> irrelevant</br>
<m> Marker

<k> Limit line

Return values:

<Amplitude> Vertical distance to the limit line in dB.

Example: CALC: DELT3: FUNC: FME: LIM2: DELT?

Queries the distance of deltamarker 3 to the second limit line.

Usage: Query only

Configuring and Performing Measurements

CALCulate<n>:MARKer<m>:FUNCtion:FMEasurement:LIMit<k>:DELTa?

This command queries the vertical distance from the marker position to the limit line. The unit is dB.

If the marker has been assigned to a different trace than the limit line, or if no limit ine is defined for the marker position, the command returns -200.

Suffix:

<n> Window <m> Marker <k> Limit line

Return values:

<Amplitude> Vertical distance to the limit line in dB.

Example: CALC:MARK3:FUNC:FME:LIM2:DELT?

Queries the distance of marker 3 to the second limit line.

Usage: Query only

11.5.13.7 Evaluating the Results

The commands required to control the demodulation of signals at the marker position are described in Chapter 11.8.3.14, "Marker Demodulation", on page 1034.

11.5.13.8 Programming Example: EMI Measurement

This example demonstrates how to detect electromagnetic interferences (EMI) in a remote environment.

```
//---- Preparing the measurement -----
//Reset the instrument
*RST
//Define the span to be analyzed
FREQ:STAR 150kHz
FREQ:STOP 1GHz
//Configure two traces, one with peak detector, one with average detector
DISP:TRAC1 ON
DISP:TRAC2 ON
DET1 POS
DET2 AVER
//---- Configuring the measurement -----
//Select EMI measurement
CALC:MARK:FUNC:FME:STAT ON
//Configure CISPR filter and RBW
BAND: TYPE CISP
BAND:RES 1MHz
```

Configuring and Performing Measurements

```
//Define the dwell time
CALC:MARK:FUNC:FME:DWEL 1ms
//Configure an auto peak search
CALC:MARK:FUNC:FME:PEAK:AUTO ON
//Configure a logarithmic frequency scaling
DISP:TRAC:X:SPAC LOG
//Configure marker demodulation for marker 1
CALC:MARK:FUNC:DEM ON
//Increase the number of sweep points
SWE:POIN 200000
//Set the unit to V
CALC:UNIT:POW V
//----- Configuring EMI markers -----
//Activate 6 normal EMI markers
CALC:MARK1 ON
CALC:MARK2 ON
CALC:MARK3 ON
CALC:MARK4 ON
CALC:MARK5 ON
CALC:MARK6 ON
//Set markers 1 to 3 on trace 1. Set markers 4 to 6 on trace 2.
CALC:MARK1:TRAC 1
CALC:MARK2:TRAC 1
CALC:MARK3:TRAC 1
CALC:MARK4:TRAC 2
CALC:MARK5:TRAC 2
CALC:MARK6:TRAC 2
//Use CISPR average detector for all markers during final test
CALC:MARK1:FUNC:FME:DET CAV
CALC:MARK2:FUNC:FME:DET CAV
CALC:MARK3:FUNC:FME:DET CAV
CALC:MARK4:FUNC:FME:DET CAV
CALC:MARK5:FUNC:FME:DET CAV
CALC:MARK6:FUNC:FME:DET CAV
//---- Configuring a limit check -----
//Select EN55011A.LIN as limit line 1
CALC:LIM1:NAME "EN55011A.LIN"
//Configure trace 1 to be checked against limit line 1
CALC:LIM1:TRAC1:CHEC ON
//Clear the results of all previous limit checks
CALC:LIM:CLE
//---- Performing the Measurement -----
//Select single sweep mode.
INIT: CONT OFF
//Initiate a new measurement and wait until the sweep has finished.
INIT; *WAI
```

Configuring and Performing Measurements

```
//---- Retrieving Results -----
//Query the results for the EMI measurement
//First marker frequency, then final test level
CALC:MARK1:X?
CALC:MARK1:FUNC:FME:RES?
CALC:MARK2:X?
CALC:MARK2:FUNC:FME:RES?
CALC:MARK3:X?
CALC:MARK3:FUNC:FME:RES?
CALC:MARK4:X?
CALC:MARK4:FUNC:FME:RES?
CALC:MARK5:X?
CALC:MARK5:FUNC:FME:RES?
CALC:MARK6:X?
CALC:MARK6:FUNC:FME:RES?
//Query the result of the limit check for trace 1
CALC:LIM1:FAIL?
//Query the result of the limit check and the distance from the limit line
//for each marker
CALC:MARK1:FUNC:FME:LIM1:COND?
CALC:MARK1:FUNC:FME:LIM1:DELT?
CALC:MARK2:FUNC:FME:LIM1:COND?
CALC:MARK2:FUNC:FME:LIM1:DELT?
CALC:MARK3:FUNC:FME:LTM1:COND?
CALC:MARK3:FUNC:FME:LIM1:DELT?
CALC: MARK4: FUNC: FME: LIM1: COND?
CALC:MARK4:FUNC:FME:LIM1:DELT?
CALC:MARK5:FUNC:FME:LIM1:COND?
CALC:MARK5:FUNC:FME:LIM1:DELT?
CALC:MARK6:FUNC:FME:LIM1:COND?
CALC: MARK 6: FUNC: FME: LIM1: DELT?
```

11.5.14 List Evaluations

A list evaluation is a multiple power measurement that measures the power at up to 200 frequencies. The measurement itself is a time domain measurement. Note that if you set a span greater than 0, the R&S FSW aborts the list evaluation.

Noise cancellation in list evaluations

Noise cancellation is also available in zero span and thus also for list evaluations. See "Noise Cancelation" on page 157 for details.

List evaluations allow for a different instrument setup for each frequency you want to measure. You can define most of the settings with the commands described here. Settings not covered by the commands listed below can be controlled with the common commands (see Chapter 11.7, "Setting Basic Measurement Parameters",

Configuring and Performing Measurements

on page 880. Note that these commands have to be sent prior to the commands that control the list evaluation.

In case of a triggered measurement, a separate trigger event is required for each frequency to initiate that measurement. Note that you have to make changes to the trigger level in the time domain in order for it to take effect for the List Evaluation commands.

The list evaluation is incompatible to other measurement functions (e.g. marker functionality or statistics). If you use a command that controls those functions, the R&S FSW aborts the list evaluation.

The R&S FSW also aborts the list evaluation if you end the remote session.

The commands can be used in two different ways.

- Instrument setup, measurement and querying of the results in a single command line. This method causes the least delay between the measurement and the result output. However, it requires the control computer to wait for the response from the instrument.
- Instrument setup and querying of the result list at the end of the measurement:
 With this method, the control computer may be used for other activities while the
 measurement is being performed. However, more time is needed for synchronization via service request.

11.5.14.1 Performing List Evaluations

All remote control commands specific to list evaluations (which are available via remote control only) are described here.

Useful commands for list evaluation described elsewhere:

• [SENSe:] POWer:NCORrection on page 897

Remote commands exclusive to list evaluation

[SENSe:]LIST:POWer:RESult?	862
[SENSe:]LIST:POWer[:SEQuence]	863
[SENSe:]LIST:POWer:SET	
[SENSe:]LIST:POWer:STATe	865

[SENSe:]LIST:POWer:RESult?

This command gueries the results of the list evaluation.

This command may be used to obtain measurement results in an asynchronous way, using the service request mechanism for synchronization to the end of the measurement.

If there are no results, the command returns an error.

Configuring and Performing Measurements

Return values:

<PowerLevel> Power level for each frequency included in the measurement.

The command returns up to 3 power levels for each frequency, depending on the number of evaluation modes you have turned

on with [SENSe:]LIST:POWer:SET.

The result is a list of floating point values separated by commas.

The unit depends on CALCulate<n>:UNIT:POWer.

Usage: Query only

[SENSe:]LIST:POWer[:SEQuence] <Frequency>, <RefLevel>, <RFAttenuation>, <ElAttenuation>, <FilterType>, <RBW>, <VBW>, <MeasTime>, <TriggerLevel>

This command configures and initiates the List Evaluation measurement.

The list can contain up to 200 entries (frequencies). You can define a different instrument setup for each frequency that is in the list.

If you synchronize the measurement with *OPC, the R&S FSW produces a service request when all frequencies have been measured and the number of individual measurements has been performed.

Note that using the command as a query initiates the measurement and returns the results if all frequencies have been measured. For more information on querying the results see [SENSe:]LIST:POWer:RESult?.

Parameters:

<Frequency> Defines the frequency. Each frequency corresponds to one list

entry.

Range: 0 to Fmax

Default unit: Hz

<RefLevel> Defines the reference level for a list entry.

Range: -130 to 30

Increment: 0.01 Default unit: dBm

<RFAttenuation> Defines the RF attenuation for a list entry.

Range: 0 to 70

Increment: 1
Default unit: dB

<EIAttenuation> Defines the electronic attenuation for a list entry.

Range: 0 to 30

Increment: 1 Default unit: dB

<FilterType> Selects the filter type for a list entry. For more information see

[SENSe:]BANDwidth[:RESolution]:TYPE.

<RBW> Defines the resolution bandwidth for a list entry.

<VBW> Defines the video bandwidth for a list entry.

Configuring and Performing Measurements

<MeasTime> Defines the measurement time for a list entry.

Range: $1 \mu s$ to 16000 s

<TriggerLevel> The trigger level must be 0.

Return values:

<PowerLevel> Power level for each frequency included in the measurement.

The command returns up to 3 power levels for each frequency, depending on the number of evaluation modes you have turned

on with [SENSe:]LIST:POWer:SET.

The result is a list of floating point values separated by commas.

The unit depends on CALCulate<n>:UNIT:POWer.

[SENSe:]LIST:POWer:SET <PeakPower>, <RMSPower>, <AVGPower>, <TriggerSource>, <TriggerSlope>, <TriggerOffset>, <GateLength>

This command defines global List Evaluation parameters.

These parameters are valid for every frequency you want to measure.

The state of the first three parameters (<PeakPower>, <RMSPower> and <AVG-Power>) define the number of results for each frequency in the list.

Note that you have to set the trigger level after sending this command.

Parameters:

<PeakPower> ON | OFF | 0 | 1

Turns peak power evaluation on and off.

*RST: 1

<RMSPower> ON | OFF | 0 | 1

Turns RMS power evaluation on and off.

*RST: 0

<AVGPower> ON | OFF | 0 | 1

Turns average power evaluation on and off.

*RST: 0

<TriggerSource> EXTernal | EXT2 | EXT3 | IMMediate | IFPower | RFPower |

VIDeo

Selects a trigger source.

For more information see Configuring Triggered and Gated Mea-

surements.

<TriggerSlope> NEGative | POSitive

Selects the trigger slop.

<TriggerOffset> Defines the trigger delay.

Range: negative measurement time to 30 s

*RST: 0 Default unit: s

Configuring and Performing Measurements

<GateLength> Defines the gate length for gated measurements.

Setting 0 seconds turns gated measurements off.

To perform gated measurements, the trigger source must be dif-

ferent from IMMediate.

Range: 31.25 ns to 30 s

*RST: 0 s

[SENSe:]LIST:POWer:STATe <State>

This command turns the List Evaluation off.

Parameters:

<State> OFF

*RST: OFF

11.5.14.2 Example: Performing List Evaluation

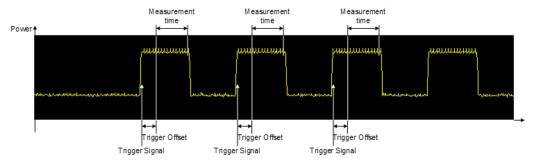
The following example shows a list evaluation with the following configuration.

No	Freq [MHz]	Ref Level [dBm]	RF Attenu- ation [dB]	EI Attenu- ation [dB]	Filter	RBW	VBW	Meas Time	Trigger Level
1	935.2	0	10		Normal	1 MHz	3 MHz	440 µs	0
2	935.4	0	10	10	Channel	30 kHz	100 kHz	440 µs	0
3	935.6	0	10	20	Channel	30 kHz	100 kHz	440 µs	0

```
----Measurement with synchronization via service request----
*ESE 1
*SRE 32
\ensuremath{//} Configures the status reporting system to produce a service request.
LIST: POW: SET ON, ON, OFF, EXT, POS, 10us, 434us
//\mathrm{Turns} on the list evaluation, configures the global list evaluation settings and
//evaluates the peak and RMS power.
LIST: POW
935.2MHZ, 0, 10, OFF, NORM, 1MHZ, 3MHZ, 440us, 0,
935.4MHZ, 0, 10, 10, CFIL, 30KHZ, 100KHZ, 440us, 0,
935.6MHZ, 0, 10, 20, CFIL, 30KHZ, 100KHZ, 440us, 0;
*OPC
//Defines a list with 3 entries and initiates the measurement with synchronization to the end
//Analyzer produces a service request
//On service request:
SENS:LIST:POW:RES?
//Returns the results of the measurements, two for each frequency (peak and RMS power).
----Initiliazing the measurement and querying results simultaneously-----
```

LIST: POW?

Configuring and Performing Measurements


```
935.2MHZ,0,10,OFF,NORM,1MHZ,3MHZ,440us,0,
935.4MHZ,0,10,10,CFIL,30KHZ,100KHZ,440us,0,
935.6MHZ,0,10,20,CFIL,30KHZ,100KHZ,440us,0
//Defines a list with 3 entries, initiates the measurement and queries the results.
//Result example:
-28.3,-30.6,-38.1
```

11.5.15 Measuring the Pulse Power

All remote control commands specific to measuring the mean or peak pulse power (e.g. bursts in various telecommunications standards) are described here. This measurement is available via remote control only.

The Pulse Power measurement is a gated measurement that determines the power over a particular number of pulses. The measurement is controlled by an external trigger or the video signal. A separate trigger event is required for each burst included in the measurement. In case of an external trigger source, the trigger level corresponds to the TTL level. In case of a video signal, you can define any threshold.

The figure below shows the relations between the available trigger settings.

The measurement is always on trace 1, either with the peak detector to determine the peak power or the RMS detector to determine the RMS power. Overall, you can configure the measurement independent of the instrument setup with the commands listed below only, which results in faster measurements.

The Pulse Power measurement is incompatible to other measurement functions (e.g. marker functionality or statistics). If you use a command that controls those functions, the R&S FSW aborts the Pulse Power measurement.

The R&S FSW also aborts the Pulse Power measurement if you end the remote session.

The commands can be used in two different ways.

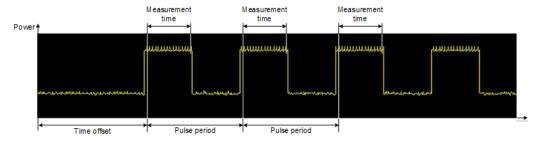
- Instrument setup, measurement and querying of the results in a single command line. With this method, there is the least delay between the measurement and the result output. However, it requires the control computer to wait for the response from the instrument.
- Instrument setup and querying of the result list at the end of the measurement: With this method, the control computer may be used for other activities while the

Configuring and Performing Measurements

measurement is being performed. However, more time is needed for synchronization via service request.

11.5.15.1 Performing Pulse Power Measurements

The following commands control pulse power measurements.


	37
[SENSe:]MPOWer:FTYPe86	8
[SENSe:]MPOWer:RESult[:LIST]?86	
[SENSe:]MPOWer:[:SEQuence]	
[SENSe:]MPOWer:RESult:MIN?	

CALCulate<n>:MARKer<m>:FUNCtion:MSUMmary

<TimeOffset>,<MeasTime>,<PulsePeriod>,<#OfPulses>

This command configures power measurements on pulses in the time domain.

To evaluate the pulse power, the R&S FSW uses the data captured during a previous measurement. The data recorded during the set measurement time is combined to a measured value for each pulse according to the detector specified and the indicated number of results is output as a list.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<TimeOffset> Defines a time offset to start the measurement at the first pulse

of a trace.
*RST:

*RST: 0 Default unit: s

<MeasTime> Defines the measurement time.

Default unit: s

<PulsePeriod> Defines the pulse period

Configuring and Performing Measurements

<#OfPulses> Defines the number of pulses to measure.

Example: CALC:MARK:FUNC:MSUM 50US,450US,576.9US,8

Evaluates data that contains 8 pulses during a measurement time of 450 µs and a pulse period of 576.9 µs. The evaluation

starts with an offset of 50 µs.

[SENSe:]MPOWer:FTYPe <FilterType>

This command selects the filter type for pulse power measurements.

The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

Parameters:

<FilterType> CFILter

NORMal

P5 RRC

CISPr | PULSe

CISPR (6 dB) - requires EMI (R&S FSW-K54) option

Return value for query is always PULS.

MIL

MIL Std (6 dB) - requires EMI (R&S FSW-K54) option

[SENSe:]MPOWer:RESult[:LIST]?

This command queries the results of the pulse power measurement.

This command may be used to obtain measurement results in an asynchronous way, using the service request mechanism for synchronization to the end of the measurement.

If there are no results, the command returns an error.

Return values:

<PulsePower> List of pulse powers.

The number of values depends on the number of pulses you

have been measuring. The unit is dBm.

Usage: Query only

[SENSe:]MPOWer:[:SEQuence] < Frequency>, < RBW>, < MeasTime>,

<TriggerSource>, <TriggerLevel>, <TriggerOffset>, <Detector>, <#OfPulses>

This command configures and initiates the pulse power measurement.

Configuring and Performing Measurements

The R&S FSW caches all measurement parameters that you can set with this command. If you use the command repeatedly, the R&S FSW only changes those settings that you have actually changed before initiating the measurement. Thus, measurement times are kept as low as possible.

If you synchronize the measurement with *OPC, the R&S FSW produces a service request when all frequencies have been measured and the number of individual measurements has been performed.

Note that using the command as a query initiates the measurement and returns the results if all frequencies have been measured. For more information on querying the results see [SENSe:]LIST:POWer:RESult?.

Parameters:

<Frequency> Defines the pulse frequency.

Range: 0 to Fmax

Default unit: Hz

<RBW> Defines the resolution bandwidth.

<MeasTime> Defines the measurement time.

Range: $1 \mu s$ to 30 s

<TriggerSource> EXTernal | EXT2 | EXT3 | VIDeo

Selects a trigger source.

For more information see Configuring Triggered and Gated Mea-

surements.

<TriggerLevel> Defines a trigger level.

The trigger level is available for the video trigger. In that case,

the level is a percentage of the diagram height.

In case of an external trigger, the R&S FSW uses a fix TTL level.

Range: 0 to 100 Default unit: PCT

<TriggerOffset> Defines the trigger delay.

Range: 0 s to 30 s

*RST: 0 s Default unit: s

<Detector> Selects the detector and therefore the way the measurement is

evaluated.

MEAN

Calculates the RMS pulse power.

PEAK

Calculates the peak pulse power.

<#OfPulses> Defines the number of pulses included in the measurement.

Range: 1 to 32001

Configuring and Performing Measurements

Return values:

<PowerLevel> Pulse power level.

The result is a list of floating point values separated by commas.

The unit is dBm.

[SENSe:]MPOWer:RESult:MIN?

This command queries the lowest pulse power that has been measured during a pulse power measurement.

If there are no results, the command returns an error.

Return values:

<PulsePower> Lowest power level of the pulse power measurement.

The unit is dBm.

Usage: Query only

11.5.15.2 Example: Performing a Pulse Power Measurement

The following example shows a pulse power measurement.

```
----Measurement with synchronization via service request----
*ESE 1
*SRE 32
\ensuremath{//} Configures the status reporting system to produce a service request.
//Selects a Gaussian filter for the measurement.
MPOW 935.2MHZ, 1MHZ, 434us, VID, 50, 5us, MEAN, 20;
//Configures and initiates a measurement on 20 pulses with synchronization to the end.
//Analyzer produces a service request
//On service request:
MPOW: RES?
//Returns the results of the measurements (20 power levels).
MPOW: RES: MIN?
//Returns the lowest of the 20 power level that have been measured.
----Initiliazing the measurement and querying results simultaneously-----
MPOW? 935.2MHZ, 1MHZ, 434us, VID, 50, 5us, MEAN, 20
//Configures, initiates and queries the results of the measurement.
//Result example:
-99.96534729, -99.7452468872, -99.6610794067, -100.327224731, -100.96686554, -101.450386047, -100.96686554, -100.9668654, -100.9668654, -100.9668654, -100.9668654, -100.9668654, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.9668664, -100.966866, -100.966866, -100.966866, -100.966866, -100.966866, -100.966866, -100.966866, -100.966866, -100.966866, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -100.96666, -100.96686, -100.96686, -100.96686, -100.96686, -100.96686, -
-124.620399475,-116.97366333
```

Configuring the Result Display

11.6 Configuring the Result Display

The commands required to configure the screen display in a remote environment are described here.

The tasks for manual operation are described in Chapter 7.1, "Result Display Configuration", on page 451.

•	General Window Commands	871
•	Working with Windows in the Display	872
	Examples: Configuring the Result Display.	

11.6.1 General Window Commands

The following commands are required to configure general window layout, independent of the application.

Note that the suffix <n> always refers to the window in the currently selected measurement channel (see INSTrument[:SELect] on page 720).

DISPlay:FORMat	71
DISPlay[:WINDow <n>]:SIZE</n>	71

DISPlay:FORMat <Format>

This command determines which tab is displayed.

Parameters:

<Format> SPLit

Displays the MultiView tab with an overview of all active chan-

nels

(See Chapter 4.1, "R&S MultiView", on page 101).

SINGle

Displays the measurement channel that was previously focused.

*RST: SING

Example: DISP:FORM SPL

DISPlay[:WINDow<n>]:SIZE <Size>

This command maximizes the size of the selected result display window *temporarily*. To change the size of several windows on the screen permanently, use the LAY: SPL command (see LAYout: SPLitter on page 875).

Suffix:

<n> Window

Configuring the Result Display

Parameters:

<Size> LARGe

Maximizes the selected window to full screen. Other windows are still active in the background.

SMALI

Reduces the size of the selected window to its original size. If more than one measurement window was displayed originally,

these are visible again.

*RST: SMALI

Example: DISP:WIND2:SIZE LARG

11.6.2 Working with Windows in the Display

The following commands are required to change the evaluation type and rearrange the screen layout for a measurement channel as you do using the SmartGrid in manual operation. Since the available evaluation types depend on the selected application, some parameters for the following commands also depend on the selected measurement channel.

Note that the suffix <n> always refers to the window in the currently selected measurement channel (see INSTrument[:SELect] on page 720).

LAYout:ADD[:WINDow]?	872
LAYout:CATalog[:WINDow]?	873
LAYout:IDENtify[:WINDow]?	874
LAYout:REMove[:WINDow]	874
LAYout:REPLace[:WINDow]	874
LAYout:SPLitter	875
LAYout:WINDow <n>:ADD?</n>	876
LAYout:WINDow <n>:IDENtify?</n>	877
LAYout:WINDow <n>:REMove</n>	877
LAYout:WINDow <n>:REPLace</n>	877

LAYout:ADD[:WINDow]? <WindowName>,<Direction>,<WindowType>

This command adds a window to the display in the active measurement channel.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

To replace an existing window, use the ${\tt LAYout:REPLace[:WINDow]}$ command.

Parameters:

<WindowName> String containing the name of the existing window the new win-

dow is inserted next to.

By default, the name of a window is the same as its index. To determine the name and index of all active windows, use the

LAYout: CATalog[:WINDow]? query.

Configuring the Result Display

Direction the new window is added relative to the existing win-

dow.

<WindowType> text value

Type of result display (evaluation method) you want to add.

See the table below for available parameter values.

Return values:

<NewWindowName> When adding a new window, the command returns its name (by

default the same as its number) as a result.

Example: LAY:ADD? '1', LEFT, MTAB

Result:

Adds a new window named '2' with a marker table to the left of

window 1.

Usage: Query only

Manual operation: See "Diagram" on page 452

See "Marker Table" on page 452 See "Marker Peak List" on page 452 See "Result Summary" on page 453 See "Spectrogram" on page 453

Table 11-3: <WindowType> parameter values for the Spectrum application

Parameter value	Window type
DIAGram	Diagram
MTABle	Marker table
PEAKlist	Marker peak list
RSUMmary	Result summary
SGRam	Spectrogram

LAYout:CATalog[:WINDow]?

This command queries the name and index of all active windows in the active measurement channel from top left to bottom right. The result is a comma-separated list of values for each window, with the syntax:

<WindowName_1>,<WindowIndex_1>..<WindowName_n>,<WindowIndex_n>

Return values:

<WindowName> string

Name of the window.

In the default state, the name of the window is its index.

<WindowIndex> numeric value

Index of the window.

Configuring the Result Display

Example: LAY:CAT?

Result:

'2',2,'1',1

Two windows are displayed, named '2' (at the top or left), and '1'

(at the bottom or right).

Usage: Query only

LAYout:IDENtify[:WINDow]? <WindowName>

This command queries the **index** of a particular display window in the active measurement channel.

Note: to query the **name** of a particular window, use the LAYout:WINDow<n>: IDENtify? query.

Query parameters:

<WindowName> String containing the name of a window.

Return values:

<WindowIndex> Index number of the window.

Example: LAY:WIND:IDEN? '2'

Queries the index of the result display named '2'.

Response:

2

Usage: Query only

LAYout:REMove[:WINDow] <WindowName>

This command removes a window from the display in the active measurement channel.

Parameters:

<WindowName> String containing the name of the window.

In the default state, the name of the window is its index.

Example: LAY: REM '2'

Removes the result display in the window named '2'.

Usage: Event

LAYout:REPLace[:WINDow] <WindowName>,<WindowType>

This command replaces the window type (for example from "Diagram" to "Result Summary") of an already existing window in the active measurement channel while keeping its position, index and window name.

To add a new window, use the LAYout:ADD[:WINDow]? command.

Configuring the Result Display

Parameters:

<WindowName> String containing the name of the existing window.

By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active measurement channel, use the LAYout:CATalog[:WINDow]?

query.

<WindowType> Type of result display you want to use in the existing window.

See LAYout: ADD [:WINDow]? on page 872 for a list of availa-

ble window types.

Example: LAY:REPL:WIND '1',MTAB

Replaces the result display in window 1 with a marker table.

LAYout:SPLitter < Index1>, < Index2>, < Position>

This command changes the position of a splitter and thus controls the size of the windows on each side of the splitter.

Compared to the DISPlay[:WINDow<n>]:SIZE on page 871 command, the LAYout:SPLitter changes the size of all windows to either side of the splitter permanently, it does not just maximize a single window temporarily.

Note that windows must have a certain minimum size. If the position you define conflicts with the minimum size of any of the affected windows, the command will not work, but does not return an error.

Figure 11-1: SmartGrid coordinates for remote control of the splitters

Parameters:

<Index1> The index of one window the splitter controls.

<Index2> The index of a window on the other side of the splitter.

Configuring the Result Display

<Position> New vertical or horizontal position of the splitter as a fraction of

the screen area (without channel and status bar and softkey

menu).

The point of origin (x = 0, y = 0) is in the lower left corner of the screen. The end point (x = 100, y = 100) is in the upper right cor-

ner of the screen. (See Figure 11-1.)

The direction in which the splitter is moved depends on the screen layout. If the windows are positioned horizontally, the splitter also moves horizontally. If the windows are positioned

vertically, the splitter also moves vertically.

Range: 0 to 100

Example: LAY:SPL 1,3,50

Moves the splitter between window 1 ('Frequency Sweep') and 3 ('Marker Table') to the center (50%) of the screen, i.e. in the fig-

ure above, to the left.

Example: LAY:SPL 1,4,70

Moves the splitter between window 1 ('Frequency Sweep') and 3

('Marker Peak List') towards the top (70%) of the screen. The following commands have the exact same effect, as any combination of windows above and below the splitter moves the

splitter vertically.
LAY:SPL 3,2,70
LAY:SPL 4,1,70
LAY:SPL 2,1,70

LAYout:WINDow<n>:ADD? <Direction>,<WindowType>

This command adds a measurement window to the display. Note that with this command, the suffix <n> determines the existing window next to which the new window is added, as opposed to LAYout:ADD[:WINDow]?, for which the existing window is defined by a parameter.

To replace an existing window, use the LAYout: WINDow<n>: REPLace command.

This command is always used as a query so that you immediately obtain the name of the new window as a result.

Suffix:

<n> Window

Parameters:

<WindowType> Type of measurement window you want to add.

See LAYout: ADD[:WINDow]? on page 872 for a list of availa-

ble window types.

Return values:

<NewWindowName> When adding a new window, the command returns its name (by

default the same as its number) as a result.

Configuring the Result Display

Example: LAY:WIND1:ADD? LEFT,MTAB

Result:

Adds a new window named '2' with a marker table to the left of

window 1.

Usage: Query only

LAYout:WINDow<n>:IDENtify?

This command queries the **name** of a particular display window (indicated by the <n> suffix) in the active measurement channel.

Note: to query the **index** of a particular window, use the LAYout:IDENtify[: WINDow]? command.

Suffix:

<n> Window

Return values:

<WindowName> String containing the name of a window.

In the default state, the name of the window is its index.

Example: LAY:WIND2:IDEN?

Queries the name of the result display in window 2.

Response:

121

Usage: Query only

LAYout:WINDow<n>:REMove

This command removes the window specified by the suffix <n> from the display in the active measurement channel.

The result of this command is identical to the LAYout: REMove [:WINDow] command.

Suffix:

<n> Window

Example: LAY:WIND2:REM

Removes the result display in window 2.

Usage: Event

LAYout:WINDow<n>:REPLace <WindowType>

This command changes the window type of an existing window (specified by the suffix <n>) in the active measurement channel.

The result of this command is identical to the LAYout:REPLace[:WINDow] command.

To add a new window, use the LAYout: WINDow<n>: ADD? command.

Configuring the Result Display

Suffix:

<n> Window

Parameters:

<WindowType> Type of measurement window you want to replace another one

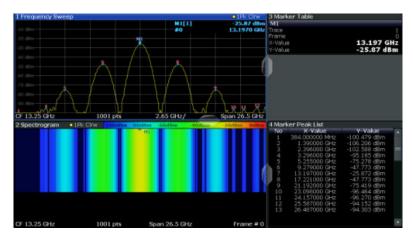
with.

See LAYout: ADD [:WINDow]? on page 872 for a list of availa-

ble window types.

Example: LAY:WIND2:REPL MTAB

Replaces the result display in window 2 with a marker table.


11.6.3 Examples: Configuring the Result Display

The following example demonstrates how to configure result displays in a remote environment.

11.6.3.1 Example 1: Adding and Arranging Windows

Starting from the default initial display in the Spectrum application (Frequency Sweep), we will configure the following result displays:

1 Frequency Sweep	3 Marker Table
2 Spectrogram	4 Marker Peak List


```
//-----Resetting the instrument -----
*RST

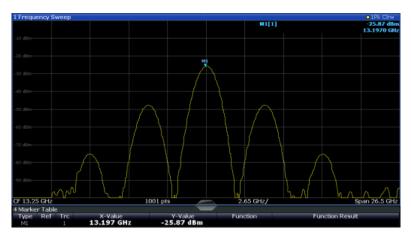
//----- Adding new windows ------
//Add a Spectrogram window beneath the Frequency Sweep window
LAY:ADD? '1',BEL,SGR

//Result: window number: '2'

//Add a Marker Table window to the right of the Frequency Sweep window
LAY:ADD? '1',RIGH,MTAB

//Result: window number: '3'

//Add a Marker Peak List window to the right of the Spectrogram window
```


Configuring the Result Display

```
LAY: WIND2: ADD? RIGH, PEAK
//Result: window number: '4'
//----- Changing the size of individual windows ------
//Move the splitter between the Frequency Sweep window and the Marker Table
//window to enlarge the spectrum display to 60% of the entire width.
LAY:SPL 1,3,60
//Move the splitter between the Spectrogram window and the Marker Peak List
//window to enlarge the Spectrogram display to 60% of the entire width.
LAY:SPL 2,4,60
//----- Querying all displayed windows -----
//Query the name and number of all displayed windows
//(from top left to bottom right)
LAY:CAT?
//Result : '1',1,'2',2,'3',3,'4',4
//---- Maximizing a Window -----
//Maximize the window "2 Spectrogram"
DISP:WIND2:SIZE LARG
//-----Restore multiple window display -----
DISP:WIND2:SIZE SMAL
```

11.6.3.2 Example 2: Replacing and Removing Windows

Starting from the display configured in Example 1: Adding and Arranging Windows, we will remove and replace result displays to obtain the following configuration:

Setting Basic Measurement Parameters

```
//---- Preparing the configuration from example 1 -----
*RST
LAY:ADD? '1',BEL,SGR
LAY: ADD? '1', RIGH, MTAB
LAY: WIND2: ADD? RIGH, PEAK
LAY:CAT?
//Result : '1',1,'2',2,'3',3,'4',4
//Remove Spectrogram
LAY:WIND2:REM //Remove Marker Table window
LAY:REM '3'
//Replace Marker Peak List window by Marker Table
LAY:REPL '4',MTAB
//----- Querying all displayed windows -----
//Query the name and number of all displayed windows (from top left to bottom right)
LAY:CAT?
//Result : '1',1,'4',4
//----- Changing the size of individual windows -----
//Move the splitter between the Frequency Sweep window and the Marker Table window
//to enlarge the spectrum display to 80% of the entire height.
LAY:SPL 1,4,80
```

11.7 Setting Basic Measurement Parameters

All commands that set measurement-independent parameters are described here.

•	Defining the Frequency and Span	880
	Configuring Bandwidth and Sweep Settings	
	Configuring the Vertical Axis (Amplitude, Scaling)	
	Configuring Triggered and Gated Measurements	
	Adjusting Settings Automatically	
	Configuring the Data Input and Output	

11.7.1 Defining the Frequency and Span

The commands required to configure the frequency and span settings in a remote environment are described here. The tasks for manual operation are described in Chapter 6.3, "Frequency and Span Configuration", on page 395.

•	Defining the Frequency Range	881
•	Configuring Signal Tracking	885

Setting Basic Measurement Parameters

11.7.1.1 Defining the Frequency Range

CALCulate <n>:MARKer<m>:FUNCtion:CENTer</m></n>	881
CALCulate <n>:MARKer<m>:FUNCtion:CSTep</m></n>	881
DISPlay[:WINDow <n>]:TRACe:X:SPACing</n>	881
[SENSe:]FREQuency:CENTer	882
[SENSe:]FREQuency:CENTer:STEP	882
[SENSe:]FREQuency:CENTer:STEP:AUTO	883
[SENSe:]FREQuency:CENTer:STEP:LINK	883
[SENSe:]FREQuency:CENTer:STEP:LINK:FACTor	883
[SENSe:]FREQuency:OFFSet	884
[SENSe:]FREQuency:SPAN	884
[SENSe:]FREQuency:SPAN:FULL	884
[SENSe:]FREQuency:STARt	885
[SENSe:]FREQuency:STOP	

CALCulate<n>:MARKer<m>:FUNCtion:CENTer

This command matches the center frequency to the frequency of a marker.

If you use the command in combination with a delta marker, that delta marker is turned into a normal marker.

Suffix:

<n> Window <m> Marker

Example: CALC:MARK2:FUNC:CENT

Sets the center frequency to the frequency of marker 2.

Usage: Event

Manual operation: See "Harmonic Distortion" on page 118

See "Center Frequency = Marker Frequency" on page 521

CALCulate<n>:MARKer<m>:FUNCtion:CSTep

This command matches the center frequency step size to the current marker frequency.

The command turns delta markers into normal markers.

Suffix:

<n> Window <m> Marker Usage: Event

DISPlay[:WINDow<n>]:TRACe:X:SPACing <ScalingType>

This command selects the scaling of the x-axis.

Setting Basic Measurement Parameters

Suffix:

<n> Window

Parameters:

<ScalingType> LOGarithmic

Logarithmic scaling.

LINear

Linear scaling.

*RST: LINear

Example: DISP:TRAC:X:SPAC LOG

Manual operation: See "Frequency Axis Scaling" on page 311

[SENSe:]FREQuency:CENTer <Frequency>

This command defines the center frequency.

Parameters:

<Frequency> The allowed range and f_{max} is specified in the data sheet.

UP

Increases the center frequency by the step defined using the

[SENSe:] FREQuency: CENTer: STEP command.

DOWN

Decreases the center frequency by the step defined using the

[SENSe:] FREQuency:CENTer:STEP command.

*RST: fmax/2 Default unit: Hz

Example: FREQ:CENT 100 MHz

FREQ:CENT:STEP 10 MHz

FREQ:CENT UP

Sets the center frequency to 110 MHz.

Usage: SCPI confirmed

Manual operation: See "Center frequency" on page 399

See "Frequency" on page 438

[SENSe:]FREQuency:CENTer:STEP <StepSize>

This command defines the center frequency step size.

You can increase or decrease the center frequency quickly in fixed steps using the SENS: FREQ UP AND SENS: FREQ DOWN commands, see [SENSe:] FREQuency: CENTer on page 882.

Parameters:

<StepSize> f_{max} is specified in the data sheet.

Range: 1 to fMAX *RST: 0.1 x span

Default unit: Hz

Setting Basic Measurement Parameters

Example: FREQ:CENT 100 MHz

FREQ:CENT:STEP 10 MHz

FREQ: CENT UP

Sets the center frequency to 110 MHz.

Manual operation: See "Center Frequency Stepsize" on page 400

[SENSe:]FREQuency:CENTer:STEP:AUTO <State>

This command couples or decouples the center frequency step size to the span.

In time domain (zero span) measurements, the center frequency is coupled to the RBW.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: FREQ:CENT:STEP:AUTO ON

Activates the coupling of the step size to the span.

[SENSe:]FREQuency:CENTer:STEP:LINK < Coupling Type>

This command couples and decouples the center frequency step size to the span or the resolution bandwidth.

Parameters:

<CouplingType> SPAN

Couples the step size to the span. Available for measurements

in the frequency domain.

RBW

Couples the step size to the resolution bandwidth. Available for

measurements in the time domain.

OFF

Decouples the step size.

*RST: SPAN

Example: FREQ:CENT:STEP:LINK SPAN

Manual operation: See "Center Frequency Stepsize" on page 400

[SENSe:]FREQuency:CENTer:STEP:LINK:FACTor <Factor>

This command defines a step size factor if the center frequency step size is coupled to the span or the resolution bandwidth.

Parameters:

<Factor> 1 to 100 PCT

*RST: 10

Example: FREQ:CENT:STEP:LINK:FACT 20PCT

Setting Basic Measurement Parameters

Manual operation: See "Center Frequency Stepsize" on page 400

[SENSe:]FREQuency:OFFSet <Offset>

This command defines a frequency offset.

If this value is not 0 Hz, the application assumes that the input signal was frequency shifted outside the application. All results of type "frequency" will be corrected for this shift numerically by the application.

See also "Frequency Offset" on page 401.

Note: In MSRA/MSRT mode, the setting command is only available for the MSRA/MSRT Master. For MSRA/MSRT slave applications, only the query command is available.

Parameters:

<Offset> Range: -100 GHz to 100 GHz

*RST: 0 Hz

Example: FREQ:OFFS 1GHZ

Usage: SCPI confirmed

Manual operation: See "Frequency Offset" on page 401

[SENSe:]FREQuency:SPAN

This command defines the frequency span.

If you set a span of 0 Hz in the Spectrum application, the R&S FSW starts a measurement in the time domain.

Parameters:

 The minimum span for measurements in the frequency domain

is 10 Hz. For SEM and spurious emission measurements, the

minimum span is 20 Hz.

Range: 0 Hz to fmax *RST: Full span

Usage: SCPI confirmed

Manual operation: See "Zero Span" on page 116

See "Span" on page 399 See "Zero Span" on page 400 See "Last Span" on page 400

[SENSe:]FREQuency:SPAN:FULL

This command restores the full span.

Usage: Event

SCPI confirmed

Manual operation: See "Full Span" on page 400

Setting Basic Measurement Parameters

[SENSe:]FREQuency:STARt <Frequency>

This command defines a start frequency for measurements in the frequency domain.

Parameters:

<Frequency> 0 to (fmax - min span)

*RST: 0

Example: FREQ:STAR 20MHz

Usage: SCPI confirmed

Manual operation: See "Frequency Sweep" on page 115

See "Start / Stop" on page 399

[SENSe:]FREQuency:STOP <Frequency>

This command defines a stop frequency for measurements in the frequency domain.

Parameters:

<Frequency> min span to fmax

*RST: fmax

Example: FREQ:STOP 2000 MHz

Usage: SCPI confirmed

Manual operation: See "Frequency Sweep" on page 115

See "Start / Stop" on page 399

11.7.1.2 Configuring Signal Tracking

When signal tracking is activated, the maximum signal is determined after each frequency sweep and the center frequency is set to the frequency of this signal. Thus with drifting signals the center frequency follows the signal.

For more details see Chapter 6.3.1, "Impact of the Frequency and Span Settings", on page 395..

CALCulate <n>:MARKer<m>:FUNCtion:STRack[:STATe]</m></n>	885
CALCulate <n>:MARKer<m>:FUNCtion:STRack:BANDwidth</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:STRack:THReshold</m></n>	886
CAL Culate <n>:MARKer<m>:FUNCtion:STRack:TRACe</m></n>	886

CALCulate<n>:MARKer<m>:FUNCtion:STRack[:STATe] <State>

This command turns signal tracking on and off.

Suffix:

<n>, <m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Setting Basic Measurement Parameters

Manual operation: See "Signal Tracking State" on page 401

CALCulate<n>:MARKer<m>:FUNCtion:STRack:BANDwidth <Bandwidth>

This command defines the bandwidth around the center frequency that is included in the signal tracking process.

Note that you have to turn on signal tracking before you can use the command.

Suffix:

<n>, <m> irrelevant

Parameters:

<Bandwidth> Range: 10 Hz to Max span

*RST: (= span/10 on activating the function)

Default unit: Hz

Manual operation: See "Tracking Bandwidth" on page 402

CALCulate<n>:MARKer<m>:FUNCtion:STRack:THReshold <Level>

This command defines the threshold level for the signal tracking process.

Note that you have to turn on signal tracking before you can use the command.

Suffix:

<n>, <m> irrelevant

Parameters:

<Level> The unit depends on CALCulate<n>:UNIT:POWer.

Range: -130 dBm to 30 dBm

*RST: -120 dBm

Manual operation: See "Tracking Threshold" on page 402

CALCulate<n>:MARKer<m>:FUNCtion:STRack:TRACe < TraceNumber>

This command selects the trace on which the largest signal is searched for.

Suffix:

<n>, <m> irrelevant

Parameters:

<TraceNumber> 1 to 6

Range: 1 to 6

*RST: 1

Manual operation: See "Signal Track Trace" on page 402

Setting Basic Measurement Parameters

11.7.2 Configuring Bandwidth and Sweep Settings

The commands required to configure the bandwidth, sweep and filter settings in a remote environment are described here. The tasks for manual operation are described in Chapter 6.5, "Bandwidth, Filter and Sweep Configuration", on page 413.

•	Configuring the Bandwidth and Filter	887
•	Configuring the Sweep	890

11.7.2.1 Configuring the Bandwidth and Filter

[SENSe:]BWIDth[:RESolution]	887
[SENSe:]BANDwidth[:RESolution]	
[SENSe:]BWIDth[:RESolution]:AUTO	
[SENSe:]BANDwidth[:RESolution]:AUTO	888
[SENSe:]BWIDth[:RESolution]:RATio	888
[SENSe:]BANDwidth[:RESolution]:RATio	888
[SENSe:]BWIDth[:RESolution]:TYPE	888
[SENSe:]BANDwidth[:RESolution]:TYPE	888
[SENSe:]BWIDth:VIDeo	889
[SENSe:]BANDwidth:VIDeo	889
[SENSe:]BWIDth:VIDeo:AUTO	889
[SENSe:]BANDwidth:VIDeo:AUTO	889
[SENSe:]BWIDth:VIDeo:RATio	
[SENSe:]BANDwidth:VIDeo:RATio	890
[SENSe:]BWIDth:VIDeo:TYPE	890
[SENSe:]BANDwidth:VIDeo:TYPE	

[SENSe:]BWIDth[:RESolution] <Bandwidth> [SENSe:]BANDwidth[:RESolution] <Bandwidth>

This command defines the resolution bandwidth and decouples the resolution bandwidth from the span.

In the Real-Time application, the resolution bandwidth is always coupled to the span.

For statistics measurements, this command defines the **demodulation** bandwidth.

Parameters:

<Bandwidth> refer to data sheet

*RST: RBW: AUTO is set to ON; DBW: 3MHz

Example: BAND 1 MHz

Sets the resolution bandwidth to 1 MHz

Usage: SCPI confirmed

Manual operation: See "Analysis Bandwidth" on page 264

See "RBW" on page 310

See "Res BW CISPR" on page 311 See "Res BW MIL" on page 311

See "RBW" on page 438

Setting Basic Measurement Parameters

[SENSe:]BWIDth[:RESolution]:AUTO <State> [SENSe:]BANDwidth[:RESolution]:AUTO <State>

This command couples and decouples the resolution bandwidth to the span.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: BAND:AUTO OFF

Switches off the coupling of the resolution bandwidth to the

span.

Usage: SCPI confirmed

Manual operation: See "RBW" on page 310

See "Default Coupling" on page 423

[SENSe:]BWIDth[:RESolution]:RATio <Ratio> [SENSe:]BANDwidth[:RESolution]:RATio <Ratio>

This command defines the ratio between the resolution bandwidth (Hz) and the span (Hz).

Note that the ratio defined with this remote command (RBW/span) is reciprocal to that of the coupling ratio (span/RBW).

Parameters:

<Ratio> Range: 0.0001 to 1

*RST: 0.01

Example: BAND:RAT 0.1
Usage: SCPI confirmed

Manual operation: See "Span/RBW" on page 422

[SENSe:]BWIDth[:RESolution]:TYPE <FilterType> [SENSe:]BANDwidth[:RESolution]:TYPE <FilterType>

This command selects the resolution filter type.

When you change the filter type, the command selects the next larger filter bandwidth if the same bandwidth is unavailable for that filter.

The EMI-specific filter types are available if the EMI (R&S FSW-K54) measurement option is installed, even if EMI measurement is not active. For details see Chapter 5.13.3.1, "Resolution Bandwidth and Filter Types", on page 297.

Setting Basic Measurement Parameters

Parameters:

<FilterType> CFILter

Channel filters

NORMal

Gaussian filters

P5

5-pole filters

The 5-pole filter is not available for FFT sweeps.

RRC filters
CISPr | PULSe

CISPR (6 dB) - requires EMI (R&S FSW-K54) option

Return value for query is always PULS.

MIL

MIL Std (6 dB) - requires EMI (R&S FSW-K54) option

*RST: NORMal

Example: BAND: TYPE NORM

Manual operation: See "Filter Type" on page 309

See "Res BW CISPR" on page 311 See "Res BW MIL" on page 311

[SENSe:]BWIDth:VIDeo <Bandwidth> [SENSe:]BANDwidth:VIDeo <Bandwidth>

This command defines the video bandwidth.

The command decouples the video bandwidth from the resolution bandwidths.

Parameters:

<Bandwidth> refer to data sheet

*RST: AUTO is set to ON

Example: BAND:VID 10 kHz

Usage: SCPI confirmed

Manual operation: See "VBW" on page 421

[SENSe:]BWIDth:VIDeo:AUTO <State>
[SENSe:]BANDwidth:VIDeo:AUTO <State>

This command couples and decouples the video bandwidth to the resolution bandwidth.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: BAND: VID: AUTO OFF

Setting Basic Measurement Parameters

Usage: SCPI confirmed

Manual operation: See "VBW" on page 421

See "RBW/VBW" on page 422 See "Default Coupling" on page 423

[SENSe:]BWIDth:VIDeo:RATio <Ratio> [SENSe:]BANDwidth:VIDeo:RATio <Ratio>

This command defines the coupling ratio of the video bandwidth to the resolution bandwidth (RBW/VBW).

Parameters:

<Ratio> Range: 0,001 to 1000

*RST:

Example: BAND:VID:RAT 3

Sets the coupling of video bandwidth to video bandwidth =

3*resolution bandwidth

Usage: SCPI confirmed

Manual operation: See "RBW/VBW" on page 422

[SENSe:]BWIDth:VIDeo:TYPE <Mode> [SENSe:]BANDwidth:VIDeo:TYPE <Mode>

This command selects the position of the video filter in the signal path.

Parameters:

<Mode> LINear

The video filter is applied in front of the logarithmic amplifier. In linear mode, measurements with a logarithmic level scale result in flatter falling edges compared to logarithmic mode. The reason is the conversion of linear power values into logarithmic level values: if you halve the linear power, the logarithmic level

decreases by 3 dB.

LOGarithmic

The video filter is applied after the logarithmic amplifier

*RST: LOGarithmic

Example: BAND:VID:TYPE LIN

Video filter ahead of the logarithmic amplifier

11.7.2.2 Configuring the Sweep

Useful commands for configuring sweeps described elsewhere:

• [SENSe:]AVERage<n>:COUNt on page 968

[SENSe:]AVERage<n>[:STATe<t>] on page 968

• [SENSe:] AVERage<n>: TYPE on page 969

Setting Basic Measurement Parameters

Remote commands exclusive to configuring sweeps:

[SENSe:]SWEep:COUNt	891
[SENSe:]SWEep:DURation?	891
[SENSe:]SWEep:OPTimize	892
[SENSe:]SWEep:POINts	893
[SENSe:]SWEep:TIME	893
[SENSe:]SWEep:TIME:AUTO	894
[SENSe:]SWEep:TYPE	894
[SENSe:]SWEep:TYPE:USED	894
[SENSe:]BWIDth[:RESolution]:FFT	895
[SENSe:]BANDwidth[:RESolution]:FFT	895

[SENSe:]SWEep:COUNt <SweepCount>

This command defines the number of sweeps that the application uses to average traces.

In case of continuous sweep mode, the application calculates the moving average over the average count.

In case of single sweep mode, the application stops the measurement and calculates the average after the average count has been reached.

Suffix:

<n> Window

Parameters:

<SweepCount> When you set a sweep count of 0 or 1, the R&S FSW performs

one single sweep in single sweep mode.

In continuous sweep mode, if the sweep count is set to 0, a

moving average over 10 sweeps is performed.

Range: 0 to 200000

*RST: 0

Example: SWE:COUN 64

Sets the number of sweeps to 64.

INIT:CONT OFF

Switches to single sweep mode.

INIT; *WAI

Starts a sweep and waits for its end.

Usage: SCPI confirmed

Manual operation: See "Sweep / Average Count" on page 423

[SENSe:]SWEep:DURation? <Time>

This command provides an estimation of the total time required to capture the data and process it. This time span may be considerably longer than the actual sweep time (see [SENSe:]SWEep:TIME on page 893).

Tip: To determine the necessary timeout for data capturing in a remote control program, double the estimated time and add 1 second.

Setting Basic Measurement Parameters

Return values:

<Time>

Example: SWE:TIME 1s

SWE: DUR? Reply:

27.9734842578

Usage: Query only

Manual operation: See "Sweep Time" on page 421

See "Data capturing takes too long" on page 1189

[SENSe:]SWEep:OPTimize < Mode>

In FFT mode, several FFT analysis steps are required to cover the entire measurement span. The span which is covered by one FFT analysis step is called *partial span*. The partial span cannot be defined directly, but it can be optimized according to measurement requirements.

Table 11-4: Optimization parameters in FFT mode

Optimization mode	Description
DYNamic	Optimizes the dynamic range by using the narrowest possible partial span (depending on the RBW).
	The autorange function for the internal IF gain calculation is activated to obtain the best control range for the A/D converter.
SPEed	Optimizes the sweep rate by using the widest possible partial span (depending on the RBW).
	The autorange function for the internal IF gain calculation is deactivated. (Note: set the reference level accordingly to optimize the control range for the A/D converter).
	It is recommended that you set the Sweep Time to "Auto" to optimize the sweep rate.
AUTO	Uses a medium-sized partial span to obtain a compromise between a large dynamic range and a fast sweep rate.
	The autorange function for the internal IF gain calculation is activated to obtain the best control range for the A/D converter.

Note: FFT mode and external mixers (R&S FSW-B21)

The partial span optimization modes "Dynamic" and "Auto" include automatic suppression of unwanted mixing products. Thus, when using external mixers (R&S FSW-B21), use the "Speed" mode to obtain similar results in FFT mode as in frequency sweep mode.

Zero span mode

For zero span measurements, the optimization mode defines the selection of the A/D converter prefilter.

Setting Basic Measurement Parameters

Table 11-5: Optimization parameters in zero span mode

Optimization mode	Description
Dynamic	The narrowest filter possible (depending on the RBW) is used.
Speed	The widest filter possible (depending on the RBW) is used.
Auto	A medium-sized prefilter is used.

Note: EMI measurements

For EMI measurements (using R&S FSW-K54), "Dynamic" mode is not supported. "Auto" mode always uses "Speed" optimization.

Parameters:

<Mode> *RST: AUTO

Example: SWE:OPT DYN

Selects optimization for dynamic range.

Manual operation: See "Optimization" on page 424

[SENSe:]SWEep:POINts <SweepPoints>

This command defines the number of sweep points to analyze after a sweep.

Note that the number of sweep points is limited to 10001 when measuring spurious emissions.

For EMI measurements, 200001 sweep points are available.

Parameters:

<SweepPoints> Range: 101 to 100001

*RST: 1001

Example: SWE:POIN 251
Usage: SCPI confirmed

Manual operation: See "Sweep Points" on page 424

[SENSe:]SWEep:TIME <Time>

This command defines the sweep time.

In the Spectrum application, the command decouples the sweep time from the span and resolution and video bandwidths. Note that this command queries only the time required to capture the data, not to process it. To obtain an estimation of the total capture and processing time, use the [SENSe:]SWEep:DURation? command.

Parameters:

<Time> refer to data sheet

*RST: depends on current settings (determined automati-

cally)

Example: SWE:TIME 10s

Setting Basic Measurement Parameters

Usage: SCPI confirmed

Manual operation: See "Sweep Time" on page 160

See "Sweep Time" on page 421 See "Sweep Time" on page 438

[SENSe:]SWEep:TIME:AUTO <State>

This command couples and decouples the sweep time to the span and the resolution and video bandwidths.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: SWE:TIME:AUTO ON

Activates automatic sweep time.

Usage: SCPI confirmed

Manual operation: See "Harmonic Sweep Time" on page 281

See "Sweep Time" on page 421 See "Default Coupling" on page 423

[SENSe:]SWEep:TYPE <Type>

This command selects the sweep type.

Parameters:

<Type> AUTO

Automatic selection of the sweep type between sweep mode

and FFT. **FFT** mode

SWE Sween list

Sweep list

*RST: AUTO

Example: SWE:TYPE FFT

Manual operation: See "Sweep Type" on page 425

[SENSe:]SWEep:TYPE:USED

This command queries the sweep type if you have turned on automatic selection of the sweep type.

Return values:

<Type> SWE

Normal sweep

FFT mode

Setting Basic Measurement Parameters

[SENSe:]BWIDth[:RESolution]:FFT <FilterMode> [SENSe:]BANDwidth[:RESolution]:FFT <FilterMode>

Defines the filter mode to be used for FFT filters by defining the partial span size. The partial span is the span which is covered by one FFT analysis.

This command is only available when using the sweep type "FFT".

Note: this command is maintained for compatibility reasons only. For new remote control programs, use the [SENSe:]SWEep:OPTimize command.

Parameters:

<FilterMode> WIDE | AUTO | NARRow

AUTO

Automatically applies the sweep optimization mode that is best

for the current measurement.

NARRow

Optimizes the sweep mode for a large dynamic range.

WIDE

Optimizes the sweep mode for high performance.

*RST: AUTO

Example: BAND: TYPE FFT

Select FFT filter.

Example: BAND: FFT NARR

Select narrow partial span for FFT filter.

11.7.3 Configuring the Vertical Axis (Amplitude, Scaling)

The following commands are required to configure the amplitude and vertical axis settings in a remote environment.

•	Amplitude Settings	. 895
	Configuring the Attenuation	
•	Configuring a Preamplifier	.899
•	Scaling the Y-Axis	900

11.7.3.1 Amplitude Settings

The tasks for manual configuration are described in Chapter 6.4.2, "Amplitude Settings", on page 406.

Useful commands for amplitude configuration described elsewhere:

• [SENSe:]ADJust:LEVel on page 916

Setting Basic Measurement Parameters

Remote commands exclusive to amplitude configuration:

CALCulate <n>:MARKer<m>:FUNCtion:REFerence</m></n>	896
CALCulate <n>:UNIT:POWer</n>	896
UNIT <n>:POWer</n>	896
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n>	896
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n>	897
ISENSe:1POWer:NCORrection	

CALCulate<n>:MARKer<m>:FUNCtion:REFerence

This command matches the reference level to the power level of a marker.

If you use the command in combination with a delta marker, that delta marker is turned into a normal marker.

Suffix:

<n> Window <m> Marker

Example: CALC:MARK2:FUNC:REF

Sets the reference level to the level of marker 2.

Usage: Event

Manual operation: See "Reference Level = Marker Level" on page 521

CALCulate<n>:UNIT:POWer <Unit>

UNIT<n>:POWer <Unit>

This command selects the unit of the y-axis.

The unit applies to all power-based measurement windows with absolute values.

Suffix:

<n> irrelevant

Parameters:

<Unit> DBM | V | A | W | DBPW | WATT | DBUV | DBMV | VOLT |

DBUA | AMPere *RST: dBm

Example: UNIT: POW DBM

Sets the power unit to dBm.

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel <ReferenceLevel>

This command defines the reference level (for all traces in all windows).

With a reference level offset $\neq 0$, the value range of the reference level is modified by the offset.

Suffix:

<n>, <t> irrelevant

Setting Basic Measurement Parameters

Parameters:

<ReferenceLevel> The unit is variable.

Range: see datasheet

*RST: 0 dBm

Example: DISP:TRAC:Y:RLEV -60dBm

Usage: SCPI confirmed

Manual operation: See "Reference Level" on page 407

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet <Offset>

This command defines a reference level offset (for all traces in all windows).

Suffix:

<n>, <t> irrelevant

Parameters:

<Offset> Range: -200 dB to 200 dB

*RST: 0dB

Example: DISP:TRAC:Y:RLEV:OFFS -10dB

Manual operation: See "Shifting the Display (Offset)" on page 268

See "Shifting the Display (Offset)" on page 408

[SENSe:]POWer:NCORrection <State>

This command turns noise cancellation on and off.

If noise cancellation is on, the R&S FSW performs a reference measurement to determine its inherent noise and subtracts the result from the channel power measurement result (first active trace only).

For more information see "Noise Cancelation" on page 157.

Parameters:

<State> ON | OFF

*RST: OFF

Example: POW:NCOR ON

Manual operation: See "Noise Cancelation" on page 157

11.7.3.2 Configuring the Attenuation

INPut:ATTenuation	898
INPut:ATTenuation:AUTO	
INPut:EATT	
INPut:EATT:AUTO	
INPut:FATT:STATe	

Setting Basic Measurement Parameters

INPut:ATTenuation < Attenuation>

This command defines the total attenuation for RF input.

If an electronic attenuator is available and active, the command defines a mechanical attenuation (see INPut:EATT:STATe on page 899).

If you set the attenuation manually, it is no longer coupled to the reference level, but the reference level is coupled to the attenuation. Thus, if the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Parameters:

<Attenuation> Range: see data sheet

Increment: 5 dB

*RST: 10 dB (AUTO is set to ON)

Example: INP:ATT 30dB

Defines a 30 dB attenuation and decouples the attenuation from

the reference level.

Usage: SCPI confirmed

Manual operation: See "Attenuation Mode / Value" on page 409

INPut:ATTenuation:AUTO <State>

This command couples or decouples the attenuation to the reference level. Thus, when the reference level is changed, the R&S FSW determines the signal level for optimal internal data processing and sets the required attenuation accordingly.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: INP:ATT:AUTO ON

Couples the attenuation to the reference level.

Usage: SCPI confirmed

Manual operation: See "Attenuation Mode / Value" on page 409

INPut:EATT < Attenuation>

This command defines an electronic attenuation manually. Automatic mode must be switched off (INP:EATT:AUTO OFF, see INPut:EATT:AUTO on page 899).

If the current reference level is not compatible with an attenuation that has been set manually, the command also adjusts the reference level.

Setting Basic Measurement Parameters

Parameters:

<Attenuation> attenuation in dB

Range: see data sheet

Increment: 1 dB *RST: 0 dB (OFF)

Example: INP:EATT:AUTO OFF

INP:EATT 10 dB

Manual operation: See "Using Electronic Attenuation" on page 409

INPut:EATT:AUTO <State>

This command turns automatic selection of the electronic attenuation on and off.

If on, electronic attenuation reduces the mechanical attenuation whenever possible.

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON 0 | OFF *RST:

Example: INP:EATT:AUTO OFF

Manual operation: See "Using Electronic Attenuation" on page 409

1

INPut:EATT:STATe <State>

This command turns the electronic attenuator on and off.

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON 0 | OFF *RST: 0

Example: INP:EATT:STAT ON

Switches the electronic attenuator into the signal path.

Manual operation: See "Using Electronic Attenuation" on page 409

11.7.3.3 Configuring a Preamplifier

Put:GAIN:STATe	9
Put:GAIN[:VALue]900)

INPut:GAIN:STATe <State>

This command turns the preamplifier on and off. It requires the optional preamplifier hardware.

Setting Basic Measurement Parameters

For R&S FSW 26 or higher models, the input signal is amplified by 30 dB if the preamplifier is activated.

For R&S FSW 8 or 13 models, the preamplification is defined by INPut: GAIN[: VALue].

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:GAIN:STAT ON

Switches on 30 dB preamplification.

Usage: SCPI confirmed

Manual operation: See "Preamplifier" on page 410

INPut:GAIN[:VALue] <Gain>

This command selects the gain if the preamplifier is activated (INP:GAIN:STAT ON, see INPut:GAIN:STATe on page 899).

The command requires the additional preamplifier hardware option.

Parameters:

<Gain> 15 dB | 30 dB

The availability of gain levels depends on the model of the

R&S FSW.

R&S FSW8/13: 15dB and 30 dB R&S FSW26 or higher: 30 dB

All other values are rounded to the nearest of these two.

*RST: OFF

Example: INP:GAIN:STAT ON

INP:GAIN:VAL 30

Switches on 30 dB preamplification.

Usage: SCPI confirmed

Manual operation: See "Preamplifier" on page 410

11.7.3.4 Scaling the Y-Axis

DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n>	. 900
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE</t></n>	
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MODE</t></n>	901
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:PDIVision</t></n>	. 902
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n>	. 902
DISPlay[:WINDow <n>]:TRACe<t>:Y:SPACing</t></n>	. 902

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] <Range>

This command defines the display range of the y-axis (for all traces).

Setting Basic Measurement Parameters

Note that the command works only for a logarithmic scaling. You can select the scaling with DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing.

Suffix:

<n> Window <t> irrelevant

Parameters:

<Range> Range: 1 dB to 200 dB

*RST: 100 dB

Example: DISP:TRAC:Y 110dB

Usage: SCPI confirmed

Manual operation: See "Range" on page 411

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE

Automatic scaling of the y-axis is performed once, then switched off again (for all traces).

Suffix:

<n> Window <t> irrelevant

Usage: SCPI confirmed

Manual operation: See "Auto Scale Once" on page 412

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:MODE < Mode>

This command selects the type of scaling of the y-axis (for all traces).

When the display update during remote control is off, this command has no immediate effect.

Suffix:

<n> Window <t> irrelevant

Parameters:

<Mode> ABSolute

absolute scaling of the y-axis

RELative

relative scaling of the y-axis

*RST: ABSolute

Example: DISP:TRAC:Y:MODE REL

Manual operation: See "Scaling" on page 412

Setting Basic Measurement Parameters

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:PDIVision < Value>

This remote command determines the grid spacing on the Y-axis for all diagrams, where possible.

Suffix:

<n> Window <t> irrelevant

Parameters:

<Value> numeric value WITHOUT UNIT (unit according to the result dis-

play)

Defines the range per division (total range = 10*<Value>)

*RST: depends on the result display

Example: DISP:TRAC:Y:PDIV 10

Sets the grid spacing to 10 units (e.g. dB) per division

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition <Position>

This command defines the vertical position of the reference level on the display grid (for all traces).

The R&S FSW adjusts the scaling of the y-axis accordingly.

For measurements with the optional external generator control, the command defines the position of the reference value.

Suffix:

<n> Window <t> irrelevant

Parameters:

<Position> 0 PCT corresponds to the lower display border, 100% corre-

sponds to the upper display border.

*RST: 100 PCT = frequency display; 50 PCT = time dis-

play

Example: DISP:TRAC:Y:RPOS 50PCT

Usage: SCPI confirmed

Manual operation: See "Reference Position" on page 358

See "Ref Level Position" on page 411

DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing <ScalingType>

This command selects the scaling of the y-axis (for all traces, <t> is irrelevant).

Suffix:

<n> Window <t> Trace

Setting Basic Measurement Parameters

Parameters:

<ScalingType> **LOGarithmic**

Logarithmic scaling.

LINear

Linear scaling in %.

LDB

Linear scaling in the specified unit.

PERCent

Linear scaling in %.

*RST: LOGarithmic

DISP:TRAC:Y:SPAC LIN Example:

Selects linear scaling in %.

Usage: SCPI confirmed

See "Scaling" on page 412 Manual operation:

11.7.4 Configuring Triggered and Gated Measurements

The commands required to configure a triggered or gated measurement in a remote environment are described here. The tasks for manual operation are described in Chapter 6.6, "Trigger and Gate Configuration", on page 429.

*OPC should be used after requesting data. This will hold off any subsequent changes to the selected trigger source, until after the sweep is completed and the data is returned.

- Configuring the Trigger Output......911
- 11.7.4.1 **Configuring the Triggering Conditions**

The following commands are required to configure a triggered measurement.

TRIGger[:SEQuence]:DTIMe	904
TRIGger[:SEQuence]:HOLDoff[:TIME]	
TRIGger[:SEQuence]:IFPower:HOLDoff	
TRIGger[:SEQuence]:IFPower:HYSTeresis	
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	905
TRIGger[:SEQuence]:LEVel:IFPower	905
TRIGger[:SEQuence]:LEVel:IQPower	906
TRIGger[:SEQuence]:LEVel:RFPower	906
TRIGger[:SEQuence]:LEVel:VIDeo	906
TRIGger[:SEQuence]:SLOPe	
TRIGger[:SEQuence]:SOURce	
TRIGger[:SEQuence]:TIME:RINTerval	

Setting Basic Measurement Parameters

TRIGger[:SEQuence]:DTIMe < DropoutTime>

Defines the time the input signal must stay below the trigger level before a trigger is detected again.

Parameters:

<DropoutTime> Dropout time of the trigger.

Range: 0 s to 10.0 s

*RST: 0 s

Manual operation: See "Drop-Out Time" on page 442

TRIGger[:SEQuence]:HOLDoff[:TIME] <Offset>

Defines the time offset between the trigger event and the start of the sweep.

A negative offset is possible for time domain measurements.

For the trigger sources "External" or "IF Power", a common input signal is used for both trigger and gate. Therefore, changes to the gate delay will affect the trigger offset as well.

Parameters:

<Offset> For measurements in the frequency domain, the range is 0 s to

30 s.

For measurements in the time domain, the range is the negative

sweep time to 30 s.

*RST: 0 s

Example: TRIG: HOLD 500us

Manual operation: See "Trigger Offset" on page 442

TRIGger[:SEQuence]:IFPower:HOLDoff <Period>

This command defines the holding time before the next trigger event.

Note that this command can be used for **any trigger source**, not just IF Power (despite the legacy keyword).

Note: If you perform gated measurements in combination with the IF Power trigger, the R&S FSW ignores the holding time for frequency sweep, FFT sweep, zero span and I/Q data measurements.

Parameters:

<Period> Range: 0 s to 10 s

*RST: 0 s

Example: TRIG:SOUR EXT

Sets an external trigger source. TRIG: IFP: HOLD 200 ns Sets the holding time to 200 ns.

Manual operation: See "Trigger Holdoff" on page 442

Setting Basic Measurement Parameters

TRIGger[:SEQuence]:IFPower:HYSTeresis < Hysteresis >

This command defines the trigger hysteresis, which is only available for "IF Power" trigger sources.

Parameters:

<Hysteresis> Range: 3 dB to 50 dB

*RST: 3 dB

Example: TRIG:SOUR IFP

Sets the IF power trigger source.

TRIG: IFP: HYST 10DB

Sets the hysteresis limit value.

Manual operation: See "Hysteresis" on page 442

TRIGger[:SEQuence]:LEVel[:EXTernal<port>] <TriggerLevel>

This command defines the level the external signal must exceed to cause a trigger event.

Note that the variable INPUT/OUTPUT connectors (ports 2+3) must be set for use as input using the OUTPut: TRIGger<port>: DIRection command.

Suffix:

<port> Selects the trigger port.

1 = trigger port 1 (TRIGGER INPUT connector on front panel)2 = trigger port 2 (TRIGGER INPUT/OUTPUT connector on front

panel)

3 = trigger port 3 (TRIGGER3 INPUT/OUTPUT connector on

rear panel)

Parameters:

<TriggerLevel> Range: 0.5 V to 3.5 V

*RST: 1.4 V

Example: TRIG:LEV 2V

Manual operation: See "Trigger Level" on page 441

TRIGger[:SEQuence]:LEVel:IFPower <TriggerLevel>

This command defines the power level at the third intermediate frequency that must be exceeded to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

Parameters:

<TriggerLevel> For details on available trigger levels and trigger bandwidths see

the data sheet.

*RST: -10 dBm

Example: TRIG:LEV:IFP -30DBM

Setting Basic Measurement Parameters

Manual operation: See "Trigger Level" on page 441

TRIGger[:SEQuence]:LEVel:IQPower <TriggerLevel>

This command defines the magnitude the I/Q data must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

Parameters:

<TriggerLevel> Range: -130 dBm to 30 dBm

*RST: -20 dBm

Example: TRIG:LEV:IQP -30DBM

Manual operation: See "Trigger Level" on page 441

TRIGger[:SEQuence]:LEVel:RFPower < TriggerLevel>

This command defines the power level the RF input must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed. If defined, a reference level offset is also considered.

The input signal must be between 500 MHz and 8 GHz.

Parameters:

<TriggerLevel> For details on available trigger levels and trigger bandwidths see

the data sheet.

*RST: -20 dBm

Example: TRIG:LEV:RFP -30dBm

Manual operation: See "Trigger Level" on page 441

TRIGger[:SEQuence]:LEVel:VIDeo <Level>

This command defines the level the video signal must exceed to cause a trigger event. Note that any RF attenuation or preamplification is considered when the trigger level is analyzed.

Parameters:

<Level> Range: 0 PCT to 100 PCT

*RST: 50 PCT

Example: TRIG:LEV:VID 50PCT

Manual operation: See "Trigger Level" on page 441

TRIGger[:SEQuence]:SLOPe <Type>

For all trigger sources except time you can define whether triggering occurs when the signal rises to the trigger level or falls down to it.

Setting Basic Measurement Parameters

Parameters:

<Type> POSitive | NEGative

POSitive

Triggers when the signal rises to the trigger level (rising edge).

NEGative

Triggers when the signal drops to the trigger level (falling edge).

*RST: POSitive

Example: TRIG:SLOP NEG

Manual operation: See "Slope" on page 442

TRIGger[:SEQuence]:SOURce <Source>

This command selects the trigger source.

For details on trigger sources see "Trigger Source" on page 438.

Using a trigger or gated measurements turns the squelch off (see [SENSe:]DEMod: SQUelch[:STATe] on page 1036).

Note on external triggers:

If a measurement is configured to wait for an external trigger signal in a remote control program, remote control is blocked until the trigger is received and the program can continue. Make sure this situation is avoided in your remote control programs.

For troubleshooting tips see "Incompleted sequential commands - blocked remote channels" on page 1186.

Setting Basic Measurement Parameters

Parameters:

<Source> IMMediate

Free Run

EXTernal

Trigger signal from the TRIGGER INPUT connector.

If the optional 2 GHz bandwidth extension (R&S FSW-B2000) is installed and active, this parameter activates the CH3 input connector on the oscilloscope. Then the R&S FSW triggers when the signal fed into the CH3 input connector on the oscilloscope meets or exceeds the specified trigger level.

Note: In previous firmware versions, the external trigger was connected to the CH2 input on the oscilloscope. As of firmware version R&S FSW 2.30, the **CH3** input on the oscilloscope must be used!

EXT2

Trigger signal from the TRIGGER INPUT/OUTPUT connector.

Note: Connector must be configured for "Input".

EXT3

Trigger signal from the TRIGGER 3 INPUT/ OUTPUT connector.

Note: Connector must be configured for "Input".

RFPower

First intermediate frequency

IFPower

Second intermediate frequency

TIME

Time interval

VIDeo

Video mode is available in the time domain and only in the Spectrum application.

PSEN

External power sensor *RST: IMMediate

Example: TRIG:SOUR EXT

Selects the external trigger input as source of the trigger signal

Manual operation: See "Using the power sensor as an external trigger"

on page 335

See "Trigger Source" on page 438 See "Free Run" on page 439

See "External Trigger 1/2/3" on page 439

See "Video" on page 439 See "IF Power" on page 440

See "Baseband Power" on page 440 See "RF Power" on page 440 See "Power Sensor" on page 441

See "Time" on page 441

Setting Basic Measurement Parameters

TRIGger[:SEQuence]:TIME:RINTerval <Interval>

This command defines the repetition interval for the time trigger.

Parameters:

<Interval> 2.0 ms to 5000

Range: 2 ms to 5000 s

*RST: 1.0 s

Example: TRIG:SOUR TIME

Selects the time trigger input for triggering.

TRIG:TIME:RINT 50
The sweep starts every 50 s.

Manual operation: See "Repetition Interval" on page 441

11.7.4.2 Configuring Gated Measurements

[SENSe:]SWEep:EGATe	909
[SENSe:]SWEep:EGATe:HOLDoff9	
[SENSe:]SWEep:EGATe:LENGth9	910
[SENSe:]SWEep:EGATe:POLarity9	910
[SENSe:]SWEep:EGATe:SOURce	910
[SENSe:]SWEep:EGATe:TYPE	911

[SENSe:]SWEep:EGATe <State>

This command turns gated measurements on and off.

In case of measurements with an external gate, the measured values are recorded as long as the gate is opened. During a sweep the gate can be opened and closed several times. The synchronization mechanisms with *OPC, *OPC? and *WAI remain completely unaffected.

The measurement ends when a particular number of measurement points has been recorded (see [SENSe:]SWEep:POINts on page 893).

Performing gated measurements turns the squelch off.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SWE:EGAT ON

Switches on the external gate mode.

SWE:EGAT:TYPE EDGE

Switches on the edge-triggered mode.

SWE:EGAT:HOLD 100US Sets the gate delay to 100 μ s. SWE:EGAT:LEN 500US

Sets the gate opening time to 500 μs .

INIT; *WAI

Starts a sweep and waits for its end.

Setting Basic Measurement Parameters

[SENSe:]SWEep:EGATe:HOLDoff < DelayTime>

This command defines the delay time between the gate signal and the continuation of the measurement.

Note: If you perform gated measurements in combination with the IF Power trigger, the R&S FSW ignores the holding time for frequency sweep, FFT sweep, zero span and I/Q mode measurements.

Parameters:

<DelayTime> Range: 0 s to 30 s

*RST: 0 s

Example: SWE:EGAT:HOLD 100us

Manual operation: See "Gate Delay" on page 445

[SENSe:]SWEep:EGATe:LENGth < GateLength>

This command defines the gate length.

Parameters:

<GateLength> Range: 125 ns to 30 s

*RST: 400µs

Example: SWE:EGAT:LENG 10ms

Manual operation: See "Gate Length" on page 445

[SENSe:]SWEep:EGATe:POLarity < Polarity >

This command selects the polarity of an external gate signal.

The setting applies both to the edge of an edge-triggered signal and the level of a level-triggered signal.

Parameters:

<Polarity> POSitive | NEGative

*RST: POSitive

Example: SWE:EGAT:POL POS

Manual operation: See "Slope" on page 442

[SENSe:]SWEep:EGATe:SOURce <Source>

This command selects the signal source for gated measurements.

If an IF power signal is used, the gate is opened as soon as a signal at > -20 dBm is detected within the IF path bandwidth (10 MHz).

For more information see "Trigger Source" on page 438.

Setting Basic Measurement Parameters

Parameters:

<Source> EXTernal | EXT2 | EXT3 | IFPower | IQPower | VIDeo |

RFPower | PSEN

*RST: IFPower

Example: SWE:EGAT:SOUR IFP

Switches the gate source to IF power.

Manual operation: See "Trigger Source" on page 438

See "External Trigger 1/2/3" on page 439

See "Video" on page 439
See "IF Power" on page 440
See "RF Power" on page 440
See "Power Sensor" on page 441

[SENSe:]SWEep:EGATe:TYPE <Type>

This command selects the way gated measurements are triggered.

Parameters:

<Type> LEVel

The trigger event for the gate to open is a particular power level. After the gate signal has been detected, the gate remains open until the signal disappears.

Note: If you perform gated measurements in combination with the IF Power trigger, the R&S FSW ignores the holding time for frequency sweep, FFT sweep, zero span and I/Q mode mea-

surements.

EDGE

The trigger event for the gate to open is the detection of the sig-

nal edge.

After the gate signal has been detected, the gate remains open

until the gate length is over.

*RST: EDGE

Example: SWE:EGAT:TYPE EDGE

Manual operation: See "Gate Mode" on page 444

11.7.4.3 Configuring the Trigger Output

The following commands are required to send the trigger signal to one of the variable TRIGGER INPUT/OUTPUT connectors on the R&S FSW.

OUTPut:TRIGger <port>:DIRection</port>	912
OUTPut:TRIGger <port>:LEVel</port>	
OUTPut:TRIGger <port>:OTYPe</port>	
OUTPut:TRIGger <port>:PULSe:IMMediate</port>	
OUTPut:TRIGger <port>:PULSe:LENGth</port>	

Setting Basic Measurement Parameters

OUTPut:TRIGger<port>:DIRection < Direction>

This command selects the trigger direction for trigger ports that serve as an input as well as an output.

Suffix:

<port> Selects the used trigger port.

2 = trigger port 2 (front panel) 3 = trigger port 3 (rear panel)

Parameters:

<Direction> INPut

Port works as an input.

OUTPut

Port works as an output.

*RST: INPut

Manual operation: See "Trigger 2/3" on page 393

OUTPut:TRIGger<port>:LEVel <Level>

This command defines the level of the (TTL compatible) signal generated at the trigger output.

This command works only if you have selected a user defined output with OUTPut: TRIGger<port>:OTYPe.

Suffix:

<port> Selects the trigger port to which the output is sent.

2 = trigger port 2 (front) 3 = trigger port 3 (rear)

Parameters:

<Level> HIGH

5 V **LOW** 0 V

*RST: LOW

Example: OUTP:TRIG2:LEV HIGH

Manual operation: See "Level" on page 394

OUTPut:TRIGger<port>:OTYPe <OutputType>

This command selects the type of signal generated at the trigger output.

Suffix:

<port> Selects the trigger port to which the output is sent.

2 = trigger port 2 (front) 3 = trigger port 3 (rear)

Setting Basic Measurement Parameters

Parameters:

<OutputType> **DEVice**

Sends a trigger signal when the R&S FSW has triggered inter-

nally.

TARMed

Sends a trigger signal when the trigger is armed and ready for

an external trigger event.

UDEFined

Sends a user defined trigger signal. For more information see

OUTPut:TRIGger<port>:LEVel.

*RST: DEVice

Manual operation: See "Output Type" on page 394

OUTPut:TRIGger<port>:PULSe:IMMediate

This command generates a pulse at the trigger output.

Suffix:

<port> Selects the trigger port to which the output is sent.

2 = trigger port 2 (front) 3 = trigger port 3 (rear)

Usage: Event

Manual operation: See "Send Trigger" on page 394

OUTPut:TRIGger<port>:PULSe:LENGth <Length>

This command defines the length of the pulse generated at the trigger output.

Suffix:

<port> Selects the trigger port to which the output is sent.

2 = trigger port 2 (front) 3 = trigger port 3 (rear)

Parameters:

<Length> Pulse length in seconds.

Example: OUTP:TRIG2:PULS:LENG 0.02

Manual operation: See "Pulse Length" on page 394

11.7.5 Adjusting Settings Automatically

The commands required to adjust settings automatically in a remote environment are described here.

The tasks for manual operation are described in Chapter 6.7, "Adjusting Settings Automatically", on page 448.

Setting Basic Measurement Parameters

MSRA operating mode

In MSRA operating mode, settings related to data acquisition (measurement time, hysteresis) can only be adjusted automatically in the MSRA Master, not in the MSRA applications.

[SENSe:]ADJust:ALL	914
[SENSe:]ADJust:CONFigure:DURation	
[SENSe:]ADJust:CONFigure:DURation:MODE	915
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	915
[SENSe:]ADJust:CONFigure:TRIG	916
[SENSe:]ADJust:FREQuency	916
[SENSe:]ADJust:LEVel	916

[SENSe:]ADJust:ALL

This command initiates a measurement to determine and set the ideal settings for the current task automatically (only once for the current measurement).

This includes:

- Center frequency
- Reference level

Example: ADJ: ALL Usage: Event

Manual operation: See "Adjusting all Determinable Settings Automatically (Auto

All)" on page 449

[SENSe:]ADJust:CONFigure:DURation < Duration>

In order to determine the ideal reference level, the R&S FSW performs a measurement on the current input data. This command defines the length of the measurement if [SENSe:] ADJust:CONFigure:DURation:MODE is set to MANual.

Parameters:

<Duration> Numeric value in seconds

Range: 0.001 to 16000.0

*RST: 0.001 Default unit: s

Example: ADJ:CONF:DUR:MODE MAN

Selects manual definition of the measurement length.

ADJ:CONF:LEV:DUR 5ms

Length of the measurement is 5 ms.

Manual operation: See "Changing the Automatic Measurement Time (Meastime

Manual)" on page 450

Setting Basic Measurement Parameters

[SENSe:]ADJust:CONFigure:DURation:MODE < Mode>

In order to determine the ideal reference level, the R&S FSW performs a measurement on the current input data. This command selects the way the R&S FSW determines the length of the measurement .

Parameters:

<Mode> AUTO

The R&S FSW determines the measurement length automati-

cally according to the current input data.

MANual

The R&S FSW uses the measurement length defined by [SENSe:] ADJust:CONFigure:DURation on page 914.

*RST: AUTO

Manual operation: See "Resetting the Automatic Measurement Time (Meastime

Auto)" on page 450

See "Changing the Automatic Measurement Time (Meastime

Manual)" on page 450

[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer <Threshold>

When the reference level is adjusted automatically using the [SENSe:]ADJust: LEVel on page 916 command, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines a lower threshold the signal must fall below (compared to the last measurement) before the reference level is adapted automatically.

Parameters:

<Threshold> Range: 0 dB to 200 dB

*RST: +1 dB Default unit: dB

Example: SENS:ADJ:CONF:HYST:LOW 2

For an input signal level of currently 20 dBm, the reference level will only be adjusted when the signal level falls below 18 dBm.

Manual operation: See "Lower Level Hysteresis" on page 450

[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer <Threshold>

When the reference level is adjusted automatically using the [SENSe:]ADJust: LEVel on page 916 command, the internal attenuators and the preamplifier are also adjusted. In order to avoid frequent adaptation due to small changes in the input signal, you can define a hysteresis. This setting defines an upper threshold the signal must exceed (compared to the last measurement) before the reference level is adapted automatically.

Setting Basic Measurement Parameters

Parameters:

<Threshold> Range: 0 dB to 200 dB

*RST: +1 dB Default unit: dB

Example: SENS:ADJ:CONF:HYST:UPP 2

Example: For an input signal level of currently 20 dBm, the reference level

will only be adjusted when the signal level rises above 22 dBm.

Manual operation: See "Upper Level Hysteresis" on page 450

[SENSe:]ADJust:CONFigure:TRIG <State>

Defines the behavior of the measurement when adjusting a setting automatically (using SENS:ADJ:LEV ON, for example).

See "Adjusting settings automatically during triggered measurements" on page 449.

Parameters:

<State> ON | 1

The measurement for automatic adjustment waits for the trigger.

OFF | 0

The measurement for automatic adjustment is performed imme-

diately, without waiting for a trigger.

*RST: 1

[SENSe:]ADJust:FREQuency

This command sets the center frequency to the frequency with the highest signal level in the current frequency range.

Example: ADJ: FREQ

Usage: Event

Manual operation: See "Adjusting the Center Frequency Automatically (Auto Freq)"

on page 449

[SENSe:]ADJust:LEVel

This command initiates a single (internal) measurement that evaluates and sets the ideal reference level for the current input data and measurement settings. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the R&S FSW or limiting the dynamic range by an S/N ratio that is too small.

Example: ADJ: LEV

Usage: Event

Manual operation: See "Setting the Reference Level Automatically (Auto Level)"

on page 408

Setting Basic Measurement Parameters

11.7.6 Configuring the Data Input and Output

The following commands are required to configure data input and output.

•	RF Input	. 917
	Using External Mixers	
	Setting up Probes.	
	External Generator Control	
	Working with Power Sensors	
	Configuring the Outputs	

11.7.6.1 RF Input

INPut:ATTenuation:PROTection:RESet	917
INPut:CONNector.	917
INPut:COUPling	918
INPut:DPATh	918
INPut:FILTer:HPASs[:STATe]	919
INPut:FILTer:YIG[:STATe]	
INPut:IMPedance	
INPut:SELect.	920
INPut:UPORt:STATe	920
INPut:UPORt[:VALue]?	920

INPut:ATTenuation:PROTection:RESet

This command resets the attenuator and reconnects the RF input with the input mixer after an overload condition occurred and the protection mechanism intervened. The error status bit (bit 3 in the STAT: QUES: POW status register) and the INPUT OVLD message in the status bar are cleared.

(See STATus:QUEStionable:POWer[:EVENt]? on page 1128 and "STATus:QUEStionable:POWer Register" on page 667).

The command works only if the overload condition has been eliminated first.

For details on the protection mechanism see Chapter 6.2.1.1, "RF Input Protection", on page 321.

Usage: Event

INPut:CONNector <ConnType>

Determines whether the RF input data is taken from the RF input connector or the optional Analog Baseband I connector. This command is only available if the Analog Baseband interface (R&S FSW-B71) is installed and active for input. It is not available for the R&S FSW67 or R&S FSW85.

Setting Basic Measurement Parameters

Parameters:

<ConnType> RF

RF input connector

AIQI

Analog Baseband I connector

*RST: RF

Example: INP:CONN:AIQI

Selects input from the analog baseband I connector.

Usage: SCPI confirmed

Manual operation: See "Input Connector" on page 328

INPut:COUPling < Coupling Type>

This command selects the coupling type of the RF input.

Parameters:

<CouplingType> AC

AC coupling

DC

DC coupling

*RST: AC

Example: INP:COUP DC

Usage: SCPI confirmed

Manual operation: See "Input Coupling" on page 327

INPut:DPATh <State>

Enables or disables the use of the direct path for frequencies close to 0 Hz.

Parameters:

<State> AUTO | 1

(Default) the direct path is used automatically for frequencies

close to 0 Hz.

OFF | 0

The analog mixer path is always used.

*RST: 1

Example: INP:DPAT OFF
Usage: SCPI confirmed

Manual operation: See "Direct Path" on page 327

Setting Basic Measurement Parameters

INPut:FILTer:HPASs[:STATe] <State>

Activates an additional internal high-pass filter for RF input signals from 1 GHz to 3 GHz. This filter is used to remove the harmonics of the R&S FSW in order to measure the harmonics for a DUT, for example.

This function requires an additional high-pass filter hardware option.

(Note: for RF input signals outside the specified range, the high-pass filter has no effect. For signals with a frequency of approximately 4 GHz upwards, the harmonics are suppressed sufficiently by the YIG-preselector, if available.)

Parameters:

<State> ON | OFF

*RST: OFF

Example: INP:FILT:HPAS ON

Turns on the filter.

Usage: SCPI confirmed

Manual operation: See "High-Pass Filter 1...3 GHz" on page 328

INPut:FILTer:YIG[:STATe] <State>

This command turns the YIG-preselector on and off.

Note the special conditions and restrictions for the YIG-preselector described in "YIG-Preselector" on page 328.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1 (0 for I/Q Analyzer, GSM, VSA, Pulse, Amplifier,

Transient Analysis, DOCSIS and MC Group Delay

measurements)

Example: INP:FILT:YIG OFF

Deactivates the YIG-preselector.

Manual operation: See "YIG-Preselector" on page 328

INPut:IMPedance < Impedance >

This command selects the nominal input impedance of the RF input. In some applications, only 50 Ω are supported.

75 Ω should be selected if the 50 Ω input impedance is transformed to a higher impedance using a matching pad of the RAZ type (= 25 Ω in series to the input impedance of the instrument). The power loss correction value in this case is 1.76 dB = 10 log $(75\Omega/50\Omega)$.

Parameters:

<Impedance> 50 | 75

*RST: 50Ω

Setting Basic Measurement Parameters

Example: INP:IMP 75
Usage: SCPI confirmed

Manual operation: See "Impedance" on page 327

See "Unit" on page 408

INPut:SELect <Source>

This command selects the signal source for measurements, i.e. it defines which connector is used to input data to the R&S FSW.

If no additional input options are installed, only RF input is supported.

Parameters:

<Source> RF

Radio Frequency ("RF INPUT" connector)

DIQ

Digital IQ data (only available with optional Digital Baseband

Interface

For details on I/Q input see the R&S FSW I/Q Analyzer User

Manual.

AIQ

Analog Baseband signal (only available with optional Analog

Baseband Interface R&S FSW-B71)

For details on Analog Baseband input see the R&S FSW I/Q

Analyzer User Manual.

*RST: RF

Manual operation: See "Radio Frequency State" on page 327

INPut:UPORt:STATe <State>

This command toggles the control lines of the user ports for the **AUX PORT** connector. This 9-pole SUB-D male connector is located on the rear panel of the R&S FSW.

See the R&S FSW Getting Started manual for details.

Parameters:

<State> ON | 1

User port is switched to INPut

OFF | 0

User port is switched to OUTPut

*RST:

INPut:UPORt[:VALue]?

This command queries the control lines of the user ports.

For details see OUTPut:UPORt[:VALue] on page 961.

Setting Basic Measurement Parameters

Return values:

<Value> bit values in hexadecimal format

TTL type voltage levels (max. 5V)

Range: #B00000000 to #B00111111

Example: INP:UPOR?

//Result: #B00100100
Pins 5 and 7 are active.

Usage: Query only

11.7.6.2 Using External Mixers

The commands required to work with external mixers in a remote environment are described here. Note that these commands require the R&S FSW-B21 option to be installed and an external mixer to be connected to the front panel of the R&S FSW.

In MSRA/MSRT mode, external mixers are not supported.

For details on working with external mixers see Chapter 6.2.5.1, "Basics on External Mixers", on page 367.

•	Basic Settings	. 921
	Mixer Settings	
•	Conversion Loss Table Settings	. 928
	Programming Example: Working with an External Mixer	

Basic Settings

The basic settings concern general usage of an external mixer.

[SENSe:]MIXer[:STATe]	921
[SENSe:]MIXer:BIAS:HIGH	922
[SENSe:]MIXer:BIAS[:LOW]	
[SENSe:]MIXer:LOPower	
[SENSe:]MIXer:SIGNal	
[SENSe:]MIXer:THReshold	

[SENSe:]MIXer[:STATe] <State>

Activates or deactivates the use of a connected external mixer as input for the measurement. This command is only available if the optional External Mixer is installed and an external mixer is connected.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MIX ON

Manual operation: See "External Mixer State" on page 377

Setting Basic Measurement Parameters

[SENSe:]MIXer:BIAS:HIGH <BiasSetting>

This command defines the bias current for the high (second) range.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 921).

Parameters:

<BiasSetting> *RST: 0.0 A

Default unit: A

Manual operation: See "Bias Settings" on page 381

[SENSe:]MIXer:BIAS[:LOW] <BiasSetting>

This command defines the bias current for the low (first) range.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 921).

Parameters:

<BiasSetting> *RST: 0.0 A

Default unit: A

Manual operation: See "Bias Settings" on page 381

[SENSe:]MIXer:LOPower <Level>

This command specifies the LO level of the external mixer's LO port.

Parameters:

<Level> numeric value

Range: 13.0 dBm to 17.0 dBm

Increment: 0.1 dB *RST: 15.5 dBm

Example: MIX:LOP 16.0dBm

Manual operation: See "LO Level" on page 380

[SENSe:]MIXer:SIGNal <State>

This command specifies whether automatic signal detection is active or not.

Note that automatic signal identification is only available for measurements that perform frequency sweeps (not in vector signal analysis or the I/Q Analyzer, for instance).

The "Auto ID" function is now also available for Spectrum Emission Mask (SEM) Measurement and Spurious Emissions Measurement using an external mixer.

Setting Basic Measurement Parameters

Parameters:

<State> OFF | ON | AUTO | ALL

OFF

No automatic signal detection is active.

ON

Automatic signal detection (Signal ID) is active.

AUTO

Automatic signal detection (Auto ID) is active.

ALL

Both automatic signal detection functions (Signal ID+Auto ID)

are active.

*RST: OFF

Manual operation: See "Signal ID" on page 381

See "Auto ID" on page 381

[SENSe:]MIXer:THReshold <Value>

This command defines the maximum permissible level difference between test sweep and reference sweep to be corrected during automatic comparison (see [SENSe:]MIXer:SIGNal on page 922).

Parameters:

<Value> <numeric value>

Range: 0.1 dB to 100 dB

*RST: 10 dB

Example: MIX:PORT 3

Manual operation: See "Auto ID Threshold" on page 381

Mixer Settings

The following commands are required to configure the band and specific mixer settings.

[SENSe:]MIXer:FREQuency:STARt? 924 [SENSe:]MIXer:FREQuency:STOP? 924 [SENSe:]MIXer:HARMonic:BAND:PRESet 924 [SENSe:]MIXer:HARMonic:BAND[:VALue] 925 [SENSe:]MIXer:HARMonic:HIGH:STATe 925 [SENSe:]MIXer:HARMonic:HIGH[:VALue] 926 [SENSe:]MIXer:HARMonic:TYPE 926 [SENSe:]MIXer:HARMonic[:LOW] 926 [SENSe:]MIXer:LOSS:HIGH 927 [SENSe:]MIXer:LOSS:TABLe:HIGH 927 [SENSe:]MIXer:LOSS:TABLe[:LOW] 927	[SENSe:]MIXer:FREQuency:HANDover	924
[SENSe:]MIXer:HARMonic:BAND:PRESet924[SENSe:]MIXer:HARMonic:BAND[:VALue]925[SENSe:]MIXer:HARMonic:HIGH:STATe925[SENSe:]MIXer:HARMonic:HIGH[:VALue]926[SENSe:]MIXer:HARMonic:TYPE926[SENSe:]MIXer:HARMonic[:LOW]926[SENSe:]MIXer:LOSS:HIGH927[SENSe:]MIXer:LOSS:TABLe:HIGH927	[SENSe:]MIXer:FREQuency:STARt?	924
[SENSe:]MIXer:HARMonic:BAND[:VALue]. 925 [SENSe:]MIXer:HARMonic:HIGH:STATe. 925 [SENSe:]MIXer:HARMonic:HIGH[:VALue]. 926 [SENSe:]MIXer:HARMonic:TYPE. 926 [SENSe:]MIXer:HARMonic[:LOW]. 926 [SENSe:]MIXer:LOSS:HIGH. 927 [SENSe:]MIXer:LOSS:TABLe:HIGH. 927	[SENSe:]MIXer:FREQuency:STOP?	924
[SENSe:]MIXer:HARMonic:HIGH:STATe. 925 [SENSe:]MIXer:HARMonic:HIGH[:VALue] 926 [SENSe:]MIXer:HARMonic:TYPE. 926 [SENSe:]MIXer:HARMonic[:LOW] 926 [SENSe:]MIXer:LOSS:HIGH. 927 [SENSe:]MIXer:LOSS:TABLe:HIGH. 927	[SENSe:]MIXer:HARMonic:BAND:PRESet	924
[SENSe:]MIXer:HARMonic:HIGH[:VALue]926[SENSe:]MIXer:HARMonic:TYPE926[SENSe:]MIXer:HARMonic[:LOW]926[SENSe:]MIXer:LOSS:HIGH927[SENSe:]MIXer:LOSS:TABLe:HIGH927	[SENSe:]MIXer:HARMonic:BAND[:VALue]	925
[SENSe:]MIXer:HARMonic:TYPE.926[SENSe:]MIXer:HARMonic[:LOW].926[SENSe:]MIXer:LOSS:HIGH.927[SENSe:]MIXer:LOSS:TABLe:HIGH.927	[SENSe:]MIXer:HARMonic:HIGH:STATe	925
[SENSe:]MIXer:HARMonic[:LOW]926[SENSe:]MIXer:LOSS:HIGH927[SENSe:]MIXer:LOSS:TABLe:HIGH927	[SENSe:]MIXer:HARMonic:HIGH[:VALue]	926
[SENSe:]MIXer:LOSS:HIGH	[SENSe:]MIXer:HARMonic:TYPE	926
[SENSe:]MIXer:LOSS:TABLe:HIGH	[SENSe:]MIXer:HARMonic[:LOW]	926
	[SENSe:]MIXer:LOSS:HIGH	927
[SENSe:]MIXer:LOSS:TABLe[:LOW]	[SENSe:]MIXer:LOSS:TABLe:HIGH	927
	[SENSe:]MIXer:LOSS:TABLe[:LOW]	927

Setting Basic Measurement Parameters

[SENSe:]MIXer:LOSS[:LOW]	927
SENSe:]MIXer:PORTs	928
SENSe:]MIXer:RFOVerrange[:STATe]	928

[SENSe:]MIXer:FREQuency:HANDover <Frequency>

This command defines the frequency at which the mixer switches from one range to the next (if two different ranges are selected). The handover frequency for each band can be selected freely within the overlapping frequency range.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 921).

Parameters:

<Frequency> numeric value

Example: MIX ON

Activates the external mixer. MIX: FREQ: HAND 78.0299GHz

Sets the handover frequency to 78.0299 GHz.

Manual operation: See "Handover Freq." on page 378

[SENSe:]MIXer:FREQuency:STARt?

This command queries the frequency at which the external mixer band starts.

Example: MIX:FREQ:STAR?

Queries the start frequency of the band.

Usage: Query only

Manual operation: See "RF Start / RF Stop" on page 377

[SENSe:]MIXer:FREQuency:STOP?

This command queries the frequency at which the external mixer band stops.

Example: MIX:FREQ:STOP?

Queries the stop frequency of the band.

Usage: Query only

Manual operation: See "RF Start / RF Stop" on page 377

[SENSe:]MIXer:HARMonic:BAND:PRESet

This command restores the preset frequency ranges for the selected standard waveguide band.

Note: Changes to the band and mixer settings are maintained even after using the PRESET function. Use this command to restore the predefined band ranges.

Setting Basic Measurement Parameters

Example: MIX: HARM: BAND: PRES

Presets the selected waveguide band.

Usage: Event

Manual operation: See "Preset Band" on page 378

[SENSe:]MIXer:HARMonic:BAND[:VALue] <Band>

This command selects the external mixer band. The query returns the currently selected band.

This command is only available if the external mixer is active (see [SENSe:]MIXer[: STATe] on page 921).

Parameters:

<Band> KA|Q|U|V|E|W|F|D|G|Y|J|USER

Standard waveguide band or user-defined band.

Manual operation: See "Band" on page 378

Table 11-6: Frequency ranges for pre-defined bands

Band	Frequency start [GHz]	Frequency stop [GHz]
KA (A) *)	26.5	40.0
Q	33.0	50.0
U	40.0	60.0
V	50.0	75.0
E	60.0	90.0
W	75.0	110.0
F	90.0	140.0
D	110.0	170.0
G	140.0	220.0
J	220.0	325.0
Υ	325.0	500.0
USER	32.18	68.22
	(default)	(default)
*) The band formerly referred to as "A" is now named "KA".		

[SENSe:]MIXer:HARMonic:HIGH:STATe <State>

This command specifies whether a second (high) harmonic is to be used to cover the band's frequency range.

Setting Basic Measurement Parameters

Parameters:

<State> ON | OFF

*RST: OFF

Example: MIX:HARM:HIGH:STAT ON

Manual operation: See "Range 1/2" on page 379

[SENSe:]MIXer:HARMonic:HIGH[:VALue] <HarmOrder>

This command specifies the harmonic order to be used for the high (second) range.

Parameters:

<HarmOrder numeric value

Range: 2 to 61 (USER band); for other bands: see band

definition

Example: MIX: HARM: HIGH 2

Manual operation: See "Harmonic Order" on page 379

[SENSe:]MIXer:HARMonic:TYPE <OddEven>

This command specifies whether the harmonic order to be used should be odd, even, or both.

Which harmonics are supported depends on the mixer type.

Parameters:

<OddEven> ODD | EVEN | EODD

*RST: EVEN

Example: MIX:HARM:TYPE ODD

Manual operation: See "Harmonic Type" on page 379

[SENSe:]MIXer:HARMonic[:LOW] <HarmOrder>

This command specifies the harmonic order to be used for the low (first) range.

Parameters:

<HarmOrder> numeric value

Range: 2 to 61 (USER band); for other bands: see band

definition

*RST: 2 (for band F)

Example: MIX: HARM 3

Manual operation: See "Harmonic Order" on page 379

Setting Basic Measurement Parameters

[SENSe:]MIXer:LOSS:HIGH <Average>

This command defines the average conversion loss to be used for the entire high (second) range.

Parameters:

<Average> numeric value

Range: 0 to 100 *RST: 24.0 dB Default unit: dB

Example: MIX:LOSS:HIGH 20dB

Manual operation: See "Conversion loss" on page 379

[SENSe:]MIXer:LOSS:TABLe:HIGH <FileName>

This command defines the file name of the conversion loss table to be used for the high (second) range.

Parameters:

<FileName> String containing the path and name of the file.

Example: MIX:LOSS:TABL:HIGH 'MyCVLTable'

Manual operation: See "Conversion loss" on page 379

[SENSe:]MIXer:LOSS:TABLe[:LOW] <FileName>

This command defines the file name of the conversion loss table to be used for the low (first) range.

Parameters:

<FileName> String containing the path and name of the file.

Example: MIX:LOSS:TABL 'mix 1 4'

Specifies the conversion loss table *mix*_1_4.

Manual operation: See "Conversion loss" on page 379

[SENSe:]MIXer:LOSS[:LOW] <Average>

This command defines the average conversion loss to be used for the entire low (first) range.

Parameters:

<Average> numeric value

Range: 0 to 100 *RST: 24.0 dB Default unit: dB

Example: MIX:LOSS 20dB

Manual operation: See "Conversion loss" on page 379

Setting Basic Measurement Parameters

[SENSe:]MIXer:PORTs <PortType>

This command specifies whether the mixer is a 2-port or 3-port type.

Parameters:

<PortType> 2 | 3

*RST: 2

Example: MIX:PORT 3

Manual operation: See "Mixer Type" on page 378

[SENSe:]MIXer:RFOVerrange[:STATe] <State>

If enabled, the band limits are extended beyond "RF Start" and "RF Stop" due to the capabilities of the used harmonics.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "RF Overrange" on page 378

Conversion Loss Table Settings

The following settings are required to configure and manage conversion loss tables.

[SENSe:]CORRection:CVL:BAND	928
[SENSe:]CORRection:CVL:BIAS	
[SENSe:]CORRection:CVL:CATAlog?	929
[SENSe:]CORRection:CVL:CLEAr	
[SENSe:]CORRection:CVL:COMMent	930
[SENSe:]CORRection:CVL:DATA	930
[SENSe:]CORRection:CVL:HARMonic	931
[SENSe:]CORRection:CVL:MIXer	931
[SENSe:]CORRection:CVL:PORTs	931
[SENSe:]CORRection:CVL:SELect	932
[SENSe:]CORRection:CVL:SNUMber	932

[SENSe:]CORRection:CVL:BAND <Type>

This command defines the waveguide band for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Setting Basic Measurement Parameters

Parameters:

<Band> K|A|KA|Q|U|V|E|W|F|D|G|Y|J|USER

Standard waveguide band or user-defined band.

Note: The band formerly referred to as "A" is now named "KA"; the input parameter "A" is still available and refers to the same

band as "KA".

For a definition of the frequency range for the pre-defined bands,

see Table 11-6).

*RST: F (90 GHz - 140 GHz)

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:BAND KA

Sets the band to KA (26.5 GHz - 40 GHz).

Manual operation: See "Band" on page 385

[SENSe:]CORRection:CVL:BIAS <BiasSetting>

This command defines the bias setting to be used with the conversion loss table.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932.

This command is only available with option B21 (External Mixer) installed.

Parameters:

<BiasSetting> numeric value

*RST: 0.0 A Default unit: A

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:BIAS 3A

Manual operation: See "Write to <CVL table name>" on page 382

See "Bias" on page 385

[SENSe:]CORRection:CVL:CATAlog?

This command queries all available conversion loss tables saved in the $C:\r s\instr\user\cvl\$ directory on the instrument.

This command is only available with option B21 (External Mixer) installed.

Usage: Query only

[SENSe:]CORRection:CVL:CLEAr

This command deletes the selected conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:

] CORRection: CVL: SELect on page 932).

Setting Basic Measurement Parameters

This command is only available with option B21 (External Mixer) installed.

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:CLE

Usage: Event

Manual operation: See "Delete Table" on page 383

[SENSe:]CORRection:CVL:COMMent <Text>

This command defines a comment for the conversion loss table. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Text>

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table.

CORR:CVL:COMM 'Conversion loss table for

FS Z60'

Manual operation: See "Comment" on page 385

[SENSe:]CORRection:CVL:DATA <Freq>,<Level>

This command defines the reference values of the selected conversion loss tables. The values are entered as a set of frequency/level pairs. A maximum of 50 frequency/level pairs may be entered. Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Freq> numeric value

The frequencies have to be sent in ascending order.

<Level>

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:DATA 1MHZ,-30DB,2MHZ,-40DB

Manual operation: See "Position/Value" on page 386

Setting Basic Measurement Parameters

[SENSe:]CORRection:CVL:HARMonic <HarmOrder>

This command defines the harmonic order for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932.

This command is only available with option B21 (External Mixer) installed.

Parameters:

<HarmOrder> numeric value

Range: 2 to 65

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:HARM 3

Manual operation: See "Harmonic Order" on page 385

[SENSe:]CORRection:CVL:MIXer <Type>

This command defines the mixer name in the conversion loss table. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<Type> string

Name of mixer with a maximum of 16 characters

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table. CORR:CVL:MIX 'FS Z60'

Manual operation: See "Mixer Name" on page 385

[SENSe:]CORRection:CVL:PORTs < PortNo>

This command defines the mixer type in the conversion loss table. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Setting Basic Measurement Parameters

Parameters:

<PortType> 2 | 3

*RST: 2

Example: CORR:CVL:SEL 'LOSS TAB 4'

Selects the conversion loss table.

CORR:CVL:PORT 3

Manual operation: See "Mixer Type" on page 386

[SENSe:]CORRection:CVL:SELect <FileName>

This command selects the conversion loss table with the specified file name. If <file_name> is not available, a new conversion loss table is created.

This command is only available with option B21 (External Mixer) installed.

Parameters:

<FileName> String containing the path and name of the file.

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Manual operation: See "New Table" on page 383

See "Edit Table" on page 383 See "File Name" on page 384

[SENSe:]CORRection:CVL:SNUMber <SerialNo>

This command defines the serial number of the mixer for which the conversion loss table is to be used. This setting is checked against the current mixer setting before the table can be assigned to the range.

Before this command can be performed, the conversion loss table must be selected (see [SENSe:]CORRection:CVL:SELect on page 932).

This command is only available with option B21 (External Mixer) installed.

Parameters:

<SerialNo> Serial number with a maximum of 16 characters

Example: CORR:CVL:SEL 'LOSS_TAB_4'

Selects the conversion loss table. CORR: CVL: MIX '123.4567'

Manual operation: See "Mixer S/N" on page 385

Programming Example: Working with an External Mixer

This example demonstrates how to work with an external mixer in a remote environment. It is performed in the Spectrum application in the default layout configuration. Note that without a real input signal and connected mixer, this measurement will not return useful results.

```
//----Preparing the instrument -----//Reset the instrument
```

Setting Basic Measurement Parameters

```
*RST
//Activate the use of the connected external mixer.
SENS:MIX ON
//----- Configuring basic mixer behavior -----
//Set the LO level of the mixer's LO port to 15 dBm.
SENS:MIX:LOP 15dBm
//{\rm Set} the bias current to -1 mA .
SENS:MIX:BIAS:LOW -1mA
//----- Configuring the mixer and band settings ------
//Use band "V" to full possible range extent for assigned harmonic (6).
SENS:MIX:HARM:BAND V
SENS:MIX:RFOV ON
//Query the possible range
SENS:MIX:FREQ:STAR?
//Result: 47480000000 (47.48 GHz)
SENS:MIX:FREQ:STOP?
//Result: 138020000000 (138.02 GHz)
//Use a 3-port mixer type
SENS:MIX:PORT 3
//Split the frequency range into two ranges;
//range 1 covers 47.48 GHz GHz to 80 GHz; harmonic 6, average conv. loss of 20 dB
//range 2 covers 80 GHz to 138.02 GHz; harmonic 8, average conv.loss of 30 dB
SENS:MIX:HARM:TYPE EVEN
SENS:MIX:HARM:HIGH:STAT ON
SENS:MIX:FREQ:HAND 80GHz
SENS:MIX:HARM:LOW 6
SENS:MIX:LOSS:LOW 20dB
SENS:MIX:HARM:HIGH 8
SENS:MIX:LOSS:HIGH 30dB
//---- Activating automatic signal identification functions -----
//Activate both automatic signal identification functions.
SENS:MIX:SIGN ALL
//Use auto ID threshold of 8 dB.
SENS:MIX:THR 8dB
//----Performing the Measurement----
//Select single sweep mode.
INIT: CONT OFF
//Initiate a basic frequency sweep and wait until the sweep has finished.
INIT; *WAI
//-----Retrieving Results-----
//Return the trace data for the input signal without distortions
//(default screen configuration)
TRAC:DATA? TRACE3
```

Configuring a conversion loss table for a user-defined band

```
//-----Preparing the instrument -----/Reset the instrument
```

Setting Basic Measurement Parameters

```
*RST
//Activate the use of the connected external mixer.
SENS:MIX ON
//-----Configuring a new conversion loss table ------
//Define cvl table for range 1 of band as described in previous example
// (extended V band)
SENS:CORR:CVL:SEL 'UserTable'
SENS:CORR:CVL:COMM 'User-defined conversion loss table for USER band'
SENS:CORR:CVL:BAND USER
SENS:CORR:CVL:HARM 6
SENS:CORR:CVL:BIAS -1mA
SENS:CORR:CVL:MIX 'FS_Z60'
SENS:CORR:CVL:SNUM '123.4567'
SENS:CORR:CVL:PORT 3
//Conversion loss is linear from 55 GHz to 75 GHz
SENS:CORR:CVL:DATA 55GHZ, -20DB, 75GHZ, -30DB
//----- Configuring the mixer and band settings -----
//Use user-defined band and assign new cvl table.
SENS:MIX:HARM:BAND USER
//Define band by two ranges;
//range 1 covers 47.48 GHz to 80 GHz; harmonic 6, cvl table 'UserTable'
//range 2 covers 80 GHz to 138.02 GHz; harmonic 8, average conv.loss of 30 dB
SENS:MIX:HARM:TYPE EVEN
SENS:MIX:HARM:HIGH:STAT ON
SENS:MIX:FREQ:HAND 80GHz
SENS:MIX:HARM:LOW 6
SENS:MIX:LOSS:TABL:LOW 'UserTable'
SENS:MIX:HARM:HIGH 8
SENS:MIX:LOSS:HIGH 30dB
//Query the possible range
SENS:MIX:FREQ:STAR?
//Result: 47480000000 (47.48 GHz)
SENS:MIX:FREQ:STOP?
//Result: 138020000000 (138.02 GHz)
//----Performing the Measurement----
//Select single sweep mode.
INIT: CONT OFF
//Initiate a basic frequency sweep and wait until the sweep has finished.
INIT; *WAI
//-----Retrieving Results-----
//Return the trace data (default screen configuration)
TRAC:DATA? TRACe1
```

11.7.6.3 Setting up Probes

Probes can be connected to the optional BASEBAND INPUT connectors, if the Analog Baseband interface (option R&S FSW-B71) is installed.

Setting Basic Measurement Parameters

[SENSe:]PROBe:ID:PARTnumber? 93: [SENSe:]PROBe:ID:SRNumber? 93: [SENSe:]PROBe:SETup:MODE 93:
ISENSe:IPROBe:SETup:MODE
[SENSe:]PROBe:SETup:NAME? 930
[SENSe:]PROBe:SETup:STATe? 93
[SENSe:]PROBe:SETup:TYPE?93

[SENSe:]PROBe:SETup:CMOFfset < CMOffset>

Sets the common mode offset. The setting is only available if a differential probe is connected to the R&S FSW.

If the probe is disconnected, the common mode offset of the probe is reset to 0.0 V.

For details see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Parameters:

<CMOffset> Range: -100E+24 to 100E+24

Increment: 1E-3
*RST: 0
Default unit: V

Manual operation: See "Common Mode Offset" on page 329

[SENSe:]PROBe:ID:PARTnumber?

Queries the R&S part number of the probe.

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Return values:

<PartNumber> Part number in a string.

Usage: Query only

[SENSe:]PROBe:ID:SRNumber?

Queries the serial number of the probe.

Setting Basic Measurement Parameters

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Return values:

<SerialNo> Serial number in a string.

Usage: Query only

[SENSe:]PROBe:SETup:MODE <Mode>

Select the action that is started with the micro button on the probe head.

See also: "Microbutton Action" on page 329.

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Parameters:

<Mode> RSINgle

Run single: starts one data acquisition.

NOACtion

Nothing is started on pressing the micro button.

*RST: RSINgle

Manual operation: See "Microbutton Action" on page 329

[SENSe:]PROBe:SETup:NAME?

Queries the name of the probe.

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Return values:

<Name> Name string
Usage: Query only

Setting Basic Measurement Parameters

[SENSe:]PROBe:SETup:STATe?

Queries if the probe at the specified connector is active (detected) or not active (not detected). To switch the probe on, i.e. activate input from the connector, use INP:SEL:AIQ (see INPut:SELect on page 920).

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Return values:

<State> DETected | NDETected

*RST: NDETected

Usage: Query only

[SENSe:]PROBe:SETup:TYPE?

Queries the type of the probe.

Suffix:

1 | 2 | 3

Selects the connector: 1 = Baseband Input I 2 = Baseband Input Q

3 = RF (currently not supported; use "1" with RF Input Connec-

tor setting "Baseband Input I")

Return values:

<Type> String containing one of the following values:

- None (no probe detected)

active differentialactive single-ended

Usage: Query only

11.7.6.4 External Generator Control

External generator control commands are available if the R&S FSW External Generator Control option (R&S FSW-B10) is installed. For each measurement channel one external generator can be configured. To switch between different configurations define multiple measurement channels.

For more information on external generator control see Chapter 6.2.4.2, "Basics on External Generator Control", on page 339.

Setting Basic Measurement Parameters

•	Measurement Configuration	.938
	Interface Configuration.	
•	Source Calibration	943
•	Programming Example for External Generator Control	. 946

Measurement Configuration

The following commands are required to activate external generator control and to configure a calibration measurement with an external tracking generator.

SOURce:EXTernal:FREQuency	938
SOURce:EXTernal:FREQuency:COUPling[:STATe]	
SOURce:EXTernal:FREQuency[:FACTor]:DENominator	939
SOURce:EXTernal:FREQuency[:FACTor]:NUMerator	
SOURce:EXTernal:FREQuency:OFFSet	939
SOURce:EXTernal:POWer[:LEVel]	940
SOURce:EXTernal[:STATe]	940
SOURce:POWer[:LEVel][:IMMediate]:OFFSet	940

SOURce: EXTernal: FREQuency < Frequency >

This command defines a fixed source frequency for the external generator.

Parameters:

<Frequency> Source frequency of the external generator.

*RST: 1100050000

Example: SOUR:EXT:FREQ 10MHz

Manual operation: See "(Manual) Source Frequency" on page 355

SOURce:EXTernal:FREQuency:COUPling[:STATe] <State>

This command couples the frequency of the external generator output to the R&S FSW.

Parameters:

<State> ON | OFF | 0 | 1

ON | 1

Default setting: a series of frequencies is defined (one for each sweep point), based on the current frequency at the RF input of the R&S FSW; the RF frequency range covers the currently defined span of the R&S FSW (unless limited by the range of the

signal generator)

OFF | 0

The generator uses a single fixed frequency, defined by

SOURce: EXTernal: FREQuency.

*RST: 1

Example: SOUR: EXT: FREQ: COUP ON

Manual operation: See "Source Frequency Coupling" on page 355

Setting Basic Measurement Parameters

SOURce:EXTernal:FREQuency[:FACTor]:DENominator <Value>

This command defines the denominator of the factor with which the analyzer frequency is multiplied in order to obtain the transmit frequency of the selected generator.

Select the multiplication factor such that the frequency range of the generator is not exceeded if the following formula is applied to the start and stop frequency of the analyzer:

Source Freq = RF $\cdot \frac{\text{Numerator}}{\text{Denominator}} + \text{Offset}$

Parameters:

<Value> <numeric value>

*RST: 1

Example: SOUR:EXT:FREQ:NUM 4

SOUR: EXT: FREQ: DEN 3

Sets a multiplication factor of 4/3, i.e. the transmit frequency of

the generator is 4/3 times the analyzer frequency.

Manual operation: See "(Automatic) Source Frequency (Numerator/Denominator/

Offset)" on page 355

SOURce: EXTernal: FREQuency[:FACTor]: NUMerator < Value>

This command defines the numerator of the factor with which the analyzer frequency is multiplied in order to obtain the transmit frequency of the selected generator.

Select the multiplication factor such that the frequency range of the generator is not exceeded if the following formula is applied to the start and stop frequency of the analyzer:

Source Freq = RF $\cdot \frac{\text{Numerator}}{\text{Denominator}} + \text{Offset}$

Parameters:

<Value> <numeric value>

*RST: 1

Example: SOUR:EXT:FREQ:NUM 4"

"SOUR: EXT: FREQ: DEN 3"

Sets a multiplication factor of 4/3, i.e. the transmit frequency of

the generator is 4/3 times the analyzer frequency.

Manual operation: See "(Automatic) Source Frequency (Numerator/Denominator/

Offset)" on page 355

SOURce: EXTernal: FREQuency: OFFSet < Offset>

This command defines the frequency offset of the generator with reference to the analyzer frequency.

Setting Basic Measurement Parameters

Select the offset such that the frequency range of the generator is not exceeded if the following formula is applied to the start and stop frequency of the analyzer:

Source Freq = RF $\cdot \frac{\text{Numerator}}{\text{Denominator}} + \text{Offset}$

Parameters:

<Offset> <numeric value>, specified in Hz, kHz, MHz or GHz, rounded to

the nearest Hz

*RST: 0 Hz

Example: SOUR:EXT:FREQ:OFFS 10HZ

Sets an offset of the generator output frequency compared to

the analyzer frequency of 10 Hz.

Manual operation: See "(Automatic) Source Frequency (Numerator/Denominator/

Offset)" on page 355

SOURce:EXTernal:POWer[:LEVel] <Level>

This command sets the output power of the selected generator.

Parameters:

<Level> <numeric value>

*RST: -20 dBm

Example: SOUR:EXT:POW -30dBm

Sets the generator level to -30 dBm

Manual operation: See "Source Power" on page 354

SOURce:EXTernal[:STATe] <State>

This command activates or deactivates the connected external generator.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Source State" on page 354

SOURce:POWer[:LEVel][:IMMediate]:OFFSet <Offset>

This command defines a level offset for the external generator level. Thus, for example, attenuators or amplifiers at the output of the external generator can be taken into account for the setting.

Parameters:

<Offset> Range: -200 dB to +200 dB

*RST: 0dB

Example: SOUR: POW: OFFS -10dB

Sets the level offset of the external generator to – 20 dBm.

Setting Basic Measurement Parameters

Usage: SCPI confirmed

Manual operation: See "Source Offset" on page 354

Interface Configuration

The following commands are required to configure the interface for the connection to the external generator.

SOURce:EXTernal:ROSCillator[:SOURce]	941
SYSTem:COMMunicate:GPIB:RDEVice:GENerator:ADDRess	
SYSTem:COMMunicate:RDEVice:GENerator:INTerface	941
SYSTem:COMMunicate:RDEVice:GENerator:LINK	942
SYSTem:COMMunicate:RDEVice:GENerator:TYPE	942
SYSTem:COMMunicate:TCPip:RDEVice:GENerator:ADDRess	943

SOURce: EXTernal: ROSCillator[:SOURce] < Source >

This command controls selection of the reference oscillator for the external generator.

If the external reference oscillator is selected, the reference signal must be connected to the rear panel of the instrument.

Parameters:

<Source> INTernal

the internal reference is used

EXTernal

the external reference is used; if none is available, an error flag

is displayed in the status bar

*RST: INT

Example: SOUR: EXT: ROSC EXT

Switches to external reference oscillator

Manual operation: See "Reference" on page 353

SYSTem:COMMunicate:GPIB:RDEVice:GENerator:ADDRess < Number>

Changes the IEC/IEEE-bus address of the external generator.

Parameters:

<Number> Range: 0 to 30

*RST: 28

Example: SYST:COMM:GPIB:RDEV:GEN:ADDR 15

Manual operation: See "GPIB Address / TCP/IP Address" on page 353

SYSTem:COMMunicate:RDEVice:GENerator:INTerface <Type>

Defines the interface used for the connection to the external generator.

Setting Basic Measurement Parameters

This command is only available if external generator control is active (see SOURce: EXTernal[:STATe] on page 940).

Parameters:

<Type> GPIB | TCPip

*RST: GPIB

Example: SYST:COMM:RDEV:GEN:INT TCP

Manual operation: See "Interface" on page 352

SYSTem:COMMunicate:RDEVice:GENerator:LINK <Type>

This command selects the link type of the external generator if the GPIB interface is used.

The difference between the two GPIB operating modes is the execution speed. While, during GPIB operation, each frequency to be set is transmitted to the generator separately, a whole frequency list can be programmed in one go if the TTL interface is also used. Frequency switching can then be performed per TTL handshake which results in considerable speed advantages.

This command is only available if external generator control is active (see SOURce: EXTernal [:STATe] on page 940).

Parameters:

<Type> GPIB | TTL

GPIB

GPIB connection without TTL synchronization (for all generators of other manufacturers and some Rohde & Schwarz devices)

TTL

GPIB connection with TTL synchronization (if available; for most

Rohde&Schwarz devices)

*RST: GPIB

Example: SYST:COMM:RDEV:GEN:LINK TTL

Selects GPIB + TTL interface for generator operation.

Manual operation: See "TTL Handshake" on page 352

SYSTem:COMMunicate:RDEVice:GENerator:TYPE < Type>

This command selects the type of external generator.

For a list of the available generator types see "Overview of Supported Generators" on page 342.

Parameters:

<Name> <Generator name as string value>

*RST: SMU02

Example: SYST:COMM:RDEV:GEN:TYPE 'SMW06'

Selects SMW06 as an external generator

Setting Basic Measurement Parameters

Manual operation: See "Generator Type" on page 352

SYSTem:COMMunicate:TCPip:RDEVice:GENerator:ADDRess < Address >

Configures the TCP/IP address for the external generator.

Parameters:

<Address> TCP/IP address between 0.0.0.0 and 0.255.255.255

*RST: 0.0.0.0

Example: SYST:COMM:TCP:RDEV:GEN:ADDR 130.094.122.195

Manual operation: See "GPIB Address / TCP/IP Address" on page 353

Source Calibration

The following commands are required to activate the calibration functions of the external tracking generator. However, they are only available if external generator control is active (see SOURce:EXTernal[:STATe] on page 940).

Useful commands for source calibration described elsewhere:

- Chapter 11.10.3, "Working with Transducers", on page 1104
- DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RPOSition on page 902

Remote commands exclusive to source calibration:

DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n>	943
[SENSe:]CORRection:COLLect[:ACQuire]	944
[SENSe:]CORRection:METHod	944
[SENSe:]CORRection:RECall	
[SENSe:]CORRection[:STATe]	945
[SENSe:]CORRection:TRANsducer:GENerator	

DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe]:RVALue < Value>

The command defines the power value assigned to the reference position in the grid (for all traces).

For external generator calibration measurements (requires the optional External Generator Control), this command defines the power offset value assigned to the reference position.

Suffix:

<n> Window <t> irrelevant

Parameters:

<Value> *RST: 0 dBm, coupled to reference level

Example: DISP:TRAC:Y:RVAL -20dBm

Sets the power value assigned to the reference position to -20

dBm

Setting Basic Measurement Parameters

Manual operation: See "Reference Value" on page 358

[SENSe:]CORRection:COLLect[:ACQuire] <MeasType>

This command initiates a reference measurement (calibration). The reference measurement is the basis for the measurement normalization. The result depends on whether a reflection measurement or transmission measurement is performed (see [SENSe:]CORRection:METHOD on page 944).

To obtain a correct reference measurement, a complete sweep with synchronization to the end of the sweep must have been carried out. This is only possible in the single sweep mode.

This command is only available if external generator control is active (see SOURce: EXTernal [:STATe] on page 940).

Parameters:

<MeasType> THRough

"TRANsmission" mode: calibration with direct connection

between external generator and device input

"REFLection" mode: calibration with short circuit at the input

OPEN

only allowed in "REFLection" mode: calibration with open input

Example: INIT:CONT OFF

Selects single sweep operation

CORR:METH TRAN

Selects a transmission measurement.

CORR:COLL THR; *WAI

Starts the measurement of reference data using direct connection between generator and device input and waits for the sweep

end.

Usage: Setting only

SCPI confirmed

Manual operation: See "Calibrate Reflection Short" on page 357

See "Calibrate Reflection Open" on page 357

[SENSe:]CORRection:METHod

This command selects the type of measurement to be performed with the external generator.

This command is only available if external generator control is active (see SOURce: EXTernal[:STATe] on page 940).

Setting Basic Measurement Parameters

Parameters:

REFLection

Selects reflection measurements.

TRANsmission

Selects transmission measurements.

*RST: TRANsmission

Example: CORR: METH TRAN

Sets the type of measurement to "transmission".

Manual operation: See "Calibrate Transmission" on page 356

See "Calibrate Reflection Short" on page 357 See "Calibrate Reflection Open" on page 357

[SENSe:]CORRection:RECall

This command restores the measurement configuration used for calibration.

This command is only available if external generator control is active (see SOURce: EXTernal[:STATe] on page 940).

Example: CORR: REC

Usage: Event

Manual operation: See "Recall" on page 357

[SENSe:]CORRection[:STATe] <State>

This command turns correction of measurement results (normalization) on and off.

The command is available after you have created a reference trace for the selected measurement type with [SENSe:]CORRection:COLLect[:ACQuire] on page 944.

This command is only available if external generator control is active (see SOURce: EXTernal[:STATe] on page 940).

Parameters:

<State> ON | OFF

*RST: OFF

Example: CORR ON

Activates normalization.

Usage: SCPI confirmed

Manual operation: See "Source Calibration Normalize" on page 357

Setting Basic Measurement Parameters

[SENSe:]CORRection:TRANsducer:GENerator < Name >

This command uses the normalized measurement data to generate a transducer factor with up to 1001 points. The trace data is converted to a transducer with unit dB and stored in a file with the specified name and the suffix .trd under c:\r s\instr\trd. The frequency points are allocated in equidistant steps between

start and stop frequency.

The generated transducer factor can be further adapted using the commands descri-

Parameters:

<Name> '<name>

Example: CORR:TRAN:GEN 'SMW200A1'

Creates the transducer file

bed in Chapter 11.10.3, "Working with Transducers", on page 1104).

C:\r s\instr\trd\SMW200A.trd.

Usage: SCPI confirmed

Manual operation: See "Save As Trd Factor" on page 357

Programming Example for External Generator Control

The following example demonstrates how to work with an external generator in a remote environment.

It assumes a signal generator of the type SMW06 is connected to the R&S FSW, including TTL synchronization, as described in "External Generator Connections" on page 339.

```
//Reset the instrument
*RST

//Set the frequency span.

SENS:FREQ:STAR 10HZ

SENS:FREQ:STOP 1MHZ

//------Configuring the interface -----

//Set the generator type to SMW06 with a frequency range of 100 kHz to 4GHz

SYST:COMM:RDEV:GEN:TYPE 'SMW06'

//Set the interface used to the GPIB address 28

SYST:COMM:RDEV:GEN:INT GPIB

SYST:COMM:GPIB:RDEV:GEN:ADDR 28

//Activate the use of TTL synchronization to optimize measurement speed

SYST:COMM:RDEV:GEN:LINK TTL

//Activate the use of the external reference frequency at 10 MHz on the generator
```

Setting Basic Measurement Parameters

```
SOUR: EXT: ROSC EXT
//----Configuring the calibration measurement -----
//Activate external generator control.
SOUR: EXT: STAT ON
//Set the generator output level to -10~\mathrm{dBm}.
SOUR: EXT: POW -10DBM
//Set the frequency coupling to automatic
SOUR: EXT: FREQ: COUP: STAT ON
//-----Configuring the generator frequency range ------
//Define a series of frequencies (one for each sweep point) based on the current
//frequency at the RF input of the analyzer; the generator frequency is half the
//frequency of the analyzer, with an offset of 100 kHz;
// analyzer start:
                            10 Hz
// analyzer stop:
                            1 MHz
// analyzer span:
                            999.99 KHz
// generator frequency start: 100.005 KHz
// generator frequency stop: 600 KHz
// generator span:
                            499.995 KHz
SOUR: EXT: FREQ: FACT: NUM 1
SOUR: EXT: FREQ: FACT: DEN 2
SOUR: EXT: FREQ: OFFS 100KHZ
//-----Performing the calibration measurement ------
//Perform a transmission measurement with direct connection between the generator
//and the analyzer and wait till the end
SENS:CORR:METH TRAN
SENS:CORR:COLL:ACQ THR; *WAI
//-----Retrieving the calibration trace results ------
//Retrieve the measured frequencies (10 Hz - 600 kHz)
TRAC:DATA:X? TRACE1
//Retrieve the measured power levels; = 0 between 10 Hz and 100 kHz (below
//generator minimum frequency); nominal -5dBm as of 100 kHz;
TRAC:DATA? TRACE1
//-----Normalizing the calibration trace results ------
//Retrieve the normalized power levels (= power offsets from calibration results)
//Should be 0 for all sweep points directly after calibration
SENS:CORR:STAT ON
TRAC:DATA? TRACE1
```

Setting Basic Measurement Parameters

//Changing the display of the calibration results
//Shift the reference line so the -5 dB level is displayed in the center
DISP:TRAC:Y:SCAL:RVAL -5DB
DISP:TRAC:Y:SCAL:RPOS 50PCT

11.7.6.5 Working with Power Sensors

The following commands describe how to work with power sensors.

•	Configuring Power Sensors	948
•	Configuring Power Sensor Measurements	949
•	Triggering with Power Sensors	956

Configuring Power Sensors

SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]	948
SYSTem:COMMunicate:RDEVice:PMETer:COUNt?	948
SYSTem:COMMunicate:RDEVice:PMETer:DEFine	949

SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe] <State>

This command turns automatic assignment of a power sensor to the power sensor index on and off.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: SYST:COMM:RDEV:PMET:CONF:AUTO OFF

Manual operation: See "Select" on page 333

SYSTem:COMMunicate:RDEVice:PMETer:COUNt?

This command queries the number of power sensors currently connected to the R&S FSW.

Parameters:

<NumberSensors> Number of connected power sensors.
Example: SYST:COMM:RDEV:PMET:COUN?

Usage: Query only

Manual operation: See "Select" on page 333

Setting Basic Measurement Parameters

SYSTem:COMMunicate:RDEVice:PMETer:DEFine <Placeholder>, <Type>, <Interface>, <SerialNo>

This command assigns the power sensor with the specified serial number to the selected power sensor index (configuration).

The query returns the power sensor type and serial number of the sensor assigned to the specified index.

Suffix:

1...4

Power sensor index

Setting parameters:

<Placeholder> Currently not evaluated

<SerialNo> Serial number of a connected power sensor

Query parameters:

<Type> The power sensor type, e.g. "NRP-Z81".

<Interface> Currently not evaluated

Return values:

<Placeholder> Currently not used

<Type> Detected power sensor type, e.g. "NRP-Z81".

<Interface> Interface the power sensor is connected to; always "USB"

<SerialNo> Serial number of the power sensor assigned to the specified

index

Example: SYST:COMM:RDEV:PMET2:DEF '','NRP-Z81','',

'123456'

Assigns the power sensor with the serial number '123456' to the

configuration "Power Sensor 2".
SYST:COMM:RDEV:PMET2:DEF?

Queries the sensor assigned to "Power Sensor 2".

Result:

'','NRP-Z81','USB','123456'

The NRP-Z81 power sensor with the serial number '123456' is

assigned to the "Power Sensor 2".

Manual operation: See "Select" on page 333

Configuring Power Sensor Measurements

CALibration:PMETer:ZERO:AUTO ONCE	950
CALCulate <n>:PMETer:RELative[:MAGNitude]</n>	950
CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n>	951
CALCulate <n>:PMETer:RELative:STATe</n>	951
FETCh:PMETer?	951
READ:PMETer?	952
[SENSe:]PMETer:DCYCle[:STATe]	952
[SENSe:]PMETer:DCYCle:VALue	952

Setting Basic Measurement Parameters

[SENSe:]PMETer:FREQuency	952
[SENSe:]PMETer:FREQuency:LINK	953
[SENSe:]PMETer:MTIMe	. 953
[SENSe:]PMETer:MTIMe:AVERage:COUNt	954
[SENSe:]PMETer:MTIMe:AVERage[:STATe]	954
[SENSe:]PMETer:ROFFset[:STATe]	954
[SENSe:]PMETer[:STATe]	958
[SENSe:]PMETer:UPDate[:STATe]	. 955
UNIT <n>:PMETer:POWer</n>	958
UNIT <n>:PMETer:POWer:RATio</n>	. 956

CALibration:PMETer:ZERO:AUTO ONCE

This command zeroes the power sensor.

Note that you have to disconnect the signals from the power sensor input before you start to zero the power sensor. Otherwise, results are invalid.

Suffix:

1...4

Power sensor index

Parameters:

ONCE

Example: CAL: PMET2: ZERO: AUTO ONCE; *WAI

Starts zeroing the power sensor 2 and delays the execution of

further commands until zeroing is concluded.

Usage: Event

Manual operation: See "Zeroing Power Sensor" on page 334

CALCulate<n>:PMETer:RELative[:MAGNitude] <RefValue>

This command defines the reference value for relative measurements.

Suffix:

<n> Window

1...4

Power sensor index

Parameters:

<RefValue> Range: -200 dBm to 200 dBm

*RST: C

Example: CALC:PMET2:REL -30

Sets the reference value for relative measurements to -30 dBm

for power sensor 2.

Manual operation: See "Reference Value" on page 335

Setting Basic Measurement Parameters

CALCulate<n>:PMETer:RELative[:MAGNitude]:AUTO ONCE

This command sets the current measurement result as the reference level for relative measurements.

Suffix:

<n> Window 1...4

Power sensor index

Parameters:

ONCE

Example: CALC:PMET2:REL:AUTO ONCE

Takes the current measurement value as reference value for rel-

ative measurements for power sensor 2.

Usage: Event

Manual operation: See "Setting the Reference Level from the Measurement (Meas-

>Ref)" on page 335

CALCulate<n>:PMETer:RELative:STATe <State>

This command turns relative power sensor measurements on and off.

Suffix:

<n> Window 1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:PMET2:REL:STAT ON

Activates the relative display of the measured value for power

sensor 2.

FETCh:PMETer?

This command queries the results of power sensor measurements.

Suffix:

1...4

Power sensor index

Return values:

<Level> Power level that has been measured by a power sensor.

The unit is either dBm (absolute measurements) or dB (relative

measurements).

Usage: Query only

Setting Basic Measurement Parameters

READ:PMETer?

This command initiates a power sensor measurement and queries the results.

Suffix:

1...4

Power sensor index

Usage: Query only

[SENSe:]PMETer:DCYCle[:STATe] <State>

This command turns the duty cycle correction on and off.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:DCYC:STAT ON

Manual operation: See "Duty Cycle" on page 335

[SENSe:]PMETer:DCYCle:VALue <Percentage>

This command defines the duty cycle for the correction of pulse signals.

The power sensor uses the duty cycle in combination with the mean power to calculate the power of the pulse.

Suffix:

1...4

Power sensor

Parameters:

<Percentage> Range: 0.001 to 99.999

*RST: 99.999
Default unit: %

Example: PMET2:DCYC:STAT ON

Activates the duty cycle correction.

PMET2:DCYC:VAL 0.5

Sets the correction value to 0.5%.

Manual operation: See "Duty Cycle" on page 335

[SENSe:]PMETer:FREQuency <Frequency>

This command defines the frequency of the power sensor.

Setting Basic Measurement Parameters

Suffix:

1...4

Power sensor index

Parameters:

<Frequency> The available value range is specified in the data sheet of the

power sensor in use.

*RST: 50 MHz

Example: PMET2:FREQ 1GHZ

Sets the frequency of the power sensor to 1 GHz.

Manual operation: See "Frequency Manual" on page 334

[SENSe:]PMETer:FREQuency:LINK <Coupling>

This command selects the frequency coupling for power sensor measurements.

Suffix:

1...4

Power sensor index

Parameters:

<Coupling> CENTer

Couples the frequency to the center frequency of the analyzer

MARKer1

Couples the frequency to the position of marker 1

OFF

Switches the frequency coupling off

*RST: CENTer

Example: PMET2:FREQ:LINK CENT

Couples the frequency to the center frequency of the analyzer

Manual operation: See "Frequency Coupling" on page 334

[SENSe:]PMETer:MTIMe <Duration>

This command selects the duration of power sensor measurements.

Suffix:

1...4

Power sensor index

Parameters:

<Duration> SHORt | NORMal | LONG

*RST: NORMal

Example: PMET2:MTIM SHOR

Sets a short measurement duration for measurements of station-

ary high power signals for the selected power sensor.

Manual operation: See "Meas Time/Average" on page 334

Setting Basic Measurement Parameters

[SENSe:]PMETer:MTIMe:AVERage:COUNt <NumberReadings>

This command sets the number of power readings included in the averaging process of power sensor measurements.

Extended averaging yields more stable results for power sensor measurements, especially for measurements on signals with a low power, because it minimizes the effects of noise.

Suffix:

1...4

Power sensor index

Parameters:

<NumberReadings> An average count of 0 or 1 performs one power reading.

Range: 0 to 256

Increment: binary steps (1, 2, 4, 8, ...)

Example: PMET2:MTIM:AVER ON

Activates manual averaging.

PMET2:MTIM:AVER:COUN 8

Sets the number of readings to 8.

Manual operation: See "Average Count (Number of Readings)" on page 335

[SENSe:]PMETer:MTIMe:AVERage[:STATe] <State>

This command turns averaging for power sensor measurements on and off.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:MTIM:AVER ON

Activates manual averaging.

Manual operation: See "Meas Time/Average" on page 334

[SENSe:]PMETer:ROFFset[:STATe] <State>

This command includes or excludes the reference level offset of the analyzer for power sensor measurements.

Suffix:

1...4

Power sensor index

Setting Basic Measurement Parameters

Parameters:

<State> ON | 1

Includes the reference level offset in the results.

OFF | 0

Ignores the reference level offset.

*RST: 1

Example: PMET2:ROFF OFF

Takes no offset into account for the measured power.

Manual operation: See "Use Ref Lev Offset" on page 335

[SENSe:]PMETer[:STATe] <State>

This command turns a power sensor on and off.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET1 ON

Switches the power sensor measurements on.

Manual operation: See "State" on page 333

See "Select" on page 333

[SENSe:]PMETer:UPDate[:STATe] <State>

This command turns continuous update of power sensor measurements on and off.

If on, the results are update even if a single sweep is complete.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET1:UPD ON

The data from power sensor 1 is updated continuously.

Manual operation: See "Continuous Value Update" on page 333

UNIT<n>:PMETer:POWer <Unit>

This command selects the unit for absolute power sensor measurements.

Setting Basic Measurement Parameters

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<Unit> DBM | WATT | W

*RST: DBM

Example: UNIT: PMET: POW DBM

Manual operation: See "Unit/Scale" on page 334

UNIT<n>:PMETer:POWer:RATio <Unit>

This command selects the unit for relative power sensor measurements.

Suffix:

<n> irrelevant

1...4

Power sensor index

Parameters:

<Unit> DB | PCT

*RST: DB

Example: UNIT: PMET: POW: RAT DB

Manual operation: See "Unit/Scale" on page 334

Triggering with Power Sensors

[SENSe:]PMETer:TRIGger:DTIMe	956
[SENSe:]PMETer:TRIGger:HOLDoff	957
[SENSe:]PMETer:TRIGger:HYSTeresis	
[SENSe:]PMETer:TRIGger:LEVel	957
[SENSe:]PMETer:TRIGger:SLOPe	958
[SENSe:]PMETer:TRIGger[:STATe]	958

[SENSe:]PMETer:TRIGger:DTIMe <Time>

This command defines the time period that the input signal has to stay below the IF power trigger level before the measurement starts.

Suffix:

1...4

Power sensor index

Parameters:

<Time> Range: 0 s to 1 s

Increment: 100 ns *RST: 100 µs

Setting Basic Measurement Parameters

Example: PMET2:TRIG:DTIMe 0.001

[SENSe:]PMETer:TRIGger:HOLDoff <Holdoff>

This command defines the trigger holdoff for external power triggers.

Suffix:

1...4

Power sensor index

Parameters:

<Holdoff> Time period that has to pass between the trigger event and the

start of the measurement, in case another trigger event occurs.

Range: 0 s to 1 s Increment: 100 ns *RST: 0 s

Example: PMET2:TRIG:HOLD 0.1

Sets the holdoff time of the trigger to 100 ms

Manual operation: See "Trigger Holdoff" on page 336

[SENSe:]PMETer:TRIGger:HYSTeresis < Hysteresis>

This command defines the trigger hysteresis for external power triggers.

The hysteresis in dB is the value the input signal must stay below the IF power trigger level in order to allow a trigger to start the measurement.

Suffix:

1...4

Power sensor index

Parameters:

<Hysteresis> Range: 3 dB to 50 dB

Increment: 1 dB *RST: 0 dB

Example: PMET2:TRIG:HYST 10

Sets the hysteresis of the trigger to 10 dB.

Manual operation: See "Hysteresis" on page 336

[SENSe:]PMETer:TRIGger:LEVel <Level>

This command defines the trigger level for external power triggers.

This command requires the use of an R&S NRP-Z81 power sensor.

Suffix:

1...4

Power sensor index

Setting Basic Measurement Parameters

Parameters:

<Level> -20 to +20 dBm

Range: -20 dBm to 20 dBm

*RST: -10 dBm

Example: PMET2:TRIG:LEV -10 dBm

Sets the level of the trigger

Manual operation: See "External Trigger Level" on page 336

[SENSe:]PMETer:TRIGger:SLOPe <Edge>

This command selects the trigger condition for external power triggers.

Suffix:

1...4

Power sensor index

Parameters:

<Edge> POSitive

The measurement starts in case the trigger signal shows a posi-

tive edge.

NEGative

The measurement starts in case the trigger signal shows a neg-

ative edge.

*RST: POSitive

Example: PMET2:TRIG:SLOP NEG

Manual operation: See "Slope" on page 336

[SENSe:]PMETer:TRIGger[:STATe] <State>

This command turns the external power trigger on and off.

This command requires the use of an R&S NRP-Z81 power sensor.

Suffix:

1...4

Power sensor index

Parameters:

<State> ON | OFF

*RST: OFF

Example: PMET2:TRIG ON

Switches the external power trigger on

Manual operation: See "Using the power sensor as an external trigger"

on page 335

Setting Basic Measurement Parameters

11.7.6.6 Configuring the Outputs

Configuring trigger input/output is described in Chapter 11.7.4.3, "Configuring the Trigger Output", on page 911.

DIAGnostic:SERVice:NSOurce	959
OUTPut:IF:SBANd?	
OUTPut:IF[:SOURce]	
OUTPut:IF:IFFRequency	
OUTPut:UPORt:STATe	
OUTPut:UPORt[:VALue]	961
SYSTem:SPEaker:VOLume	

DIAGnostic:SERVice:NSOurce <State>

This command turns the 28 V supply of the BNC connector labeled NOISE SOURCE CONTROL on the R&S FSW on and off.

For details see Chapter 6.2.1.4, "Input from Noise Sources", on page 323.

Suffix:

<n> Window

Parameters:

<State> ON | OFF

*RST: OFF

Example: DIAG:SERV:NSO ON

Manual operation: See "Noise Source" on page 393

OUTPut:IF:SBANd?

This command queries the sideband provided at the IF OUT 2 GHZ connector compared to the sideband of the RF signal. The sideband depends on the current center frequency.

This command is available only if the output is configured for IF2 (see OUTPut:IF[: SOURce] on page 960).

For more information and prerequisites see Chapter 6.2.1.6, "IF and Video Signal Output", on page 324.

Return values:

<SideBand> NORMal

The sideband at the output is identical to the RF signal.

INVerted

The sideband at the output is the inverted RF signal sideband.

Setting Basic Measurement Parameters

Example: OUTP:IF IF2

Activates output at the IF OUTPUT (2 GHZ) connector.

OUTP: IF: SBAN?

Queries the sideband provided at the connector.

Usage: Query only

OUTPut:IF[:SOURce] <Source>

Defines the type of signal available at the IF/VIDEO/DEMOD or IF OUT 2 GHZ connector of the R&S FSW.

For restrictions and more information see Chapter 6.2.1.6, "IF and Video Signal Output", on page 324.

Parameters:

<Source>

IF

The measured IF value is available at the IF/VIDEO/DEMOD output connector.

The frequency at which the IF value is provided is defined using the OUTPut: IF: IFFRequency command.

IF2

The measured IF value is available at the IF OUT 2 GHZ output connector at a frequency of 2 GHz.

This setting is only available if the IF OUT 2 GHZ connector or the optional 2 GHz bandwidth extension (R&S FSW-B2000) is available.

For details see the R&S FSW I/Q Analyzer and I/Q Input User Manual.

VIDeo

The displayed video signal (i.e. the filtered and detected IF signal, 200mV) is available at the IF/VIDEO/DEMOD output connector

This setting is required to provide demodulated audio frequencies at the output.

*RST: IF

Example: OUTP: IF VID

Selects the video signal for the IF/VIDEO/DEMOD output con-

nector.

Manual operation: See "IF/Video Output" on page 392

OUTPut:IF:IFFRequency < Frequency >

This command defines the frequency for the IF output of the R&S FSW. The IF frequency of the signal is converted accordingly.

This command is available in the time domain and if the IF/VIDEO/DEMOD output is configured for IF.

Setting Basic Measurement Parameters

For more information see Chapter 6.2.1.6, "IF and Video Signal Output", on page 324.

Parameters:

<Frequency> *RST: 50.0 MHz

Manual operation: See "IF (Wide) Out Frequency" on page 393

OUTPut:UPORt:STATe <State>

This command toggles the control lines of the user ports for the **AUX PORT** connector. This 9-pole SUB-D male connector is located on the rear panel of the R&S FSW.

Parameters:

<State> ON

User port is switched to OUTPut

OFF

User port is switched to INPut

*RST: OFF

OUTPut:UPORt[:VALue] <Value>

This command sets the control lines of the user ports.

The assignment of the pin numbers to the bits is as follows:

Bit	7	6	5	4	3	2	1	0
Pin	N/A	N/A	5	3	4	7	6	2

Bits 7 and 6 are not assigned to pins and must always be 0.

The user port is written to with the given binary pattern. If the user port is programmed to input instead of output (see INPut:UPORt:STATe on page 920), the output value is temporarily stored.

Parameters:

<Value> bit values in hexadecimal format

TTL type voltage levels (max. 5V)

Range: #B00000000 to #B00111111

Example: OUTP:UPOR #B00100100

Sets pins 5 and 7 to 5 V.

SYSTem:SPEaker:VOLume < Volume>

This command defines the volume of the built-in loudspeaker for demodulated signals.

The command is available in the time domain in Spectrum mode and in Analog Demodulation mode.

Analyzing Measurements (Basics)

Parameters:

<Volume> Range: 0 to 1

*RST: 0.5

Example: SYST:SPE:VOL 0

Switches the loudspeaker to mute.

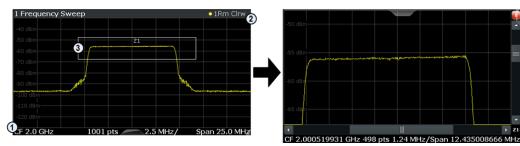
Manual operation: See "IF/Video Output" on page 392

11.8 Analyzing Measurements (Basics)

The commands for general analysis tasks are described here.

•	Zooming into the Display	962
	Configuring the Trace Display and Retrieving Trace Data	
	Working with Markers	
•	Configuring Display and Limit Lines	1045

11.8.1 Zooming into the Display


11.8.1.1 Using the Single Zoom

DISPlay[:WINDow <n>]:ZOOM:AREA</n>	962
DISPlay[:WINDow <n>]:ZOOM:STATe</n>	963

DISPlay[:WINDow<n>]:ZOOM:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area.

To define a zoom area, you first have to turn the zoom on.

- 1 = origin of coordinate system (x1 = 0, y1 = 0)
- 2 = end point of system (x2 = 100, y2 = 100)
- 3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

Suffix:

<n> Window

Analyzing Measurements (Basics)

Parameters:

<x1>,<y1>, Diagram coordinates in % of the complete diagram that define

<x2>,<y2> the zoom area.

The lower left corner is the origin of coordinate system. The

upper right corner is the end point of the system.

Range: 0 to 100 Default unit: PCT

Manual operation: See "Single Zoom" on page 460

DISPlay[:WINDow<n>]:ZOOM:STATe <State>

This command turns the zoom on and off.

Suffix:

<n> Window

Parameters:

<State> ON | OFF

*RST: OFF

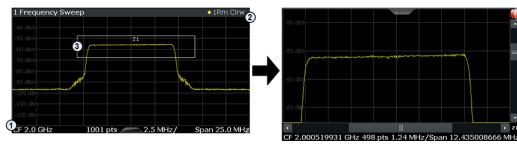
Example: DISP: ZOOM ON

Activates the zoom mode.

Manual operation: See "Single Zoom" on page 460

See "Restore Original Display" on page 460

See "▶ Deactivating Zoom (Selection mode)" on page 461


11.8.1.2 Using the Multiple Zoom

DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:AREA</zoom></n>	.963
DISPlavI:WINDow <n>1:ZOOM:MULTiple<zoom>:STATe</zoom></n>	964

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:AREA <x1>,<y1>,<x2>,<y2>

This command defines the zoom area for a multiple zoom.

To define a zoom area, you first have to turn the zoom on.

- 1 = origin of coordinate system (x1 = 0, y1 = 0)
- 2 = end point of system (x2 = 100, y2 = 100)
- 3 = zoom area (e.g. x1 = 60, y1 = 30, x2 = 80, y2 = 75)

Suffix:

<n> Window

Analyzing Measurements (Basics)

<zoom> 1...4

Selects the zoom window.

Parameters:

<x1>,<y1>, Diagram coordinates in % of the complete diagram that define

<x2>,<y2> the zoom area.

The lower left corner is the origin of coordinate system. The

upper right corner is the end point of the system.

Range: 0 to 100 Default unit: PCT

Manual operation: See "Multiple Zoom" on page 460

DISPlay[:WINDow<n>]:ZOOM:MULTiple<zoom>:STATe <State>

This command turns the multiple zoom on and off.

Suffix:

<n> Window

<zoom> 1...4

Selects the zoom window.

If you turn off one of the zoom windows, all subsequent zoom

windows move up one position.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Multiple Zoom" on page 460

See "Restore Original Display" on page 460

See "▶ Deactivating Zoom (Selection mode)" on page 461

11.8.2 Configuring the Trace Display and Retrieving Trace Data

The commands required to work with traces are described here.

Commands required to export traces (and other result data) are described in Chapter 11.9.5, "Storing Measurement Results", on page 1090.

•	Configuring Standard Traces	965
	Configuring Spectrograms	
	Using Trace Mathematics	
	Retrieving Trace Results	
	Formats for Returned Values: ASCII Format and Binary Format	
•	Programming Example: Configuring a Spectrogram	983

Analyzing Measurements (Basics)

11.8.2.1 Configuring Standard Traces

Useful commands for trace configuration described elsewhere

- DISPlay[:WINDow<n>]:TRACe<t>:Y:SPACing on page 902
- DISPlay[:WINDow<n>]:TRACe<t>:Y[:SCALe] on page 900

Remote commands exclusive to trace configuration

DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>	965
DISPlay[:WINDow <n>]:TRACe<t>:MODE:HCONtinuous</t></n>	
DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>	
DISPlay[:WINDow <n>]:TRACe<t>:SMOothing:APERture</t></n>	
DISPlay[:WINDow <n>]:TRACe<t>:SMOothing[:STATe]</t></n>	
[SENSe:]AVERage <n>:COUNt</n>	
[SENSe:]AVERage <n>[:STATe<t>]</t></n>	
[SENSe:]AVERage <n>:TYPE</n>	
[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]</t></n>	969
[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]:AUTO</t></n>	
TRACe <n>:COPY</n>	970

DISPlay[:WINDow<n>]:TRACe<t>:MODE < Mode>

This command selects the trace mode.

In case of max hold, min hold or average trace mode, you can set the number of single measurements with <code>[SENSe:]SWEep:COUNt</code>. Note that synchronization to the end of the measurement is possible only in single sweep mode.

Suffix:

<n> Window <t> Trace

Analyzing Measurements (Basics)

Parameters:

<Mode> WRITe

Overwrite mode: the trace is overwritten by each sweep. This is the default setting.

AVERage

The average is formed over several sweeps. The "Sweep/Average Count" determines the number of averaging procedures.

MAXHold

The maximum value is determined over several sweeps and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is greater than the previous one.

MINHold

The minimum value is determined from several measurements and displayed. The R&S FSW saves the sweep result in the trace memory only if the new value is lower than the previous one.

VIEW

The current contents of the trace memory are frozen and displayed.

BLANk

Hides the selected trace.

*RST: Trace 1: WRITe, Trace 2-6: BLANk

Example: INIT:CONT OFF

Switching to single sweep mode.

SWE: COUN 16

Sets the number of measurements to 16.

DISP:TRAC3:MODE WRIT

Selects clear/write mode for trace 3.

INIT; *WAI

Starts the measurement and waits for the end of the measure-

ment.

Manual operation: See "Trace Mode" on page 479

DISPlay[:WINDow<n>]:TRACe<t>:MODE:HCONtinuous <State>

This command turns an automatic reset of a trace on and off after a parameter has changed.

The reset works for trace modes min hold, max hold and average.

Note that the command has no effect if critical parameters like the span have been changed to avoid invalid measurement results

Suffix:

<n> Window <t> Trace

Analyzing Measurements (Basics)

Parameters:

<State> ON

The automatic reset is off.

OFF

The automatic reset is on.

*RST: OFF

Example: DISP:WIND:TRAC3:MODE:HCON ON

Switches off the reset function.

Manual operation: See "Hold" on page 480

DISPlay[:WINDow<n>]:TRACe<t>[:STATe] <State>

This command turns a trace on and off.

The measurement continues in the background.

Suffix:

<n> Window <t> Trace

Parameters:

<State> ON | OFF | 1 | 0

*RST: 1 for TRACe1, 0 for TRACe 2 to 6

Example: DISP:TRAC3 ON
Usage: SCPI confirmed

Manual operation: See "Trace 1/Trace 2/Trace 3/Trace 4/Trace 5/Trace 6"

on page 479

See "Trace 1/Trace 2/Trace 3/Trace 4 (Softkeys)" on page 482

DISPlay[:WINDow<n>]:TRACe<t>:SMOothing:APERture < Percentage>

This command defines the degree (aperture) of the trace smoothing, if DISPlay[:WINDow<n>]:TRACe<t>:SMOothing[:STATe] TRUE.

Suffix:

<n> Window <t> Trace

Parameters:

<Percentage> Range: 1 to 50

*RST: 2
Default unit: PCT

Example: DISP3:TRAC2:SMO:APER 5

Defines an aperture of 5% for trace 2 in window 3

Manual operation: See "Smoothing" on page 480

Analyzing Measurements (Basics)

DISPlay[:WINDow<n>]:TRACe<t>:SMOothing[:STATe] <State>

This command turns trace smoothing for a particular trace on and off.

If enabled, the trace is smoothed by the value specified using DISPlay[:WINDow<n>]:TRACe<t>:SMOothing:APERture on page 967.

For more information see Chapter 7.3.1.6, "Trace Smoothing", on page 470.

Suffix:

<n> Window <t> Trace

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP3:TRAC2:SMO ON

Turns on trace smoothing for trace 2 in window 3

Usage: SCPI confirmed

Manual operation: See "Smoothing" on page 480

[SENSe:]AVERage<n>:COUNt <AverageCount>

This command defines the number of sweeps that the application uses to average traces.

In case of continuous sweep mode, the application calculates the moving average over the average count.

In case of single sweep mode, the application stops the measurement and calculates the average after the average count has been reached.

Suffix:

<n> irrelevant

Parameters:

<AverageCount> If you set an average count of 0 or 1, the application performs

one single sweep in single sweep mode.

In continuous sweep mode, if the average count is set to 0, a

moving average over 10 sweeps is performed.

Range: 0 to 200000

*RST: C

Usage: SCPI confirmed

Manual operation: See "Sweep / Average Count" on page 423

See "Average Count" on page 481

[SENSe:]AVERage<n>[:STATe<t>] <State>

This command turns averaging for a particular trace in a particular window on and off.

Analyzing Measurements (Basics)

Suffix:

<n> Window

<t> Trace

Parameters:

<State> ON | OFF

Usage: SCPI confirmed

[SENSe:]AVERage<n>:TYPE <Mode>

This command selects the trace averaging mode.

Suffix:

<n> Window

Parameters:

<Mode> VIDeo

The logarithmic power values are averaged.

LINear

The power values are averaged before they are converted to

logarithmic values.

POWer

The power level values are converted into unit Watt prior to averaging. After the averaging, the data is converted back into

its original unit.

*RST: VIDeo

Example: AVER: TYPE LIN

Switches to linear average calculation.

Usage: SCPI confirmed

Manual operation: See "Average Mode" on page 480

[SENSe:][WINDow<n>:]DETector<t>[:FUNCtion] < Detector>

Defines the trace detector to be used for trace analysis.

For details see Chapter 7.3.1.1, "Mapping Samples to sweep Points with the Trace Detector", on page 464.

For EMI measurements, the trace detector is used for the initial peak search only, not for the final test. The detector for the final test is configured using CALCulate<n>: MARKer<m>: FUNCtion: FMEasurement: DETector on page 853.

If the EMI (R&S FSW-K54) measurement option is installed and the filter type "CISPR" is selected, additional detectors are available, even if EMI measurement is not active. For details see Chapter 5.13.3.2, "Detectors and Dwell Time", on page 298.

Suffix:

<n> Window <t> Trace

Analyzing Measurements (Basics)

Parameters:

<Detector> APEak

Autopeak

NEGative

Negative peak

POSitive

Positive peak

QPEak

Quasipeak (CISPR filter only)

SAMPle

First value detected per trace point

RMS value
AVERage
Average
CAVerage

CISPR Average (CISPR filter only)

CRMS

CISPR RMS (CISPR filter only)

*RST: APEak

Example: DET POS

Sets the detector to "positive peak".

Manual operation: See "Detector" on page 479

[SENSe:][WINDow<n>:]DETector<t>[:FUNCtion]:AUTO <State>

This command couples and decouples the detector to the trace mode.

Suffix:

<n> Window <t> Trace

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: DET:AUTO OFF

The selection of the detector is not coupled to the trace mode.

Manual operation: See "Detector" on page 479

TRACe<n>:COPY <TraceNumber>, <TraceNumber>

This command copies data from one trace to another.

Suffix:

<n> Window

Analyzing Measurements (Basics)

Parameters:

<TraceNumber>,
<TraceNumber>,
<TraceNumber>

TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6
The first parameter is the destination trace, the second parame-

ter is the source.

(Note the 'e' in the parameter is required!)

Example: TRAC: COPY TRACE1, TRACE2

Copies the data from trace 2 to trace 1.

Usage: SCPI confirmed

Manual operation: See "Copy Trace" on page 482

11.8.2.2 Configuring Spectrograms

In addition to the standard "level versus frequency" or "level versus time" spectrum traces, the R&S FSW also provides a spectrogram display of the measured data. A spectrogram shows how the spectral density of a signal varies over time. The x-axis shows the frequency, the y-axis shows the time. The commands required to configure spectrograms in a remote environment are described here. For details and manual operation see Chapter 7.3.2.4, "Spectrogram Settings", on page 486.

When configuring spectrograms, the window suffix is irrelevant. The settings are always applied to the spectrogram window, or to all spectrogram windows, if several are active for the same measurement channel.

For commands to set markers in spectrograms, see Chapter 11.8.3.6, "Marker Search (Spectrograms)", on page 1006.

Configuring a Spectrogram Measurement	971
Configuring the Color Map	975

Configuring a Spectrogram Measurement

CALCulate <n>:SGRam:CLEar[:IMMediate]</n>	972
CALCulate <n>:SPECtrogram:CLEar[:IMMediate]</n>	972
CALCulate <n>:SGRam:CONT</n>	972
CALCulate <n>:SPECtrogram:CONT</n>	972
CALCulate <n>:SGRam:FRAMe:COUNt</n>	972
CALCulate <n>:SPECtrogram:FRAMe:COUNt</n>	972
CALCulate <n>:SGRam:FRAMe:SELect</n>	973
CALCulate <n>:SPECtrogram:FRAMe:SELect</n>	973
CALCulate <n>:SGRam:HDEPth</n>	
CALCulate <n>:SPECtrogram:HDEPth</n>	973
CALCulate <n>:SGRam:TSTamp:DATA?</n>	974
CALCulate <n>:SPECtrogram:TSTamp:DATA?</n>	974
CALCulate <n>:SGRam:TSTamp[:STATe]</n>	974
CALCulate <n>:SPECtrogram:TSTamp[:STATe]</n>	
CALCulate <n>:SGRam[:STATe]</n>	
CALCulate <n>:SPECtrogram[:STATe]</n>	

Analyzing Measurements (Basics)

CALCulate<n>:SGRam:CLEar[:IMMediate]
CALCulate<n>:SPECtrogram:CLEar[:IMMediate]

This command resets the spectrogram and clears the history buffer.

Suffix:

<n> irrelevant

Example: CALC:SGR:CLE

Resets the result display and clears the memory.

Usage: Event

Manual operation: See "Clear Spectrogram" on page 427

CALCulate<n>:SGRam:CONT <State>
CALCulate<n>:SPECtrogram:CONT <State>

This command determines whether the results of the last measurement are deleted before starting a new measurement in single sweep mode.

This setting applies to all spectrograms in the measurement channel.

Suffix:

<n> irrelevant

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON 0 | OFF *RST: 0

Example: INIT:CONT OFF

Selects single sweep mode.

INIT; *WAI

Starts the sweep and waits for the end of the sweep.

CALC:SGR:CONT ON

Repeats the single sweep measurement without deleting the

results of the last measurement.

Manual operation: See "Single Sweep/ RUN SINGLE" on page 425

See "Continue Frame" on page 427

CALCulate<n>:SGRam:FRAMe:COUNt <Frames>
CALCulate<n>:SPECtrogram:FRAMe:COUNt <Frames>

This command defines the number of frames to be recorded in a single sweep.

This value applies to all spectrograms in the measurement channel.

Suffix:

<n> irrelevant

Analyzing Measurements (Basics)

Parameters:

<Frames> The maximum number of frames depends on the history depth.

Range: 1 to history depth

Increment: 1 *RST: 1

Example: INIT: CONT OFF

Selects single sweep mode.
CALC: SGR: FRAM: COUN 200
Sets the number of frames to 200.

Manual operation: See "Frame Count" on page 427

CALCulate<n>:SGRam:FRAMe:SELect <Frame> | <Time> CALCulate<n>:SPECtrogram:FRAMe:SELect <Frame> | <Time>

This command selects a specific frame for further analysis.

The command is available if no measurement is running or after a single sweep has ended.

Suffix:

<n> irrelevant

Parameters:

<Frame> Selects a frame directly by the frame number. Valid if the time

stamp is off.

The range depends on the history depth.

<Time> Selects a frame via its time stamp. Valid if the time stamp is on.

The number is the distance to frame 0 in seconds. The range

depends on the history depth.

Example: INIT: CONT OFF

Stop the continuous sweep. CALC: SGR: FRAM: SEL -25 Selects frame number -25.

Manual operation: See "Selecting a frame to display" on page 426

CALCulate<n>:SGRam:HDEPth <History>

CALCulate<n>:SPECtrogram:HDEPth <History>

This command defines the number of frames to be stored in the R&S FSW memory.

Suffix:

<n> irrelevant

Parameters:

<History> The maximum number of frames depends on the number of

sweep points.

Range: 781 to 20000

Increment: 1 *RST: 3000

Analyzing Measurements (Basics)

Example: CALC:SGR:SPEC 1500

Sets the history depth to 1500.

Manual operation: See "History Depth" on page 487

CALCulate<n>:SGRam:TSTamp:DATA? <Frames> CALCulate<n>:SPECtrogram:TSTamp:DATA? <Frames>

This command queries the starting time of the frames.

The return values consist of four values for each frame. If the Spectrogram is empty, the command returns '0,0,0,0'. The times are given as delta values, which simplifies evaluating relative results; however, you can also calculate the absolute date and time as displayed on the screen.

The frame results themselves are returned with TRAC: DATA? SGR

See TRACe<n>[:DATA] on page 980.

Suffix:

<n> irrelevant

Query parameters:

<Frames> CURRent

Returns the starting time of the current frame.

ALL

Returns the starting time for all frames. The results are sorted in

descending order, beginning with the current frame.

Return values:

<Seconds> Number of seconds that have passed since 01.01.1970 till the

frame start

<Nanoseconds> Number of nanoseconds that have passed in addition to the

<Seconds> since 01.01.1970 till the frame start.

<Reserved> The third and fourth value are reserved for future uses.

Example: CALC:SGR:TST ON

Activates the time stamp.
CALC:SGR:TST:DATA? ALL

Returns the starting times of all frames sorted in a descending

order.

Usage: Query only

Manual operation: See "Timestamp" on page 488

CALCulate<n>:SGRam:TSTamp[:STATe] <State>
CALCulate<n>:SPECtrogram:TSTamp[:STATe] <State>

This command activates and deactivates the time stamp.

If the time stamp is active, some commands do not address frames as numbers, but as (relative) time values:

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>:SPECtrogram:FRAMe on page 1012

• CALCulate<n>:MARKer<m>:SPECtrogram:FRAMe on page 1007

• CALCulate<n>:SPECtrogram:FRAMe:SELect on page 973

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:SGR:TST ON

Activates the time stamp.

Manual operation: See "Timestamp" on page 488

CALCulate<n>:SGRam[:STATe] <State>
CALCulate<n>:SPECtrogram[:STATe] <State>

This command turns the spectrogram on and off.

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:SGR ON

Activates the Spectrogram result display.

Manual operation: See "State" on page 487

Configuring the Color Map

DISPlay[:WINDow <n>]:SGRam:COLor:DEFault</n>	975
DISPlay[:WINDow <n>]:SPECtrogram:COLor:DEFault</n>	
DISPlay[:WINDow <n>]:SGRam:COLor:LOWer</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor:LOWer</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor:SHAPe</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor:SHAPe</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor:UPPer</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor:UPPer</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor[:STYLe]</n>	977
DISPlay[:WINDow <n>]:SPECtrogram:COLor[:STYLe]</n>	977

DISPlay[:WINDow<n>]:SGRam:COLor:DEFault DISPlay[:WINDow<n>]:SPECtrogram:COLor:DEFault

This command restores the original color map.

Suffix:

<n> Window

Analyzing Measurements (Basics)

Usage: Event

Manual operation: See "Set to Default" on page 490

DISPlay[:WINDow<n>]:SGRam:COLor:LOWer < Percentage > DISPlay[:WINDow<n>]:SPECtrogram:COLor:LOWer < Percentage >

This command defines the starting point of the color map.

Suffix:

<n> Window

Parameters:

<Percentage> Statistical frequency percentage.

Range: 0 to 66 *RST: 0

Default unit: %

Example: DISP:WIND:SGR:COL:LOW 10

Sets the start of the color map to 10%.

Manual operation: See "Start / Stop" on page 490

DISPlay[:WINDow<n>]:SGRam:COLor:SHAPe <Shape>
DISPlay[:WINDow<n>]:SPECtrogram:COLor:SHAPe <Shape>

This command defines the shape and focus of the color curve for the spectrogram result display.

Suffix:

<n> Window

Parameters:

<Shape> Shape of the color curve.

Range: -1 to 1 *RST: 0

Manual operation: See "Shape" on page 490

DISPlay[:WINDow<n>]:SGRam:COLor:UPPer <Percentage>
DISPlay[:WINDow<n>]:SPECtrogram:COLor:UPPer <Percentage>

This command defines the end point of the color map.

Suffix:

<n> Window

Parameters:

<Percentage> Statistical frequency percentage.

Range: 0 to 66 *RST: 0
Default unit: %

Analyzing Measurements (Basics)

Example: DISP:WIND:SGR:COL:UPP 95

Sets the start of the color map to 95%.

Manual operation: See "Start / Stop" on page 490

DISPlay[:WINDow<n>]:SGRam:COLor[:STYLe] <ColorScheme>
DISPlay[:WINDow<n>]:SPECtrogram:COLor[:STYLe] <ColorScheme>

This command selects the color scheme.

Parameters:

<ColorScheme> HOT

Uses a color range from blue to red. Blue colors indicate low lev-

els, red colors indicate high ones.

COLD

Uses a color range from red to blue. Red colors indicate low levels, blue colors indicate high ones.

RADar

Uses a color range from black over green to light turquoise with

shades of green in between.

GRAYscale

Shows the results in shades of gray.

*RST: HOT

Example: DISP:WIND:SPEC:COL GRAY

Changes the color scheme of the spectrogram to black and

white.

Manual operation: See "Hot/Cold/Radar/Grayscale" on page 490

11.8.2.3 Using Trace Mathematics

The following commands control trace mathematics.

CALCulate <n>:MATH[:EXPression][:DEFine]</n>	977
CALCulate <n>:MATH:MODE</n>	
CALCulate <n>:MATH:POSition</n>	978
CALCulate <n>:MATH:STATe</n>	979

CALCulate<n>:MATH[:EXPression][:DEFine] < Expression>

This command selects the mathematical expression for trace mathematics.

Before you can use the command, you have to turn trace mathematics on.

Suffix:

<n> Window

Analyzing Measurements (Basics)

Parameters:

<Expression> (TRACE1-TRACE2)

Subtracts trace 2 from trace 1.

(TRACE1-TRACE3)

Subtracts trace 3 from trace 1.

(TRACE1-TRACE4)

Subtracts trace 4 from trace 1.

(TRACE1-TRACE5)

Subtracts trace 5 from trace 1.

(TRACE1-TRACE6)

Subtracts trace 6 from trace 1.

Example: CALC:MATH:STAT ON

Turns trace mathematics on.

CALC:MATH:EXPR:DEF (TRACE1-TRACE3)

Subtracts trace 3 from trace 1.

Usage: SCPI confirmed

Manual operation: See "Trace Math Function" on page 483

CALCulate<n>:MATH:MODE < Mode>

This command selects the way the R&S FSW calculates trace mathematics.

Suffix:

<n> Window

Parameters:

<Mode> For more information on the way each mode works see Trace

Math Mode.

LINear

Linear calculation. **LOGarithmic**

Logarithmic calculation.

POWer

Linear power calculation.
*RST: LOGarithmic

Example: CALC:MATH:MODE LIN

Selects linear calculation.

Manual operation: See "Trace Math Mode" on page 484

CALCulate<n>:MATH:POSition <Position>

This command defines the position of the trace resulting from the mathematical operation.

Suffix:

<n> Window

Analyzing Measurements (Basics)

Parameters:

<Position> Vertical position of the trace in % of the height of the diagram

area.

100 PCT corresponds to the upper diagram border.

Range: -100 to 200

*RST: 50
Default unit: PCT

Example: CALC:MATH:POS 100

Moves the trace to the top of the diagram area.

Manual operation: See "Trace Math Position" on page 484

CALCulate<n>:MATH:STATe <State>

This command turns the trace mathematics on and off.

Suffix:

<n> Window

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MATH:STAT ON

Turns on trace mathematics.

Usage: SCPI confirmed

Manual operation: See "Trace Math Function" on page 483

See "Trace Math Off" on page 483

11.8.2.4 Retrieving Trace Results

This chapter describes how to retrieve data from standard traces.

For spectrograms see also Chapter 11.8.3.6, "Marker Search (Spectrograms)", on page 1006.

For details on the format of the retrieved trace data see also Chapter 11.8.2.5, "Formats for Returned Values: ASCII Format and Binary Format", on page 983.

Commands required to export traces (and other result data) are described in Chapter 11.9.5, "Storing Measurement Results", on page 1090.

FORMat[:DATA]	980
TRACe <n>[:DATA]</n>	980
TRACe <n>[:DATA]:MEMory?</n>	982
TRACe <n>[:DATA]:X?</n>	983

Analyzing Measurements (Basics)

FORMat[:DATA] <Format>

This command selects the data format that is used for transmission of trace data from the R&S FSW to the controlling computer.

Note that the command has no effect for data that you send to the R&S FSW. The R&S FSW automatically recognizes the data it receives, regardless of the format.

For details on data formats see Chapter 11.8.2.5, "Formats for Returned Values: ASCII Format and Binary Format", on page 983.

Parameters:

<Format> ASCii

ASCii format, separated by commas.

This format is almost always suitable, regardless of the actual data format. However, the data is not as compact as other for-

mats may be.

REAL,32

32-bit IEEE 754 floating-point numbers in the "definite length

block format".

In the Spectrum application, the format setting REAL is used for

the binary transmission of trace data.

For I/Q data, 8 bytes per sample are returned for this format set-

ting.

*RST: ASCII

Example: FORM REAL, 32

Usage: SCPI confirmed

TRACe<n>[:DATA] <Trace>,<Data> | <ResultType>

This command queries current trace data and measurement results.

If you use it as a setting command, it transfers trace data from an external source to the R&S FSW.

The data format depends on FORMat [:DATA].

Suffix:

<n> Window

Parameters:

<Trace> Selects the trace to write the data to.

TRACE1 | ... | TRACE6

<Data> Contains the data to transfer.

Analyzing Measurements (Basics)

Query parameters:

<ResultType> Selects the type of result to be returned.

TRACE1 | ... | TRACE6

Returns the trace data for the corresponding trace.

For details see Table 11-7.

LIST

Returns the results of the peak list evaluation for Spurious Emis-

sion and Spectrum Emission Mask measurements.

For SEM measurements, one peak per range is returned. For spurious emission measurements, the number of peaks returned for each measurement range is defined by the "Peaks per Range" parameter (see CALCulate<n>: PEAKsearch: SUBRanges on page 820), regardless of the "Details" setting.

For details see Table 11-8.

SPURious

Returns the peak list of Spurious Emission measurements.

SPECtrogram | SGRam

Returns the results of the spectrogram result display.

For details see Table 11-9.

Return values:

<TraceData> For more information see tables below.

Example: TRAC TRACE1, +A\$

Transfers trace data ('+A\$') to trace 1.

Example: TRAC? TRACE3

Queries the data of trace 3.

Usage: SCPI confirmed

Manual operation: See "Spectrum Emission Mask" on page 117

See "Spurious Emissions" on page 117

See "List Evaluation (Result Summary) State" on page 232

See "List Evaluation State" on page 254

Table 11-7: Return values for TRACE1 to TRACE6 parameter

The trace data consists of a list of power levels that have been measured. The number of power levels in the list depends on the currently selected number of sweep points. The unit depends on the measurement and on the unit you have currently set.

If you are measuring with the auto peak detector, the command returns positive peak values only. (To retrieve negative peak values, define a second trace with a negative peak detector.)

For SEM or Spurious Emission measurement results, the x-values should be queried as well, as they are not equidistant (see TRACe<n>[:DATA]:X? on page 983).

Analyzing Measurements (Basics)

Table 11-8: Return values for LIST parameter

For each peak, the command returns 11 values in the following order:

<No>,<StartFreq>,<StopFreq>,<RBW>,<PeakFreq>,<PowerAbs>,<PowerRel>,<PowerDelta>,<LimitCheck>,<Unused1>,<Unused2>

- <No>: range number
- StartFreq>,<StopFreq>: start and stop frequency of the range
- <RBW>: resolution bandwidth
- <PeakFreq>: frequency of the peak in a range
- <PowerAbs>: absolute power of the peak in dBm
- <PowerRel>: power of the peak in relation to the channel power in dBc
- PowerDelta>: distance from the peak to the limit line in dB, positive values indicate a failed limit check
- <LimitCheck>: state of the limit check (0 = PASS, 1 = FAIL)
- <Unused1>,<Unused2>: reserved (0.0)

Table 11-9: Return values for SPECtrogram parameter

For every frame in the spectrogram, the command returns the power levels that have been measured, one for each sweep point. The number of frames depends on the size of the history depth. The power level depends on the unit you have currently set.

TRACe<n>[:DATA]:MEMory? <Trace>,<OffsSwPoint>,<NoOfSwPoints>

This command queries the previously captured trace data for the specified trace from the memory. As an offset and number of sweep points to be retrieved can be specified, the trace data can be retrieved in smaller portions, making the command faster than the TRAC: DATA? command. This is useful if only specific parts of the trace data are of interest.

If no parameters are specified with the command, the entire trace data is retrieved; in this case, the command returns the same results as <code>TRAC:DATA? TRACE1</code>. (Note, however, that the <code>TRAC:DATA? TRACE1</code> command initiates a new measurement before returning the captured values, rather than returning the existing data in the memory.)

For details on the returned values see the TRAC:DATA? <TRACE...> command.

Suffix:

<n> Window

Query parameters:

<Trace> TRACE1 | TRACE2 | TRACE3 | TRACE4 | TRACE5 | TRACE6

<OffsSwPoint> The offset in sweep points related to the start of the measure-

ment at which data retrieval is to start.

<NoOfSwPoints> Number of sweep points to be retrieved from the trace.

Example: TRAC:DATA:MEM? TRACE1,25,100

Retrieves 100 sweep points from trace 1, starting at sweep point

25.

Usage: Query only

Analyzing Measurements (Basics)

TRACe<n>[:DATA]:X? <TraceNumber>

This command queries the horizontal trace data for each sweep point in the specified window, for example the frequency in frequency domain or the time in time domain measurements.

This is especially useful for traces with non-equidistant x-values, e.g. for SEM or Spurious Emissions measurements.

Suffix:

<n> Window

Query parameters:

Point-Format.

<TraceNumber> Trace number.

TRACE1 | ... | TRACE6

Example: TRAC3:X? TRACE1

Returns the x-values for trace 1 in window 3.

Usage: Query only

Manual operation: See "Spectrum Emission Mask" on page 117

11.8.2.5 Formats for Returned Values: ASCII Format and Binary Format

When trace data is retrieved using the TRAC: DATA or TRAC: IQ: DATA command, the data is returned in the format defined using the FORMat[:DATA]. The possible formats are described here.

- ASCII Format (FORMat ASCII):
 The data is stored as a list of comma-separated values (CSV) of the measured values in floating point format.
- Binary Format (FORMat REAL,32):
 The data is stored as binary data (Definite Length Block Data according to IEEE 488.2), each measurement value being formatted in 32-Bit IEEE 754 Floating-

The schema of the result string is as follows:

#41024<value1><value2>...<value n> with

#4	Number of digits (= 4 in the example) of the following number of data bytes
1024	Number of following data bytes (= 1024 in the example)
<value></value>	4-byte floating point value

Reading out data in binary format is quicker than in ASCII format. Thus, binary format is recommended for large amounts of data.

11.8.2.6 Programming Example: Configuring a Spectrogram

This example demonstrates how to configure a spectrogram for a basic frequency sweep in a remote environment. The spectrogram is displayed in addition to the spec-

Analyzing Measurements (Basics)

trum display, in a new window. In addition, the usage of special spectrogram markers is demonstrated (see Chapter 11.8.3.6, "Marker Search (Spectrograms)", on page 1006).

Basic trace settings are demonstrated in the Chapter 11.15.1, "Programming Example: Performing a Basic Frequency Sweep", on page 1171.

```
//----Preparing the Measurement -----
*RST
//Resets the instrument
LAY:ADD? '1', BEL, SGR
//Displays a new window below window 1 and activates spectrogram display.
//The new window name is returned as a result: '2'.
//The spectrogram is updated with each new sweep.
INIT: CONT OFF
//Selects single sweep mode.
//----Configuring the Spectrogram-----
CALC:SGR:CLE
//Clears the displayed spectrogram to start a new one.
CALC:SGR:CONT ON
//Configures a continuous spectrogram for a series of measurements.
//The display is not cleared when a new measurement is started.
CALC:SGR:FRAM:COUN 100
//Sets the number of frames to be recorded per sweep to 100.
CALC:SGR:HDEP 1000
//Sets the number of frames to be stored to 1000 (=10 sweeps)
CALC:SGR:TST ON
//Activates a time stamp for each frame.
//-----Configuring the Color Map-----
DISP:WIND:SGR:COL GRAY
//Defines a gray-scaled coloring: low values light gray, high values dark gray.
DISP:WIND:SGR:COL:LOW 30
DISP:WIND:SGR:COL:UPP 70
DISP:WIND:SGR:COL:SHAP 0.8
//Defines a color map for a range that comprises 40% of the measurement range,
//excluding 30% at each end. The colors are not scaled linearly; the light gray
//colors are stretched to distinguish low values better.
//----Performing the Measurement-----
SWE: COUN 10
//Defines 10 sweeps to be performed per measurement.
TNTT: *WAT
//Initiates a new measurement and waits until the sweeps have finished.
//The spectrogram is updated with each new sweep.
//-----Positioning Markers-----
```

Analyzing Measurements (Basics)

```
CALC:MARK:SGR:SAR MEM
//Includes all frames in the memory in the search area
CALC:MARK1:SGR:FRAM -1s
//{
m Sets} marker 1 to the frame 1 second after measurement begin. (Note the
//negative value!
CALC:MARK1:MIN
//Sets marker 1 to the minimum level in this frame.
CALC:MARK1:SGR:Y:MIN
//{
m Sets} marker 1 to the minimum level for the same frequency the marker is
//currently positioned at in all frames.
CALC:MARK2:SGR:XY:MAX
//Sets marker 2 to the maximum level in the entire spectrogram.
CALC:DELT1:SGR:FRAM 3s
//Sets the deltamarker 1 to the frame captured 3 seconds after marker 1. By default
//{
m it} is set to the peak of that frame and displays the level difference to marker 1.
//Note the positive value!
CALC: DELT1:MIN
//Sets deltamarker 1 to the minimum level in this frame.
CALC: DELT3: SGR: XY: MAX
//Sets deltamarker 3 to the maximum level in the entire spectrogram. By default
//its value is the difference to marker 1. We will change it to refer to marker 2.
CALC: DELT3: MREF 2
//Deltamarker 3 now refers to marker 2, both are positioned on the maximum of the
//spectrogram. Thus, D3=0. We will move deltamarker 3 to the next peak level
//for the same frequency.
CALC: DELT3: SGR: Y: MAX: NEXT
//-----Retrieving Results-----
CALC:MARK1:X?
CALC:MARK1:Y?
CALC:MARK1:SGR:FRAM?
//Queries the frequency (x), level (y) and frame values of marker 1.
CALC:MARK2:X?
CALC:MARK2:Y?
CALC:MARK2:SGR:FRAM?
//Queries the frequency (x), level (y) and frame values of marker 2.
CALC:DELT1:X?
CALC:DELT1:Y?
CALC: DELT1: SGR: FRAM?
//Queries the frequency (x), level (y) and frame values of deltamarker 1.
CALC:DELT3:X?
CALC: DELT3: Y?
CALC: DELT3: SGR: FRAM?
```

Analyzing Measurements (Basics)

```
//Queries the frequency (x), level (y) and frame values of deltamarker 3.

CALC:SGR:TST:DATA? ALL

//Queries the time stamps of all stored frames.

CALC:SGR:FRAM:SEL -1

//Selects the frame that was captured 1 second after measurement start (Note the //negative value!). This frame is displayed in the Spectrum window.

TRAC:DATA? SGR

//Retrieves the trace data for the spectrogram. For each frame, the power level //and frequency at each sweep point are returned.

TRAC:DATA? TRACE1

//Retrieves the trace data for the selected frame only.
```

11.8.3 Working with Markers

The commands required to work with markers and marker functions in a remote environment are described here. The tasks for manual operation are described in Chapter 7.4, "Marker Usage", on page 496.

In the Spectrum application, markers are identical in all windows. Thus, the suffix <n> for the window is generally irrelevant.

•	Setting Up Individual Markers	986
•	General Marker Settings	992
•	Configuring and Performing a Marker Search	993
•	Positioning the Marker	997
•	Retrieving Marker Results	1003
•	Marker Search (Spectrograms)	1006
•	Fixed Reference Marker Settings	1016
•	Marker Peak Lists	1018
•	Noise Measurement Marker	1021
•	Phase Noise Measurement Marker	1022
•	Band Power Marker	1025
•	n dB Down Marker	1028
•	Signal Count Marker	1032
•	Marker Demodulation	1034
•	Programming Examples for Using Markers and Marker Functions	1036

11.8.3.1 Setting Up Individual Markers

The following commands define the position of markers in the diagram.

CALCulate <n>:DELTamarker<m>:AOFF</m></n>	987
CALCulate <n>:DELTamarker<m>:LINK</m></n>	. 987
CALCulate <n>:DELTamarker<m>:LINK:TO:MARKer<m></m></m></n>	. 987
CALCulate <n>:DELTamarker<m>:MODE</m></n>	988
CALCulate <n>:DELTamarker<m>:MREF</m></n>	. 988
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	989

Analyzing Measurements (Basics)

CALCulate <n>:DELTamarker<m>:TRACe</m></n>	.989
CALCulate <n>:DELTamarker<m>:X</m></n>	989
CALCulate <n>:MARKer<m>:AOFF</m></n>	.990
CALCulate <n>:MARKer<m>:LINK:TO:MARKer<m></m></m></n>	990
CALCulate <n>:MARKer<m>[:STATe]</m></n>	.991
CALCulate <n>:MARKer<m>:TRACe</m></n>	.991
CALCulate <n>:MARKer<m>:X</m></n>	991

CALCulate<n>:DELTamarker<m>:AOFF

This command turns all delta markers off.

Suffix:

<n> Window <m> irrelevant

Example: CALC: DELT: AOFF

Turns all delta markers off.

Usage: Event

CALCulate<n>:DELTamarker<m>:LINK <State>

This command links delta marker <m> to marker 1.

If you change the horizontal position (x-value) of marker 1, delta marker <m> changes its horizontal position to the same value.

Tip: to link any marker to a different marker than marker 1, use the CALCulate<n>: DELTamarker<m>:LINK:TO:MARKer<m> or CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> commands.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT2:LINK ON

Manual operation: See "Linking to Another Marker" on page 307

CALCulate<n>:DELTamarker<m>:LINK:TO:MARKer<m> <State>

This command links delta marker <m1> to any active normal marker <m2>.

If you change the horizontal position of marker <m2>, delta marker <m1> changes its horizontal position to the same value.

Suffix:

<n> Window

Analyzing Measurements (Basics)

<m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT4:LINK:TO:MARK2 ON

Links the delta marker 4 to the marker 2.

Manual operation: See "Linking to Another Marker" on page 307

CALCulate<n>:DELTamarker<m>:MODE < Mode>

This command defines whether the position of a delta marker is provided as an absolute value or relative to a reference marker.

Note that when the position of a delta marker is *queried*, the result is always an absolute value (see CALCulate<n>: DELTamarker<m>: X on page 989)!

Suffix:

<n> Window <m> irrelevant

Parameters:

<Mode> ABSolute

Delta marker position in absolute terms.

RELative

Delta marker position in relation to a reference marker.

*RST: RELative

Example: CALC:DELT:MODE ABS

Absolute delta marker position.

CALCulate<n>:DELTamarker<m>:MREF <Reference>

This command selects a reference marker for a delta marker other than marker 1.

The reference may be another marker or the fixed reference.

Suffix:

<n> Window <m> Marker

Parameters:

<Reference> FIXed

Selects the fixed reference as the reference.

Example: CALC:DELT3:MREF 2

Specifies that the values of delta marker 3 are relative to marker

2.

Manual operation: See "Reference Marker" on page 307

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>[:STATe] <State>

This command turns delta markers on and off.

If necessary, the command activates the delta marker first.

No suffix at DELTamarker turns on delta marker 1.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC: DELT2 ON

Turns on delta marker 2.

Manual operation: See "Marker State" on page 306

See "Marker Type" on page 307 See "Select Marker" on page 308

CALCulate<n>:DELTamarker<m>:TRACe <Trace>

This command selects the trace a delta marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix:

<n> Window <m> Marker

Parameters:

<Trace> Trace number the marker is assigned to.

Example: CALC:DELT2:TRAC 2

Positions delta marker 2 on trace 2.

CALCulate<n>:DELTamarker<m>:X <Position>

This command moves a delta marker to a particular coordinate on the x-axis.

If necessary, the command activates the delta marker and positions a reference marker to the peak power.

Suffix:

<m> Marker <m> Window

Analyzing Measurements (Basics)

Parameters:

<Position> Numeric value that defines the marker position on the x-axis.

The position is relative to the reference marker.

To select an absolute position you have to change the delta marker mode with CALCulate<n>:DELTamarker<m>:MODE

on page 988.

A query returns the absolute position of the delta marker.

Range: The value range and unit depend on the measure-

ment and scale of the x-axis.

Example: CALC: DELT: X?

Outputs the absolute x-value of delta marker 1.

Manual operation: See "Marker 1/2/3/4" on page 289

See "Marker 1/2/3" on page 294

See "Marker Position (X-value)" on page 306

CALCulate<n>:MARKer<m>:AOFF

This command turns all markers off.

Suffix:

<n> Window <m> Marker

Example: CALC:MARK:AOFF

Switches off all markers.

Usage: Event

Manual operation: See "All Markers Off" on page 511

CALCulate<n>:MARKer<m>:LINK:TO:MARKer<m> <State>

This command links normal marker <m1> to any active normal marker <m2>.

If you change the horizontal position of marker <m2>, marker <m1> changes its horizontal position to the same value.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK4:LINK:TO:MARK2 ON

Links marker 4 to marker 2.

Manual operation: See "Linking to Another Marker" on page 307

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>[:STATe] <State>

This command turns markers on and off. If the corresponding marker number is currently active as a deltamarker, it is turned into a normal marker.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK3 ON

Switches on marker 3.

Manual operation: See "Marker State" on page 306

See "Marker Type" on page 307 See "Select Marker" on page 308

CALCulate<n>:MARKer<m>:TRACe <Trace>

This command selects the trace the marker is positioned on.

Note that the corresponding trace must have a trace mode other than "Blank".

If necessary, the command activates the marker first.

Suffix:

<n> Window <m> Marker

Parameters:

<Trace> 1 to 6

Trace number the marker is assigned to.

Example: CALC:MARK3:TRAC 2

Assigns marker 3 to trace 2.

Manual operation: See "Assigning the Marker to a Trace" on page 308

CALCulate<n>:MARKer<m>:X <Position>

This command moves a marker to a particular coordinate on the x-axis.

If necessary, the command activates the marker.

If the marker has been used as a delta marker, the command turns it into a normal marker.

Suffix:

<m> Marker (query: 1 to 16)

<n> Window

Analyzing Measurements (Basics)

Parameters:

<Position> Numeric value that defines the marker position on the x-axis.

The unit is either Hz (frequency domain) or s (time domain) or

dB (statistics).

Range: The range depends on the current x-axis range.

Example: CALC:MARK2:X 1.7MHz

Positions marker 2 to frequency 1.7 MHz.

Manual operation: See "Marker 1/2/3/4" on page 289

See "Marker 1/2/3" on page 294

See "Marker Position (X-value)" on page 306

See "Marker Table" on page 452 See "Marker Peak List" on page 452

11.8.3.2 General Marker Settings

The following commands control general marker functionality.

Remote commands exclusive to general marker functionality

DISPlay:MTABle	992
DISPlay:MINFo[:STAT]	992
CALCulate <n>:MARKer<m>:X:SSIZe</m></n>	993

DISPlay:MTABle < DisplayMode>

This command turns the marker table on and off.

Parameters:

<DisplayMode> ON

Turns the marker table on.

OFF

Turns the marker table off.

AUTO

Turns the marker table on if 3 or more markers are active.

*RST: AUTO

Example: DISP:MTAB ON

Activates the marker table.

Manual operation: See "Marker Table Display" on page 512

DISPlay:MINFo[:STAT] < DisplayMode>

This command turns the marker information in all diagrams on and off.

Analyzing Measurements (Basics)

Parameters:

<DisplayMode> ON

Displays the marker information in the diagrams.

OFF

Hides the marker information in the diagrams.

*RST: ON

Example: DISP:MINF OFF

Hides the marker information.

Manual operation: See "Marker Info" on page 512

CALCulate<n>:MARKer<m>:X:SSIZe <StepSize>

This command selects the marker step size mode for all markers in all windows.

The step size defines the distance the marker moves when you move it with the rotary knob.

It therefore takes effect in manual operation only.

Suffix:

<n>, <m> irrelevant

Parameters:

<StepSize> STANdard

the marker moves from one pixel to the next

POINts

the marker moves from one sweep point to the next

*RST: POINts

Example: CALC:MARK:X:SSIZ STAN

Sets the marker step size to one pixel.

Manual operation: See "Marker Stepsize" on page 512

11.8.3.3 Configuring and Performing a Marker Search

The following commands control the marker search.

CALCulate <n>:MARKer<m>:LOEXclude</m></n>	994
CALCulate <n>:MARKer<m>:PEXCursion</m></n>	994
CALCulate <n>:MARKer<m>:X:SLIMits[:STATe]</m></n>	994
CALCulate <n>:MARKer<m>:X:SLIMits:LEFT</m></n>	
CALCulate <n>:MARKer<m>:X:SLIMits:RIGHT</m></n>	995
CALCulate <n>:MARKer<m>:X:SLIMits:ZOOM[:STATe]</m></n>	996
CALCulate <n>:THReshold</n>	996
CALCulate <n>:THReshold:STATe</n>	997

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:LOEXclude <State>

This command turns the suppression of the local oscillator during automatic marker positioning on and off (for *all* markers in *all* windows).

Suffix:

<n>, <m> irrelevant

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: CALC:MARK:LOEX ON

Manual operation: See "Exclude LO" on page 515

CALCulate<n>:MARKer<m>:PEXCursion < Excursion>

This command defines the peak excursion (for all markers in all windows).

The peak excursion sets the requirements for a peak to be detected during a peak search.

The unit depends on the measurement.

Application/Result display	Unit
Spectrum	dB

Suffix:

<n>, <m> irrelevant

Parameters:

<Excursion> The excursion is the distance to a trace maximum that must be

attained before a new maximum is recognized, or the distance to a trace minimum that must be attained before a new minimum is

recognized

*RST: 6 dB in the Spectrum application and RF displays

Example: CALC:MARK:PEXC 10dB

Defines peak excursion as 10 dB.

Manual operation: See "Peak Excursion" on page 515

CALCulate<n>:MARKer<m>:X:SLIMits[:STATe] <State>

This command turns marker search limits on and off for all markers in all windows.

If you perform a measurement in the time domain, this command limits the range of the trace to be analyzed.

Suffix:

<n>, <m> irrelevant

Analyzing Measurements (Basics)

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:X:SLIM ON

Switches on search limitation.

Manual operation: See "Search Limits (Left / Right)" on page 199

See "Deactivating All Search Limits" on page 199

See "Limit State" on page 275

CALCulate<n>:MARKer<m>:X:SLIMits:LEFT <SearchLimit>

This command defines the left limit of the marker search range for *all* markers in *all* windows.

If you perform a measurement in the time domain, this command limits the range of the trace to be analyzed.

Suffix:

<n>, <m> irrelevant

Parameters:

<SearchLimit> The value range depends on the frequency range or sweep

time.

The unit is Hz for frequency domain measurements and s for

time domain measurements.
*RST: left diagram border

Example: CALC:MARK:X:SLIM ON

Switches the search limit function on. CALC: MARK: X:SLIM: LEFT 10MHz

Sets the left limit of the search range to 10 MHz.

Manual operation: See "Search Limits (Left / Right)" on page 199

See "Left Limit / Right Limit" on page 275

CALCulate<n>:MARKer<m>:X:SLIMits:RIGHT <SearchLimit>

This command defines the right limit of the marker search range for *all* markers in *all* windows.

If you perform a measurement in the time domain, this command limits the range of the trace to be analyzed.

Suffix:

<n>, <m> irrelevant

Analyzing Measurements (Basics)

Parameters:

<Limit> The value range depends on the frequency range or sweep

time.

The unit is Hz for frequency domain measurements and s for

time domain measurements.

*RST: right diagram border

Example: CALC:MARK:X:SLIM ON

Switches the search limit function on. CALC:MARK:X:SLIM:RIGH 20MHz

Sets the right limit of the search range to 20 MHz.

Manual operation: See "Search Limits (Left / Right)" on page 199

See "Left Limit / Right Limit" on page 275

CALCulate<n>:MARKer<m>:X:SLIMits:ZOOM[:STATe] <State>

This command adjusts the marker search range to the zoom area for *all* markers in *all* windows.

Suffix:

<n>, <m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:X:SLIM:ZOOM ON

Switches the search limit function on. CALC:MARK:X:SLIM:RIGH 20MHz

Sets the right limit of the search range to 20 MHz.

Manual operation: See "Using Zoom Limits" on page 516

CALCulate<n>:THReshold <Level>

This command defines a threshold level for the marker peak search (for *all* markers in *all* windows).

Suffix:

<n> irrelevant

Parameters:

<Level> Numeric value. The value range and unit are variable.

*RST: -120 dBm

Example: CALC: THR -82DBM

Sets the threshold value to -82 dBm.

Manual operation: See "Search Threshold" on page 516

Analyzing Measurements (Basics)

CALCulate<n>:THReshold:STATe <State>

This command turns a threshold for the marker peak search on and off (for *all* markers in *all* windows).

Suffix:

<n> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:THR:STAT ON

Switches on the threshold line.

Manual operation: See "Deactivating All Search Limits" on page 199

11.8.3.4 Positioning the Marker

This chapter contains remote commands necessary to position the marker on a trace.

Positioning Normal Markers		997
	Positioning Delta Markers	1001

Positioning Normal Markers

The following commands position markers on the trace.

CALCulate <n>:MARKer<m>:MAXimum:AUTO</m></n>	997
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	998
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	998
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	998
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	999
CALCulate <n>:MARKer<m>:MINimum:AUTO</m></n>	999
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	999
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	1000
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	

CALCulate<n>:MARKer<m>:MAXimum:AUTO <State>

This command turns an automatic marker peak search for a trace maximum on and off. The R&S FSW performs the peak search after each sweep.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Analyzing Measurements (Basics)

Example: CALC:MARK:MAX:AUTO ON

Activates the automatic peak search function for marker 1 at the

end of each particular sweep.

Manual operation: See "Auto Max / Min Peak Search" on page 515

CALCulate<n>:MARKer<m>:MAXimum:LEFT

This command moves a marker to the next lower peak.

The search includes only measurement values to the left of the current marker position.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:MARKer<m>:MAXimum:NEXT

This command moves a marker to the next lower peak.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:MARKer<m>:MAXimum[:PEAK]

This command moves a marker to the highest level.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

If the marker is not yet active, the command first activates the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Analyzing Measurements (Basics)

Manual operation: See "Peak Search" on page 520

CALCulate<n>:MARKer<m>:MAXimum:RIGHt

This command moves a marker to the next lower peak.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:MARKer<m>:MINimum:AUTO <State>

This command turns an automatic marker peak search for a trace minimum on and off. The R&S FSW performs the peak search after each sweep.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:MIN:AUTO ON

Activates the automatic minimum value search function for

marker 1 at the end of each particular sweep.

Manual operation: See "Auto Max / Min Peak Search" on page 515

CALCulate<n>:MARKer<m>:MINimum:LEFT

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker

Analyzing Measurements (Basics)

Usage: Event

Manual operation: See "Search Next Minimum" on page 520

CALCulate<n>:MARKer<m>:MINimum:NEXT

This command moves a marker to the next minimum value.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Minimum" on page 520

CALCulate<n>:MARKer<m>:MINimum[:PEAK]

This command moves a marker to the minimum level.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

If the marker is not yet active, the command first activates the marker.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Minimum" on page 520

CALCulate<n>:MARKer<m>:MINimum:RIGHt

This command moves a marker to the next minimum value.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Minimum" on page 520

Analyzing Measurements (Basics)

Positioning Delta Markers

The following commands position delta markers on the trace.

CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	1001
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	1001
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	1001
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	1002
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	1002
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	1002
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	1003
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	1003

CALCulate<n>:DELTamarker<m>:MAXimum:LEFT

This command moves a delta marker to the next higher value.

The search includes only measurement values to the left of the current marker position.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:DELTamarker<m>:MAXimum:NEXT

This command moves a marker to the next higher value.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK]

This command moves a delta marker to the highest level.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

If the marker is not yet active, the command first activates the marker.

Analyzing Measurements (Basics)

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Peak Search" on page 520

CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt

This command moves a delta marker to the next higher value.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the maximum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Next Peak" on page 520

CALCulate<n>:DELTamarker<m>:MINimum:LEFT

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Minimum" on page 520

CALCulate<n>:DELTamarker<m>:MINimum:NEXT

This command moves a marker to the next higher minimum value.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window

Analyzing Measurements (Basics)

<m> Marker
Usage: Event

Manual operation: See "Search Next Minimum" on page 520

CALCulate<n>:DELTamarker<m>:MINimum[:PEAK]

This command moves a delta marker to the minimum level.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

If the marker is not yet active, the command first activates the marker.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Minimum" on page 520

CALCulate<n>:DELTamarker<m>:MINimum:RIGHt

This command moves a delta marker to the next higher minimum value.

The search includes only measurement values to the right of the current marker position.

In the spectrogram, the command moves a marker horizontally to the minimum level in the currently selected frame. The vertical marker position remains the same.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Next Minimum" on page 520

11.8.3.5 Retrieving Marker Results

The following commands are used to retrieve the results of markers.

You can use the marker values to position the center frequency or reference level directly using the following commands:

- CALCulate<n>:MARKer<m>:FUNCtion:CENTer on page 881
- CALCulate<n>:MARKer<m>:FUNCtion:REFerence on page 896

Analyzing Measurements (Basics)

Useful commands for retrieving results described elsewhere:

- CALCulate<n>:DELTamarker<m>:X on page 989
- CALCulate<n>:MARKer<m>:X on page 991
- CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:COUNt? on page 1019
- CALCulate<n>:MARKer<m>:FUNCtion:FPEeaks:X? on page 1021
- CALCulate<n>:MARKer<m>:FUNCtion:FPEeaks:Y? on page 1021
- CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult? on page 1021
- CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult?
 on page 1023
- CALCulate<n>: DELTamarker<m>: FUNCtion: BPOWer: RESult? on page 1027
- CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult? on page 1026
- CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:RESult? on page 1030
- CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:FREQuency? on page 1029
- CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:QFACtor? on page 1030
- CALCulate<n>:MARKer<m>:COUNt:FREQuency? on page 1033

Remote commands exclusive to retrieving marker results

CALCulate <n>:DELTamarker<m>:X:RELative?</m></n>	1004
CALCulate <n>:DELTamarker<m>:Y?</m></n>	1004
CALCulate <n>:MARKer<m>:Y?</m></n>	1005

CALCulate<n>:DELTamarker<m>:X:RELative?

This command queries the relative position of a delta marker on the x-axis.

If necessary, the command activates the delta marker first.

Suffix:

<n> Window <m> Marker

Return values:

<Position> Position of the delta marker in relation to the reference marker.

Example: CALC:DELT3:X:REL?

Outputs the frequency of delta marker 3 relative to marker 1 or

relative to the reference position.

Usage: Query only

Manual operation: See "Marker 1/2/3/4" on page 289

See "Marker 1/2/3" on page 294

CALCulate<n>:DELTamarker<m>:Y?

This command queries the relative position of a delta marker on the y-axis.

Analyzing Measurements (Basics)

If necessary, the command activates the delta marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

The unit depends on the application of the command.

Table 11-10: Base unit

Parameter, measuring function or result display	Output unit
DBM DBPW DBUV DBMV DBUA	dB (lin/log)
WATT VOLT AMPere	dB (lin), % (log)
statistics function (APD or CCDF) on	dimensionless output

Suffix:

<m> Marker
<n> Window

Return values:

<Position> Position of the delta marker in relation to the reference marker or

the fixed reference.

Example: INIT:CONT OFF

Switches to single sweep mode.

INIT; *WAI

Starts a sweep and waits for its end.

CALC:DELT2 ON

Switches on delta marker 2.

CALC: DELT2: Y?

Outputs measurement value of delta marker 2.

Usage: Query only

CALCulate<n>:MARKer<m>:Y?

This command queries the position of a marker on the y-axis.

If necessary, the command activates the marker first.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Analyzing Measurements (Basics)

Return values:

<Result> Result at the marker position.

The unit is variable and depends on the one you have currently

set.

Example: INIT:CONT OFF

Switches to single measurement mode.

CALC: MARK2 ON Switches marker 2.

INIT; *WAI

Starts a measurement and waits for the end.

CALC:MARK2:Y?

Outputs the measured value of marker 2.

Usage: Query only

Manual operation: See "Marker Table" on page 452

See "Marker Peak List" on page 452

11.8.3.6 Marker Search (Spectrograms)

The following commands automatically define the marker and delta marker position in the spectrogram.

The usage of these markers is demonstrated in Chapter 11.8.2.6, "Programming Example: Configuring a Spectrogram", on page 983.

Using Markers

The following commands control spectrogram markers.

Useful commands for spectrogram markers described elsewhere

The following commands define the horizontal position of the markers.

- CALCulate<n>:MARKer<m>:MAXimum:LEFT on page 998
- CALCulate<n>:MARKer<m>:MAXimum:NEXT on page 998
- CALCulate<n>:MARKer<m>:MAXimum[:PEAK] on page 998
- CALCulate<n>:MARKer<m>:MAXimum:RIGHt on page 999
- CALCulate<n>:MARKer<m>:MINimum:LEFT on page 999
- CALCulate<n>:MARKer<m>:MINimum:NEXT on page 1000
- CALCulate<n>:MARKer<m>:MINimum[:PEAK] on page 1000
- CALCulate<n>:MARKer<m>:MINimum:RIGHt on page 1000

Remote commands exclusive to spectrogram markers

CALCulate <n>:MARKer<m>:SGRam:FRAMe</m></n>	1007
CALCulate <n>:MARKer<m>:SPECtrogram:FRAMe</m></n>	1007
CALCulate <n>:MARKer<m>:SGRam:SARea</m></n>	1007

Analyzing Measurements (Basics)

CALCulate <n>:MARKer<m>:SPECtrogram:SARea</m></n>	1007
CALCulate <n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	1008
CALCulate <n>:MARKer<m>:SPECtrogram:XY:MAXimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:XY:MINimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:ABOVe</m></n>	
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:BELow</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:BELow</m></n>	1009
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:ABOVe</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum:ABOVe</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:BELow</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum:BELow</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum:NEXT</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum[:PEAK]</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum[:PEAK]</m></n>	

CALCulate<n>:MARKer<m>:SGRam:FRAMe <Frame> | <Time> CALCulate<n>:MARKer<m>:SPECtrogram:FRAMe <Frame> | <Time>

This command positions a marker on a particular frame.

Suffix:

<n> Window <m> Marker

Parameters:

<Frame> Selects a frame directly by the frame number. Valid if the time

stamp is off.

The range depends on the history depth.

<Time> Selects a frame via its time stamp. Valid if the time stamp is on.

The number is the (negative) distance to frame 0 in seconds.

The range depends on the history depth.

Example: CALC:MARK:SGR:FRAM -20

Sets the marker on the 20th frame before the present.

CALC:MARK2:SGR:FRAM -2s

Sets second marker on the frame 2 seconds ago.

Manual operation: See "Frame (Spectrogram only)" on page 510

CALCulate<n>:MARKer<m>:SGRam:SARea <SearchArea>
CALCulate<n>:MARKer<m>:SPECtrogram:SARea <SearchArea>

This command defines the marker search area for all spectrogram markers in the measurement channel.

Analyzing Measurements (Basics)

Suffix:

<n>, <m> irrelevant

Parameters:

<SearchArea> VISible

Performs a search within the visible frames.

Note that the command does not work if the spectrogram is not

visible for any reason (e.g. if the display update is off).

MEMory

Performs a search within all frames in the memory.

*RST: VISible

Manual operation: See "Marker Search Area" on page 518

CALCulate<n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]
CALCulate<n>:MARKer<m>:SPECtrogram:XY:MAXimum[:PEAK]

This command moves a marker to the highest level of the spectrogram.

Suffix:

<n> Window
<m> Marker
Usage: Event

CALCulate<n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]
CALCulate<n>:MARKer<m>:SPECtrogram:XY:MINimum[:PEAK]

This command moves a marker to the minimum level of the spectrogram.

Suffix:

<n> Window <m> Marker Usage: Event

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:ABOVe

This command moves a marker vertically to the next lower peak level for the current frequency.

The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:BELow CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:BELow

This command moves a marker vertically to the next lower peak level for the current frequency.

The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum:NEXT CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum:NEXT

This command moves a marker vertically to the next lower peak level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK] CALCulate<n>:MARKer<m>:SPECtrogram:Y:MAXimum[:PEAK]

This command moves a marker vertically to the highest level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

If the marker hasn't been active yet, the command looks for the peak level in the whole spectrogram.

Suffix:

<n> Window <m> Marker Usage: Event

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:ABOVe CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:ABOVe

This command moves a marker vertically to the next higher minimum level for the current frequency.

The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:BELow CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:BELow

This command moves a marker vertically to the next higher minimum level for the current frequency.

The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum:NEXT CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum:NEXT

This command moves a marker vertically to the next higher minimum level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:SGRam:Y:MINimum[:PEAK] CALCulate<n>:MARKer<m>:SPECtrogram:Y:MINimum[:PEAK]

This command moves a marker vertically to the minimum level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

If the marker hasn't been active yet, the command first looks for the peak level for all frequencies and moves the marker vertically to the minimum level.

Suffix:

<n> Window <m> Marker Usage: Event

Using Delta Markers

The following commands control spectrogram delta markers.

Useful commands for spectrogram markers described elsewhere

The following commands define the horizontal position of the delta markers.

- CALCulate<n>:DELTamarker<m>:MAXimum:LEFT on page 1001
- CALCulate<n>:DELTamarker<m>:MAXimum:NEXT on page 1001
- CALCulate<n>:DELTamarker<m>:MAXimum[:PEAK] on page 1001
- CALCulate<n>:DELTamarker<m>:MAXimum:RIGHt on page 1002
- CALCulate<n>:DELTamarker<m>:MINimum:LEFT on page 1002
- CALCulate<n>:DELTamarker<m>:MINimum:NEXT on page 1002
- CALCulate<n>:DELTamarker<m>:MINimum[:PEAK] on page 1003
- CALCulate<n>:DELTamarker<m>:MINimum:RIGHt on page 1003

Remote commands exclusive to spectrogram markers

CALCulate <n>:DELTamarker<m>:SGRam:FRAMe</m></n>	1012
CALCulate <n>:DELTamarker<m>:SPECtrogram:FRAMe</m></n>	
CALCulate <n>:DELTamarker<m>:SGRam:SARea</m></n>	
CALCulate <n>:DELTamarker<m>:SPECtrogram:SARea</m></n>	1012
CALCulate <n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:XY:MAXimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:XY:MINimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:ABOVe</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow</m></n>	1014
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:BELow</m></n>	1014
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT</m></n>	1014
CAI Culate <n>:DFI Tamarker<m>:SPFCtrogram:Y:MAXimum:NFXT</m></n>	1014

Analyzing Measurements (Basics)

CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	1014
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum[:PEAK]</m></n>	1014
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe</m></n>	1015
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:ABOVe</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:BELow</m></n>	1015
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:BELow</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT</m></n>	1015
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:NEXT</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK]</m></n>	1016
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum[:PEAK]</m></n>	1016

CALCulate<n>:DELTamarker<m>:SGRam:FRAMe <Frame> | <Time> CALCulate<n>:DELTamarker<m>:SPECtrogram:FRAMe <Frame> | <Time>

This command positions a delta marker on a particular frame. The frame is relative to the position of marker 1.

The command is available for the spectrogram.

Suffix:

<n> Window <m> Marker

Parameters:

<Frame> Selects a frame directly by the frame number. Valid if the time

stamp is off.

The range depends on the history depth.

<Time> Selects a frame via its time stamp. Valid if the time stamp is on.

The number is the distance to frame 0 in seconds. The range

depends on the history depth.

Example: CALC:DELT4:SGR:FRAM -20

Sets fourth deltamarker 20 frames below marker 1.

CALC:DELT4:SGR:FRAM 2 s

Sets fourth deltamarker 2 seconds above the position of marker

1.

Manual operation: See "Frame (Spectrogram only)" on page 510

CALCulate<n>:DELTamarker<m>:SGRam:SARea <SearchArea> CALCulate<n>:DELTamarker<m>:SPECtrogram:SARea <SearchArea>

This command defines the marker search area for *all* spectrogram markers in the measurement channel.

Suffix:

<n>, <m> irrelevant

Analyzing Measurements (Basics)

Parameters:

<SearchArea> VISible

Performs a search within the visible frames.

Note that the command does not work if the spectrogram is not

visible for any reason (e.g. if the display update is off).

MEMory

Performs a search within all frames in the memory.

*RST: VISible

Manual operation: See "Marker Search Area" on page 518

CALCulate<n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK] CALCulate<n>:DELTamarker<m>:SPECtrogram:XY:MAXimum[:PEAK]

This command moves a marker to the highest level of the spectrogram over all frequencies.

Suffix:

<n> Window
<m> Marker
Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK] CALCulate<n>:DELTamarker<m>:SPECtrogram:XY:MINimum[:PEAK]

This command moves a delta marker to the minimum level of the spectrogram over all frequencies.

Suffix:

<n> Window <m> Marker Usage: Event

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:ABOVe

This command moves a marker vertically to the next higher level for the current frequency.

The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:BELow

This command moves a marker vertically to the next higher level for the current frequency.

The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:NEXT

This command moves a delta marker vertically to the next higher level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK] CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MAXimum[:PEAK]

This command moves a delta marker vertically to the highest level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

If the marker hasn't been active yet, the command looks for the peak level in the whole spectrogram.

Suffix:

<n> Window <m> Marker Usage: Event

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:ABOVe

This command moves a delta marker vertically to the next minimum level for the current frequency.

The search includes only frames above the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:BELow CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:BELow

This command moves a delta marker vertically to the next minimum level for the current frequency.

The search includes only frames below the current marker position. It does not change the horizontal position of the marker.

Suffix:

<n> Window
<m> Marker
Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum:NEXT

This command moves a delta marker vertically to the next minimum level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

Suffix:

<n> Window <m> Marker Usage: Event

Manual operation: See "Search Mode for Next Peak in Y Direction" on page 517

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK] CALCulate<n>:DELTamarker<m>:SPECtrogram:Y:MINimum[:PEAK]

This command moves a delta marker vertically to the minimum level for the current frequency.

The search includes all frames. It does not change the horizontal position of the marker.

If the marker hasn't been active yet, the command first looks for the peak level in the whole spectrogram and moves the marker vertically to the minimum level.

Suffix:

<n> Window <m> Marker Usage: Event

11.8.3.7 Fixed Reference Marker Settings

The following commands configure a fixed reference marker.

CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]</m></n>	1016
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X</m></n>	1016
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y</m></n>	1017
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet</m></n>	1017
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed[:STATe]</m></n>	1017

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]

This command moves the fixed reference marker to the peak power.

Suffix:

<n> Window <m> Marker

Example: CALC:DELT:FUNC:FIX:RPO:MAX

Sets the reference point level for delta markers to the peak of

the selected trace.

Usage: Event

Manual operation: See "Defining a Fixed Reference" on page 513

See "Defining a Reference Point" on page 525

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X <RefPoint>

This command defines the horizontal position of the fixed delta marker reference point. The coordinates of the reference may be anywhere in the diagram.

Suffix:

<n> Window <m> Marker

Analyzing Measurements (Basics)

Parameters:

<RefPoint> Numeric value that defines the horizontal position of the refer-

ence.

For frequency domain measurements, it is a frequency in Hz. For time domain measurements, it is a point in time in s.

*RST: Fixed Reference: OFF

Example: CALC:DELT:FUNC:FIX:RPO:X 128 MHz

Sets the frequency reference to 128 MHz.

Manual operation: See "Defining a Fixed Reference" on page 513

See "Defining a Reference Point" on page 525

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y <RefPointLevel>

This command defines the vertical position of the fixed delta marker reference point. The coordinates of the reference may be anywhere in the diagram.

Suffix:

<n> Window <m> Marker

Parameters:

<RefPoint> Numeric value that defines the vertical position of the reference.

The unit and value range is variable.

*RST: Fixed Reference: OFF

Example: CALC:DELT:FUNC:FIX:RPO:Y -10dBm

Sets the reference point level for delta markers to -10 dBm.

Manual operation: See "Defining a Fixed Reference" on page 513

See "Defining a Reference Point" on page 525

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet <Offset>

This command defines a level offset for the fixed delta marker reference point.

Suffix:

<n> Window

<m> Marker

Parameters:

<Offset> Numeric value

*RST: 0
Default unit: dB

CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed[:STATe] <State>

This command activates or deactivates a marker that defines a fixed reference point for relative marker analysis.

Analyzing Measurements (Basics)

If necessary, the command activates a marker and positions it on the peak power.

Subsequently, you can change the coordinates of the fixed reference independent of the marker. The fixed reference is independent of the trace and is applied to all active delta markers.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT:FUNC:FIX ON

Switches on the measurement with fixed reference value for all

delta markers.

CALC: DELT: FUNC: FIX: RPO: X 128 MHZ

Sets the frequency reference to 128 MHz.

CALC: DELT: FUNC: FIX: RPO: Y 30 DBM

Sets the reference level to +30 dBm.

Manual operation: See "Defining a Fixed Reference" on page 513

11.8.3.8 Marker Peak Lists

Useful commands for peak lists described elsewhere

- CALCulate<n>:MARKer<m>:PEXCursion on page 994
- MMEMory:STORe<n>:PEAK on page 1092
- Chapter 11.8.3.3, "Configuring and Performing a Marker Search", on page 993

Remote commands exclusive to peak lists

CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:ANNotation:LABel[:STATe]</m></n>	1018
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:COUNt?</m></n>	1019
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate]</m></n>	1019
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SORT</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:STATe</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEeaks:X?</m></n>	1021
CALCulate <n>:MARKer<m>:FUNCtion:FPEeaks:Y?</m></n>	1021

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:ANNotation:LABel[:STATe] <State>

This command turns labels for peaks found during a peak search on and off.

The labels correspond to the marker number in the marker peak list.

Analyzing Measurements (Basics)

Suffix:

<n> Window

<m> Marker

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: CALC:MARK:FUNC:FPE:ANN:LAB:STAT OFF

Removes the peak labels from the diagram

Manual operation: See "Displaying Marker Numbers" on page 532

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:COUNt?

This command queries the number of peaks that have been found during a peak search.

The actual number of peaks that have been found may differ from the number of peaks you have set to be found because of the peak excursion.

Suffix:

<n>, <m> irrelevant

Return values: <NumberOfPeaks>

Example: CALC:MARK:FUNC:FPE:COUN?

Queries the number of peaks.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate] <Peaks>

This command initiates a peak search.

Suffix:

<n> Window <m> Marker

Parameters:

<Peaks> This parameter defines the number of peaks to find during the

search.

Note that the actual number of peaks found during the search

also depends on the peak excursion you have set with

CALCulate<n>:MARKer<m>:PEXCursion.

Range: 1 to 200

Example: CALC:MARK:PEXC 5

Defines a peak excursion of 5 dB, i.e. peaks must be at least 5

dB apart to be detected as a peak.

CALC:MARK:FUNC:FPE 10

Initiates a search for 10 peaks on the current trace.

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE < MaxNoPeaks>

This command defines the maximum number of peaks that the R&S FSW looks for during a peak search.

Suffix:

<n> Window <m> Marker

Parameters:

<MaxNoPeaks> Maximum number of peaks to be determined.

Range: 1 to 200 *RST: 50

Example: CALC:MARK:FUNC:FPE:LIST:SIZE 10

The marker peak list will contain a maximum of 10 peaks.

Manual operation: See "Maximum Number of Peaks" on page 532

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:SORT <SortMode>

This command selects the order in which the results of a peak search are returned.

Suffix:

<n> Window <m> Marker

Parameters:

<SortMode> X

Sorts the peaks according to increasing position on the x-axis.

Υ

Sorts the peaks according to decreasing position on the y-axis.

*RST: X

Example: CALC:MARK:FUNC:FPE:SORT Y

Sets the sort mode to decreasing y values

Manual operation: See "Sort Mode" on page 532

CALCulate<n>:MARKer<m>:FUNCtion:FPEaks:STATe <State>

This command turns a peak search on and off.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Analyzing Measurements (Basics)

Example: CALC:MARK:FUNC:FPE:STAT ON

Activates marker peak search

Manual operation: See "Peak List State" on page 531

CALCulate<n>:MARKer<m>:FUNCtion:FPEeaks:X?

This command queries the position of the peaks on the x-axis.

The order depends on the sort order that has been set with CALCulate<n>: MARKer<m>: FUNCtion: FPEaks: SORT.

Suffix:

<n>, <m> irrelevant

Return values:

<PeakPosition> Position of the peaks on the x-axis. The unit depends on the

measurement.

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:FPEeaks:Y?

This command queries the position of the peaks on the y-axis.

The order depends on the sort order that has been set with CALCulate<n>: MARKer<m>: FUNCtion: FPEaks: SORT.

Suffix:

<n>, <m> irrelevant

Return values:

<PeakPosition> Position of the peaks on the y-axis. The unit depends on the

measurement.

Usage: Query only

11.8.3.9 Noise Measurement Marker

The following commands control the noise measurement marker function.

CALCulate <n>:MARKer<m>:FUNCtion:NOISe:RESult?1</m></n>	021
CALCulate <n>:MARKer<m>:FUNCtion:NOISel:STATel</m></n>	022

CALCulate<n>:MARKer<m>:FUNCtion:NOISe:RESult?

This command queries the result of the noise measurement.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Analyzing Measurements (Basics)

Suffix:

<n> Window <m> Marker

Return values:

<NoiseLevel> Current noise level. The unit is the one currently active.

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK2 ON Switches on marker 2.

CALC:MARK2:FUNC:NOIS ON

Switches on noise measurement for marker 2.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK2: FUNC: NOIS: RES?

Outputs the noise result of marker 2.

Usage: Query only

Manual operation: See "Noise Measurement State" on page 524

CALCulate<n>:MARKer<m>:FUNCtion:NOISe[:STATe] <State>

This command turns the noise measurement at the marker position on and off.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:NOIS ON

Switches on the noise measurement.

Manual operation: See "Noise Measurement State" on page 524

See "Switching All Noise Measurements Off" on page 524

11.8.3.10 Phase Noise Measurement Marker

The following commands control the phase noise measurement marker function.

Useful commands for phase noise markers described elsewhere

- CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[: PEAK]
- CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X
- CALCulate<n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y

Analyzing Measurements (Basics)

Remote commands exclusive to phase noise markers

CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:AUTO</m></n>	1023
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:RESult?</m></n>	. 1023
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise[:STATe]</m></n>	. 1024
CALCulate <n>:MARKer<m>:FUNCtion:PNOise:RESult?</m></n>	. 1024
CALCulate <n>:MARKer<m>:FUNCtion:PNOise[:STATe]</m></n>	. 1025

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:AUTO <State>

This command turns an automatic peak search for the fixed reference marker at the end of a sweep on and off.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:DELT:FUNC:PNO:AUTO ON

Activates an automatic peak search for the reference marker in

a phase-noise measurement.

Manual operation: See "Defining a Reference Point" on page 525

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise:RESult?

This command queries the result of a phase noise measurement.

If necessary, the command activates the measurement first.

This command is only available in the Spectrum application.

Suffix:

<n> Window <m> Marker

Return values:

<PhaseNoise> numeric value

The difference in level between the reference point and the noise power density at the position of the specified delta marker.

Example: CALC:DELT2:FUNC:PNO:RES?

Outputs the result of phase-noise measurement of the delta-

marker 2.

Usage: Query only

Manual operation: See "Phase Noise Measurement State" on page 525

Analyzing Measurements (Basics)

CALCulate<n>:DELTamarker<m>:FUNCtion:PNOise[:STATe] <State>

This command turns the phase noise measurement at the delta marker position on and off.

The reference marker for phase noise measurements is either a normal marker or a fixed reference. If necessary, the command turns on the reference marker.

The correction values for the bandwidth and the log amplifier are taken into account in the measurement.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC: DELT: FUNC: PNO ON

Switches on the phase-noise measurement with all delta mark-

ers.

CALC: DELT: FUNC: FIX: RPO: X 128 MHZ

Sets the frequency reference to 128 MHz.

CALC: DELT: FUNC: FIX: RPO: Y 30 DBM

Sets the reference level to +30 dBm

Manual operation: See "Phase Noise Measurement State" on page 525

See "Switching All Phase Noise Measurements Off"

on page 526

CALCulate<n>:MARKer<m>:FUNCtion:PNOise:RESult?

This command queries the result of a phase noise measurement in the Analog Demodulation application.

If necessary, the command activates the measurement first.

Suffix:

<n> Window <m> Marker

Return values:

<PhaseNoise> numeric value

The difference between the measured carrier power and the noise power at the position of the specified (normal) marker.

Example: CALC:MARK2:FUNC:PNO:RES?

Outputs the result of phase-noise measurement of the marker 2.

Usage: Query only

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:FUNCtion:PNOise[:STATe] <State>

This command turns the phase noise measurement at the marker position on and off in the Analog Demodulation application.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK2:FUNC:PNO ON

Switches on the phase-noise measurement for the marker 2.

11.8.3.11 Band Power Marker

The following commands control the marker for band power measurements.

Using Markers

CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:MODE</m></n>	1025
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:RESult?</m></n>	1026
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:SPAN</m></n>	1026
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer[:STATe]</m></n>	1026

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:MODE < Mode>

This command selects the way the results for a band power marker are displayed.

(Note: relative power results are only available for delta markers, see CALCulate<n>: DELTamarker<m>: FUNCtion:BPOWer:MODE on page 1027.

Suffix:

<n> Window <m> Marker

Parameters:

<Mode> POWer

Result is displayed as an absolute power. The power unit depends on the CALCulate < n > :UNIT:POWer setting.

setting. **DENSity**

Result is displayed as a density in dBm/Hz.

*RST: POWer

Example: CALC:MARK4:FUNC:BPOW:MODE DENS

Configures marker 4 to show the measurement results in

dBm/Hz.

Manual operation: See "Power Mode" on page 528

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:RESult?

This command queries the results of the band power measurement.

Suffix:

<n> Window <m> Marker

Return values:

<Power> Signal power over the marker bandwidth.

Example: Activate the band power marker:

CALC:MARK:FUNC:BPOW:STAT ON
Select the density mode for the result:
CALC:MARK:FUNC:BPOW:MODE DENS

Query the result:

CALC:MARK:FUNC:BPOW:RES?

Response: 20dBm/Hz

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer:SPAN

This command defines the bandwidth around the marker position.

Suffix:

<n> Window <m> Marker

Parameters:

 Frequency. The maximum span depends on the marker position

and R&S FSW model.

*RST: 5% of current span

Default unit: Hz

Example: CALC:MARK:FUNC:BPOW:SPAN 2MHz

Measures the band power over 2 MHz around the marker.

Manual operation: See "Span" on page 528

CALCulate<n>:MARKer<m>:FUNCtion:BPOWer[:STATe] <State>

This command turns markers for band power measurements on and off.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Analyzing Measurements (Basics)

Example: CALC:MARK4:FUNC:BPOW:STAT ON

Activates or turns marker 4 into a band power marker.

Manual operation: See "Band Power Measurement State" on page 528

See "Switching All Band Power Measurements Off" on page 529

Using Delta Markers

CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:MODE</m></n>	1027
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:RESult?</m></n>	1027
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN</m></n>	1028
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe]</m></n>	1028

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:MODE < Mode>

This command selects the way the results for a band power delta marker are displayed.

Suffix:

<n> Window <m> Marker

Parameters:

<Mode> POWer

Result is displayed as an absolute power. The power unit depends on the CALCulate < n > : UNIT: POWer setting.

DENSity

Result is displayed as a density in dBm/Hz.

RPOWer

This setting is only available for a delta band power marker. The result is the difference between the absolute power in the band around the delta marker and the absolute power for the reference marker. The powers are subtracted logarithmically, so the result is a dB value.

[Relative band power (Delta2) in dB] = [absolute band power (Delta2) in dBm] - [absolute (band) power of reference marker in

dBm]

For details see "Relative band power markers" on page 506.

*RST: POWer

Manual operation: See "Power Mode" on page 528

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:RESult?

This command queries the results of the band power measurement.

Suffix:

<n> Window <m> Marker

Analyzing Measurements (Basics)

Return values:

<Power> Signal power over the delta marker bandwidth.

Usage: Query only

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN

This command defines the bandwidth around the delta marker position.

Suffix:

<n> Window <m> Marker

Parameters:

 Frequency. The maximum span depends on the marker position

and R&S FSW model.

*RST: 5% of current span

Default unit: Hz

Manual operation: See "Span" on page 528

CALCulate<n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe] <State>

This command turns delta markers for band power measurements on and off.

If neccessary, the command also turns on a reference marker.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Band Power Measurement State" on page 528

See "Switching All Band Power Measurements Off" on page 529

11.8.3.12 n dB Down Marker

The following commands control the n dB down markers.

CALCulate <n>:MARKer<m>:FUNCtion:NDBDown</m></n>	1029
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?</m></n>	1029
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:QFACtor?</m></n>	1030
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:RESult?</m></n>	1030
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:STATe</m></n>	1031
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:TIME?</m></n>	1031

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown < Distance>

This command defines the distance of the n dB down markers to the reference marker.

Suffix:

<n> Window <m> Marker

Parameters:

<Distance> Distance of the temporary markers to the reference marker in

dB.

For a positive offset, the markers T1 and T2 are placed below

the active reference point.

For a negative offset (for example for notch filter measurements), the markers T1 and T2 are placed *above* the active ref-

erence point.

*RST: 6dB

Example: CALC:MARK:FUNC:NDBD 3dB

Sets the distance to the reference marker to 3 dB.

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?

This command queries the position of the n dB down markers on the x-axis when measuring in the frequency domain.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <m> irrelevant

Return values:

<Frequency> <frequency 1>

absolute frequency of the n dB marker to the left of the reference

marker in Hz

<frequency 2>

absolute frequency of the n dB marker to the right of the refer-

ence marker in Hz.

Analyzing Measurements (Basics)

Example: INIT: CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: NDBD ON

Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: NDBD: FREQ?

This command would return, for example, 100000000, 200000000, meaning that the first marker position is at 100

MHz, the second marker position is at 200 MHz

Usage: Query only

Manual operation: See "n dB down Delta Value" on page 526

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:QFACtor?

This command queries the Q factor of n dB down measurements.

Suffix:

<n>, <m> irrelevant

Return values: <QFactor>

Usage: Query only

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:RESult?

This command queries the distance of the n dB down markers from each other.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <m> irrelevant

Return values:

<Distance> The result depends on the span.

In case of frequency domain measurements, the command returns the bandwidth between the two n dB down markers in

Hz.

In case of time domain measurements, the command returns the pulse width between the two n dB down markers in seconds.

Analyzing Measurements (Basics)

Example: INIT: CONT OFF

Switches to single sweep mode.

CALC: MARK: FUNC: NDBD ON

Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: NDBD: RES?

Outputs the measured value.

Usage: Query only

Manual operation: See "n dB down Marker State" on page 526

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:STATe <State>

This command turns the n dB Down marker function on and off.

Suffix:

<n>, <m> irrelevant

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK:FUNC:NDBD:STAT ON

Turns the n dB Down marker on.

Manual operation: See "n dB down Marker State" on page 526

CALCulate<n>:MARKer<m>:FUNCtion:NDBDown:TIME?

This command queries the position of the n dB down markers on the x-axis when measuring in the time domain.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n>, <m> irrelevant

Return values:

<TimeX1> absolute position in time of the n dB marker to the left of the ref-

erence marker in seconds

<TimeX2> absolute position in time of the n dB marker to the right of the

reference marker in seconds

Analyzing Measurements (Basics)

Example: INIT: CONT OFF

Switches to single sweep mode CALC: MARK: FUNC: NDBD ON Switches on the n dB down function.

INIT; *WAI

Starts a sweep and waits for the end. CALC: MARK: FUNC: NDBD: TIME?

Outputs the time values of the temporary markers.

Usage: Query only

Manual operation: See "n dB down Delta Value" on page 526

11.8.3.13 Signal Count Marker

The following commands control the frequency counter.

CALCulate <n>:MARKer<m>:COUNt</m></n>	1032
CALCulate <n>:MARKer<m>:COUNt:FREQuency?</m></n>	1033
CALCulate <n>:MARKer<m>:COUNt:RESolution</m></n>	1033

CALCulate<n>:MARKer<m>:COUNt <State>

This command turns the frequency counter at the marker position on and off.

The frequency counter works for one marker only. If you perform a frequency count with another marker, the R&S FSW deactivates the frequency count of the first marker.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC: MARK ON

Switches on marker 1.

CALC: MARK: COUN ON

Switches on the frequency counter for marker 1.

INIT; *WAI

Starts a sweep and waits for the end.

CALC: MARK: COUN: FREQ?

Outputs the measured value.

Manual operation: See "Signal Count Marker State" on page 522

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:COUNt:FREQuency?

This command queries the frequency at the marker position.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Before you can use the command, you have to turn on the frequency counter.

Suffix:

<n> Window <m> Marker

Return values:

<Frequency> Frequency at the marker position.

Example: INIT:CONT OFF

Switches to single sweep mode.

CALC:MARK ON

Switches on marker 2.

CALC:MARK:COUN ON

Activates the frequency counter for marker 1.

INIT; *WAI

Starts a sweep and waits for the end.

CALC: MARK: COUN: FREQ?

Outputs the measured value of marker 1.

Usage: Query only

Manual operation: See "Signal Count Marker State" on page 522

CALCulate<n>:MARKer<m>:COUNt:RESolution < Resolution>

This command defines the resolution of the frequency counter.

Suffix:

<n> Window <m> Marker

Parameters:

<Resolution> 0.001 | 0.01 | 0.1 | 1 | 10 | 1000 | 10000 Hz

*RST: 0.1 Hz

Example: CALC:MARK:COUN:RES 1kHz

Sets the resolution of the frequency counter to 1 kHz.

Manual operation: See "Resolution" on page 522

Analyzing Measurements (Basics)

11.8.3.14 Marker Demodulation

The following commands control the demodulation of AM and FM signals at the marker position.

CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous</m></n>	1034
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff</m></n>	1034
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:SELect</m></n>	1035
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation[:STATe]</m></n>	1035
[SENSe:]DEMod:SQUelch:LEVel	1035
[SENSe:]DEMod:SQUelch[:STATe]	1036

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous <State>

This command turns continuous demodulation of the signal at the marker position in the frequency domain on and off.

In the time domain continuous demodulation is always on.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC2:MARK3:FUNC:DEM:CONT ON

Switches on the continuous demodulation.

Manual operation: See "Continuous Demodulation" on page 530

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff <Duration>

This command defines for how long the the signal at the marker position is demodulated.

In the time domain continuous demodulation is always on.

Suffix:

<n> Window <m> Marker

Parameters:

<Duration> Range: 10 ms to 1000 s

*RST: Marker demodulation = OFF

Example: CALC:MARK:FUNC:DEM:HOLD 3s

Manual operation: See "Marker Stop Time" on page 530

Analyzing Measurements (Basics)

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation:SELect < DemodMode>

This command selects the demodulation mode at the marker position.

Suffix:

<n> Window <m> Marker

Parameters:

<DemodMode> AM

AM demodulation

FM

FM demodulation *RST: AM

Example: CALC:MARK:FUNC:DEM:SEL FM

Manual operation: See "Modulation" on page 530

CALCulate<n>:MARKer<m>:FUNCtion:DEModulation[:STATe] <State>

This command turns the audio demodulator on and off when the measurement reaches a marker position.

Suffix:

<n> Window <m> Marker

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:MARK3:FUNC:DEM ON

Switches on the demodulation for marker 3.

Manual operation: See "Marker Demodulation State" on page 530

[SENSe:]DEMod:SQUelch:LEVel <Threshold>

This command defines the threshold for selective demodulation.

All signals below the threshold are not demodulated.

Parameters:

<Threshold> Percentage of the display height.

Range: 0 to 100 *RST: 50

Example: DEM:SQU:LEV 80

Sets the squelch level to 80% of the displayed signal.

Manual operation: See "Squelch level" on page 531

Analyzing Measurements (Basics)

[SENSe:]DEMod:SQUelch[:STATe] <State>

This command turns selective demodulation at the marker position on and off.

For selective demodulation, the R&S FSW turns on a video trigger whose level correponds to the squelch level. Therefore it turns other triggers or gates off.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DEM:SQU ON

Signals below the level threshold are not sent to the audio out-

put.

Manual operation: See "Squelch" on page 530

11.8.3.15 Programming Examples for Using Markers and Marker Functions

Various programming examples on how to use markers and the special marker functions are provided here.

The use of spectrogram markers is demonstrated in Chapter 11.8.2.6, "Programming Example: Configuring a Spectrogram", on page 983.

•	Example: Basic Markers	1036
•	Example: Marker Search in Spectrograms	1038
•	Basic Frequency Sweep Measurement for Marker Function Examples	1039
•	Example: Using a Fixed Reference Marker	1039
•	Example: Obtaining a Marker Peak List	
•	Example: Measuring Noise Density	
•	Example: Measuring Phase Noise	
•	Example: Measuring the Power in a Channel Using Band Power Markers	
•	Example: Measuring Characteristic Bandwidths (Using the n dB Down Market	
		·
•	Examples: Demodulating Marker Values and Providing Audio Output	
•	Example: Performing a Highly Accurate Frequency Measurement Using the	
		•
•	Count Marker	•

Example: Basic Markers

This example demonstrates how to configure and define markers for a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in Chapter 11.15.1, "Programming Example: Performing a Basic Frequency Sweep", on page 1171 has been performed and thus does not begin by presetting the instrument.

```
//-----Configuring marker behavior ------
DISP:MTAB ON
//Marker information is always displayed in a separate table.
```

Analyzing Measurements (Basics)

```
CALC:MARK:X:SSIZ STAN
//The marker moves from one pixel to the next instead of sweep points in manual op.
CALC:MARK:PEXC 6dB
//Defines a peak excursion of 6 dB.
CALC:MARK:X:SLIM ON
CALC:MARK:X:SLIM:LEFT 50MHz
CALC:MARK:X:SLIM:RIGH 150MHz
//Restricts the search area for peaks to the frequencies between 50 and 150 MHz.
CALC:THR -100dBm
CALC:THR:STAT ON
//Configures a threshold level for peak searches at -100 dBm.
//-----Defining and positioning markers -----
CALC:MARK1 ON
//Activates marker 1 and sets it to the peak of trace 1.
CALC:MARK2:TRAC 2
//Activates marker 2 and sets it to the peak of trace 2.
CALC:MARK3:X 150MHz
//Activates marker 3 and sets it to the freq. 150 MHz \, on trace 1.
CALC:MARK4:TRAC 4
//Activates marker 4 and sets it to the peak of trace 4.
CALC:MARK1:MAX:AUTO ON
//Moves M1 to the current peak of trace 1 after each sweep.
CALC:MARK2:MAX:NEXT
//Moves M2 to the next lower peak of trace 2.
CALC: DELT5 ON
CALC: DELT5:LINK ON
//Activates delta marker 5 and links it to marker 1. If M1 moves, so does D5.
CALC:DELT5:MREF 4
//Changes the reference for D5 to marker 4. D5 now shows the difference between
//the peak of trace 1 after each sweep and the value at the same position in
//trace 4, which is a copy of trace 1, averaged over 10 sweeps.
CALC:DELT5:MODE REL
//Shows the difference as relative values.
CALC:DELT6 ON
CALC:DELT6:MAX:NEXT
//Activates delta marker 6 and sets it to the next lower maximum of trace 1.
//Thus it shows the difference between the two highest peaks in trace 1.
//----Retrieving marker values -----
CALC:MARK1:Y?
CALC:MARK2:Y?
CALC:MARK3:Y?
CALC:MARK4:Y?
CALC:DELT5:Y?
CALC: DELT6: Y?
//Retrieves the marker levels of each active normal and delta marker.
```

Analyzing Measurements (Basics)

Example: Marker Search in Spectrograms

This example demonstrates how to search for peak values in spectrograms in a remote environment. It assumes a spectrogram is already available (see Chapter 11.8.2.6, "Programming Example: Configuring a Spectrogram", on page 983) and thus does not begin by presetting the instrument.

```
//----- Analyzing the results using markers -----
//Set marker1 on the peak power in the most recent spectrum and query
//its position
CALC2:SPEC:FRAM:SEL 0
CALC2:MARK1 ON
CALC2:MARK1:X?
CALC2:MARK1:Y?
//Set marker2 on the peak power in frame at -324ms and query its position
CALC2:MARK2 ON
CALC2:MARK2:SGR:FRAM -324ms
CALC2:MARK2:X2
CALC2:MARK2:Y?
//Set marker3 on peak power level in the entire spectrogram in memory and
//query its position
CALC2:MARK3 ON
CALC2:MARK:SPEC:SAR MEM
CALC2:MARK3:SPEC:XY:MAX
CALC2:MARK3:X?
CALC2:MARK3:Y?
//Move marker 3 to the next lower peak level for the same frequency
CALC2:MARK3:SPEC:Y:MAX:NEXT
CALC2:MARK3:X?
CALC2:MARK3:Y?
//Set marker 4 to the highest level in the (visible) spectrogram.
CALC2:MARK:SPEC:SAR VIS
CALC2:MARK4:SPEC:XY:MAX
//Move marker 4 to the next higher level in the frames above its current position.
CALC2:MARK4:SPEC:Y:MAX:ABOV
```

Analyzing Measurements (Basics)

Basic Frequency Sweep Measurement for Marker Function Examples

Since markers can only be placed on an existing trace, the following example provides a simple frequency sweep measurement to be used as a basis for the subsequent marker function scripts.

Example: Using a Fixed Reference Marker

This example demonstrates how to configure and use reference markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in "Basic Frequency Sweep Measurement for Marker Function Examples" on page 1039 has been performed and thus does not begin by presetting the instrument.

```
//------
//Activate a fixed reference marker. It is set to the current maximum of trace 1.
CALC:DELT:FUNC:FIX ON
//Set the reference frequency to 128 MHz.
CALC:DELT:FUNC:FIX:RPO:X 128 MHZ
//Set the reference level to +30 dBm.
CALC:DELT:FUNC:FIX:RPO:Y 30 DBM

//Use the fixed reference marker as a reference for deltamarker 2
CALC:DELT2:MREF FIX

//Reset the reference marker to the current maximum of trace 1
CALC:DELT:FUNC:FIX:RPO:MAX
//Query the new position of the reference marker
CALC:DELT:FUNC:FIX:RPO:X?
CALC:DELT:FUNC:FIX:RPO:Y?
```

Example: Obtaining a Marker Peak List

This example demonstrates how to obtain a marker peak list in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in "Basic Frequency Sweep Measurement for Marker Function Examples"

Analyzing Measurements (Basics)

on page 1039 has been performed and thus does not begin by presetting the instrument.

In this example, the peak search is restricted to the frequency range of 50 MHz to 150 MHz. The top 5 power levels with a peak excursion of 10dB and a minimum of -100 dBm are to be determined and displayed with their marker numbers. The results are sorted by frequency values. The resulting peak list is then exported to a file.

```
//---- Configuring the peak search -----
CALC:MARK:X:SLIM ON
CALC:MARK:X:SLIM:LEFT 50MHz
CALC:MARK:X:SLIM:RIGH 150MHz
CALC:MARK:PEXC 10DB
CALC:THR -100DBM
CALC: THR: STAT ON
CALC:MARK:FUNC:FPE:STAT ON
CALC:MARK:FUNC:FPE:LIST:SIZE 5
CALC:MARK:FUNC:FPE:SORT X
CALC:MARK:FUNC:FPE:ANN:LAB ON
//---- Retrieving results -----
CALC:MARK:FUNC:FPE:COUN?
CALC:MARK:FUNC:FPE:X?
CALC:MARK:FUNC:FPE:Y?
//---- Exporting the peak list -----
MMEM:STOR:PEAK 'PeakList'
```

Example: Measuring Noise Density

This example demonstrates how to measure noise density using noise markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in "Basic Frequency Sweep Measurement for Marker Function Examples" on page 1039 has been performed and thus does not begin by presetting the instrument.

```
CALC:MARK1:FUNC:NOIS ON

//Switches on noise measurement at marker 1.

INIT;*WAI

//Performs a measurement and waits for it to end

CALC:MARK1:FUNC:NOIS:RES?

//Queries the measured noise level (per Hz bandwidth)
```

Example: Measuring Phase Noise

This example demonstrates how to measure phase noise using markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in "Basic Frequency Sweep Measurement for Marker Function Exam-

Analyzing Measurements (Basics)

ples" on page 1039 has been performed and thus does not begin by presetting the instrument.

```
//----- Configuring the phase noise marker -----
DET SAMP
//Switches to Sample detector
CALC:MARK1 ON
//Activates marker1 and sets it to the maximum power level
CALC: DELT: FUNC: PNO ON
//Activates phase noise marker function
CALC: DELT1 ON
CALC:DELT1:X 100kHz
CALC:DELT2 ON
CALC:DELT2:X 500kHz
CALC:DELT3 ON
CALC:DELT3:X 1MHz
CALC:DELT4 ON
CALC:DELT4:X 1.5MHz
//Activates the phase noise measurement function for offsets 100\,\mathrm{kHz}/500\,\mathrm{kHz}/1\mathrm{MHz}/1.5\mathrm{MHz}.
BAND: VID?
//Queries the used VBW (= 0.1*RBW)
//---- Querying the phase noise results -----
CALC: DELT1: FUNC: PNO: RES?
CALC: DELT2: FUNC: PNO: RES?
CALC: DELT3: FUNC: PNO: RES?
CALC:DELT4:FUNC:PNO:RES?
//Queries the difference in level between the peak and the noise power density
//measured at the deltamarkers, referred to the carrier power level (dBc)
```

Example: Measuring the Power in a Channel Using Band Power Markers

This example demonstrates how to measure the power in a specific channel or band using markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in "Basic Frequency Sweep Measurement for Marker Function Examples" on page 1039 has been performed and thus does not begin by presetting the instrument.

Analyzing Measurements (Basics)

```
CALC:MARK1:FUNC:BPOW:STAT ON
//Activates the band power measurement for the band around marker 1
CALC:MARK1:FUNC:BPOW:SPAN 30MHz
//Sets the bandwidth to be measured to 30 MHz
CALC:MARK1:FUNC:BPOW:MODE DENS
//Sets the result to be a density (power per Hz bandwidth)
CALC:DELT2 ON
//Activates deltamarker2
CALC: DELT2: FUNC: BPOW: STAT ON
//Activates the band power measurement for the band around deltamarker 2
CALC:DELT2:FUNC:BPOW:SPAN 30MHz
//Sets the bandwidth to be measured to 30 MHz
CALC:DELT2:FUNC:BPOW:MODE DENS
//Sets the result to be a density (power per Hz bandwidth)
CALC: DELT3 ON
//Activates deltamarker3
CALC:DELT3:FUNC:BPOW:STAT ON
//Activates the band power measurement for the band around deltamarker 3
CALC:DELT3:FUNC:BPOW:SPAN 30MHz
//Sets the bandwidth to be measured to 30 MHz
CALC:DELT3:FUNC:BPOW:MODE DENS
//Sets the result to be a density (power per Hz bandwidth)
//-----Retrieving Results-----
CALC:MARK1:FUNC:BPOW:RES?
//Returns the power sum for the specified bandwidth around marker 1.
CALC: DELT2: FUNC: BPOW: RES?
//Returns the power sum for the specified bandwidth around deltamarker 2.
CALC: DELT3: FUNC: BPOW: RES?
//Returns the power sum for the specified bandwidth around deltamarker 3.
```

Example: Measuring Characteristic Bandwidths (Using the n dB Down Marker)

This example demonstrates how to measure a characteristic bandwidth using markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in Chapter 11.15.1, "Programming Example: Performing a Basic Frequency Sweep", on page 1171 has been performed and thus does not begin by presetting the instrument.

Analyzing Measurements (Basics)

```
//Returns the bandwidth at the specified power offset.
CALC:MARK:FUNC:NDBD:FREQ?
//Returns the frequencies of the temporary markers at the power offsets
CALC:MARK:FUNC:NDBD:QFAC?
//Returns the quality factor of the resulting bandwidth
```

Examples: Demodulating Marker Values and Providing Audio Output

The following examples demonstrate how to demodulate markers and provide audio output in a remote environment.

Example: Providing Audio Output for Individual Marker Values

This example demonstrates how to demodulate markers and provide audio output in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in Chapter 11.15.1, "Programming Example: Performing a Basic Frequency Sweep", on page 1171 has been performed and thus does not begin by presetting the instrument.

Audio output is provided for 5s each time the signal reaches its initial maximum, however only if it is higher than -90 dBm (10% of the total y-axis range) in order to ignore noise.

```
//----- Configuring the marker demodulation -----
//Activates marker1 and sets it to the maximum power level
CALC:MARK1:FUNC:DEM:SEL FM
//Selects FM demodulation
CALC:MARK1:FUNC:DEM:HOLD 5s
//Defines an output duration of 5s
DEM:SQU:LEV 10
//Sets a squelch level for noise
DEM:SOU ON
//Activates squelching
CALC:MARK1:FUNC:DEM ON
//Activates demodulation
//---- Performing the measurement -----
INIT; *WAI
//Performs a measurement and waits for it to end
//-----Retrieving Results-----
//Results are only provided as audio output!
```

Example: Demodulating and Providing Audio Output Continuously

This example demonstrates how to demodulate markers and provide audio output in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in Chapter 11.15.1, "Programming Example: Performing a

Analyzing Measurements (Basics)

Basic Frequency Sweep", on page 1171 has been performed and thus does not begin by presetting the instrument.

```
//----- Configuring the marker demodulation -----
CALC:MARK1 ON
//Activates marker1
CALC:MARK1:FUNC:DEM:SEL FM
//Selects FM demodulation
DEM:SQU:LEV 10
//Sets a squelch level for noise
DEM:SQU ON
//Activates squelching
CALC:MARK1:FUNC:DEM:CONT ON
//Activates continuous demodulation
//---- Performing the measurement -----
INIT: CONT ON
//Performs a measurement and provides continuous audio output
//-----Retrieving Results-----
//Results are only provided as audio output!
```

Example: Performing a Highly Accurate Frequency Measurement Using the Signal Count Marker

This example demonstrates how to determine highly accurate frequency values using signal count markers in a basic spectrum measurement in a remote environment. It assumes that the basic frequency sweep described in Chapter 11.15.1, "Programming Example: Performing a Basic Frequency Sweep", on page 1171 has been performed and thus does not begin by presetting the instrument.

Analyzing Measurements (Basics)

11.8.4 Configuring Display and Limit Lines

The commands required to configure display and limit lines in a remote environment are described here. The tasks for manual operation are described in Chapter 7.5.4, "How to Work with Display and Limit Lines", on page 548.

•	Configuring Display Lines	1045
•	Defining Limit Checks.	1047

11.8.4.1 Configuring Display Lines

The following commands configure vertical and horizontal display lines.

CALCulate <n>:DLINe<k></k></n>	1045
CALCulate <n>:DLINe<k>:STATe</k></n>	1045
CALCulate <n>:FLINe<k></k></n>	1046
CALCulate <n>:FLINe<k>:STATe</k></n>	1046
CALCulate <n>:TLINe<k></k></n>	1046
CALCulate <n>:TLINe<k>:STATe</k></n>	1047

CALCulate<n>:DLINe<k> < Position>

This command defines the (vertical) position of a display line.

Suffix:

<n> Window <k> Limit line

Parameters:

<Position> The value range is variable.

You can use any unit you want, the R&S FSW then converts the

unit to the currently selected unit. If you omit a unit, the

R&S FSW uses the currently selected unit.

*RST: (state is OFF)

Example: CALC:DLIN -20dBm

Positions the display line at -20 dBm.

Manual operation: See "Horizontal Line 1/2" on page 542

CALCulate<n>:DLINe<k>:STATe <State>

This command turns a display line on and off

Suffix:

<n> Window <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Analyzing Measurements (Basics)

Example: CALC:DLIN2:STAT ON

Turns on display line 2.

CALCulate<n>:FLINe<k> <Frequency>

This command defines the position of a frequency line.

Suffix:

<n> Window <k> Limit line

Parameters:

<Frequency> Note that you can not set a frequency line to a position that is

outside the current span.

Range: 0 Hz to Fmax *RST: (STATe to OFF)

Example: CALC:FLIN2 120MHz

Sets frequency line 2 to a frequency of 120 MHz.

Manual operation: See "Vertical Line 1/2" on page 541

CALCulate<n>:FLINe<k>:STATe <State>

This command turns a frequency line on and off

Suffix:

<n> Window <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:FLIN2:STAT ON

Turns frequency line 2 on.

CALCulate<n>:TLINe<k> <Time>

This command defines the position of a time line.

Suffix:

<n> Window <k> Limit line

Parameters:

<Time> Note that you can not set a time line to a position that is higher

than the current sweep time.

Range: 0 s to 1600 s *RST: (STATe to OFF)

Analyzing Measurements (Basics)

Example: CALC:TLIN 10ms

Sets the first time line to 10 ms.

Manual operation: See "Vertical Line 1/2" on page 541

CALCulate<n>:TLINe<k>:STATe <State>

This command turns a time line on and off

Suffix:

<n> Window <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:TLIN:STAT ON

Turns the first time line on.

11.8.4.2 Defining Limit Checks

Note that in remote control, upper and lower limit lines are configured using separate commands. Thus, you must decide in advance which you want to configure. The x-values for both upper and lower limit lines are defined as a common control line. This control line is the reference for the y-values for both upper and lower limit lines.

	Configuring Limit Lines	1047
•	Managing Limit Lines	1057
	Checking the Results of a Limit Check	
	Programming Example: Using Limit Lines	

Configuring Limit Lines

CALCulate <n>:LIMit<k>:COMMent</k></n>	1048
CALCulate <n>:LIMit<k>:CONTrol[:DATA]</k></n>	1048
CALCulate <n>:LIMit<k>:CONTrol:DOMain</k></n>	1048
CALCulate <n>:LIMit<k>:CONTrol:MODE</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:OFFSet</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:SHIFt</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:SPACing</k></n>	1050
CALCulate <n>:LIMit<k>:LOWer[:DATA]</k></n>	1050
CALCulate <n>:LIMit<k>:LOWer:MARGin</k></n>	
CALCulate <n>:LIMit<k>:LOWer:MODE</k></n>	
CALCulate <n>:LIMit<k>:LOWer:OFFSet</k></n>	1051
CALCulate <n>:LIMit<k>:LOWer:SHIFt</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:SPACing</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:STATe</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:THReshold</k></n>	
CALCulate <n>:LIMit<k>:NAME</k></n>	1053
CALCulate <n>:LIMit<k>:UNIT</k></n>	1053

Analyzing Measurements (Basics)

CALCulate <n>:LIMit<k>:UPPer[:DATA]</k></n>	1054
CALCulate <n>:LIMit<k>:UPPer:MARGin</k></n>	
CALCulate <n>:LIMit<k>:UPPer:MODE</k></n>	1054
CALCulate <n>:LIMit<k>:UPPer:OFFSet</k></n>	1055
CALCulate <n>:LIMit<k>:UPPer:SHIFt</k></n>	1055
CALCulate <n>:LIMit<k>:UPPer:SPACing</k></n>	1056
CALCulate <n>:LIMit<k>:UPPer:STATe</k></n>	1056
CALCulate <n>:LIMit<k>:UPPer:THReshold</k></n>	1056

CALCulate<n>:LIMit<k>:COMMent <Comment>

This command defines a comment for a limit line.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Comment> String containing the description of the limit line. The comment

may have up to 40 characters.

Manual operation: See "Comment" on page 546

CALCulate<n>:LIMit<k>:CONTrol[:DATA] <LimitLinePoints>

This command defines the horizontal definition points of a limit line.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<LimitLinePoints> Variable number of x-axis values.

Note that the number of horizontal values has to be the same as

the number of vertical values set with CALCulate<n>:

LIMit<k>:LOWer[:DATA] or CALCulate<n>:LIMit<k>: UPPer[:DATA]. If not, the R&S FSW either adds missing val-

ues or ignores surplus values.

The unit is Hz or s.

*RST:

Usage: SCPI confirmed

Manual operation: See "Data points" on page 547

CALCulate<n>:LIMit<k>:CONTrol:DOMain <SpanSetting>

This command selects the domain of the limit line.

Suffix:

<n> irrelevant

Analyzing Measurements (Basics)

<k> Limit line

Parameters:

<SpanSetting> FREQuency | TIME

*RST: FREQuency

Manual operation: See "X-Axis" on page 547

CALCulate<n>:LIMit<k>:CONTrol:MODE <Mode>

This command selects the horizontal limit line scaling.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values (Hz or s).

RELative

Limit line is defined by relative values related to the center frequency (frequency domain) or the left diagram border (time

domain).

*RST: ABSolute

CALCulate<n>:LIMit<k>:CONTrol:OFFSet <Offset>

This command defines an offset for a complete limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Offset> Numeric value.

The unit depends on the scale of the x-axis.

*RST: 0

Manual operation: See "X-Offset" on page 544

CALCulate<n>:LIMit<k>:CONTrol:SHIFt <Distance>

This command moves a complete limit line horizontally.

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Analyzing Measurements (Basics)

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Distance> Numeric value.

The unit depends on the scale of the x-axis.

Manual operation: See "Shift x" on page 548

CALCulate<n>:LIMit<k>:CONTrol:SPACing <InterpolMode>

This command selects linear or logarithmic interpolation for the calculation of limit lines from one horizontal point to the next.

Suffix:

<n> Window <k> Limit line

Parameters:

<InterpolMode> LINear | LOGarithmic

*RST: LIN

Example: CALC:LIM:CONT:SPAC LIN

CALCulate<n>:LIMit<k>:LOWer[:DATA] <LimitLinePoints>

This command defines the vertical definition points of a lower limit line.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<LimitLinePoints> Variable number of level values.

Note that the number of vertical values has to be the same as the number of horizontal values set with CALCulate < n > :

LIMit<k>: CONTrol[:DATA]. If not, the R&S FSW either adds

missing values or ignores surplus values.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

*RST: Limit line state is OFF

Usage: SCPI confirmed

Manual operation: See "Data points" on page 547

CALCulate<n>:LIMit<k>:LOWer:MARGin < Margin>

This command defines an area around a lower limit line where limit check violations are still tolerated.

Analyzing Measurements (Basics)

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Margin> numeric value

*RST: 0
Default unit: dB

Manual operation: See "Margin" on page 547

CALCulate<n>:LIMit<k>:LOWer:MODE < Mode>

This command selects the vertical limit line scaling.

Suffix:

<n> Window <k> Limit line

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values.

The unit is variable.

RELative

Limit line is defined by relative values related to the reference

level (dB).

*RST: ABSolute

Manual operation: See "X-Axis" on page 547

CALCulate<n>:LIMit<k>:LOWer:OFFSet <Offset>

This command defines an offset for a complete lower limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> Window <k> Limit line

Parameters:

<Offset> Numeric value.

*RST: 0
Default unit: dB

Manual operation: See "Y-Offset" on page 545

Analyzing Measurements (Basics)

CALCulate<n>:LIMit<k>:LOWer:SHIFt < Distance>

This command moves a complete lower limit line vertically.

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Suffix:

<n> Window <k> Limit line

Parameters:

<Distance> Defines the distance that the limit line moves.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

Manual operation: See "Shift y" on page 548

CALCulate<n>:LIMit<k>:LOWer:SPACing <InterpolType>

This command selects linear or logarithmic interpolation for the calculation of a lower limit line from one horizontal point to the next.

Suffix:

<n> Window <k> Limit line

Parameters:

<InterpolType> LINear | LOGarithmic

*RST: LIN

Manual operation: See "X-Axis" on page 547

See "Y-Axis" on page 547

CALCulate<n>:LIMit<k>:LOWer:STATe <State>

This command turns a lower limit line on and off.

Before you can use the command, you have to select a limit line with CALCulate<n>: LIMit<k>: NAME on page 1053.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Usage: SCPI confirmed

Manual operation: See "Visibility" on page 544

Analyzing Measurements (Basics)

CALCulate<n>:LIMit<k>:LOWer:THReshold <Threshold>

This command defines a threshold for relative limit lines.

The R&S FSW uses the threshold for the limit check, if the limit line violates the threshold.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Threshold> Numeric value.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

*RST: -200 dBm

Manual operation: See "Threshold" on page 546

CALCulate<n>:LIMit<k>:NAME <Name>

This command selects a limit line that already exists or defines a name for a new limit line.

Suffix:

<n> Window <k> Limit line

Parameters:

<Name> String containing the limit line name.

*RST: REM1 to REM8 for lines 1 to 8

Manual operation: See "Name" on page 546

CALCulate<n>:LIMit<k>:UNIT <Unit>

This command defines the unit of a limit line.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Unit> DBM | DBPW | WATT | DBUV | DBMV | VOLT | DBUA |

AMPere | DB | DBUV_M | DBUA_M | (unitless)

If you select dB as the limit line unit, the command automatically

turns the limit line into a relative limit line.

*RST: DBM

Manual operation: See "Y-Axis" on page 547

Analyzing Measurements (Basics)

CALCulate<n>:LIMit<k>:UPPer[:DATA] <LimitLinePoints>

This command defines the vertical definition points of an upper limit line.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<LimitLinePoints> Variable number of level values.

Note that the number of vertical values has to be the same as the number of horizontal values set with CALCulate < n > :

LIMit<k>: CONTrol[:DATA]. If not, the R&S FSW either adds

missing values or ignores surplus values.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

*RST: Limit line state is OFF

Usage: SCPI confirmed

Manual operation: See "Data points" on page 547

CALCulate<n>:LIMit<k>:UPPer:MARGin < Margin>

This command defines an area around an upper limit line where limit check violations are still tolerated.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Margin> numeric value

*RST: 0
Default unit: dB

Manual operation: See "Margin" on page 547

CALCulate<n>:LIMit<k>:UPPer:MODE < Mode>

This command selects the vertical limit line scaling.

Suffix:

<n> Window <k> Limit line

Analyzing Measurements (Basics)

Parameters:

<Mode> ABSolute

Limit line is defined by absolute physical values.

The unit is variable.

RELative

Limit line is defined by relative values related to the reference

level (dB).

*RST: ABSolute

Manual operation: See "X-Axis" on page 547

CALCulate<n>:LIMit<k>:UPPer:OFFSet <Offset>

This command defines an offset for a complete upper limit line.

Compared to shifting the limit line, an offset does not actually change the limit line definition points.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Offset> Numeric value.

*RST: 0
Default unit: dB

Manual operation: See "Y-Offset" on page 545

CALCulate<n>:LIMit<k>:UPPer:SHIFt <Distance>

This command moves a complete upper limit line vertically.

Compared to defining an offset, this command actually changes the limit line definition points by the value you define.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Distance> Defines the distance that the limit line moves.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

Usage: Event

Manual operation: See "Shift y" on page 548

Analyzing Measurements (Basics)

CALCulate<n>:LIMit<k>:UPPer:SPACing <InterpolType>

This command selects linear or logarithmic interpolation for the calculation of an upper limit line from one horizontal point to the next.

Suffix:

<n> Window <k> Limit line

Parameters:

<InterpolType> LINear | LOGarithmic

*RST: LIN

Manual operation: See "X-Axis" on page 547

See "Y-Axis" on page 547

CALCulate<n>:LIMit<k>:UPPer:STATe <State>

This command turns an upper limit line on and off.

Before you can use the command, you have to select a limit line with CALCulate<n>: LIMit<k>: NAME on page 1053.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Usage: SCPI confirmed

Manual operation: See "Visibility" on page 544

CALCulate<n>:LIMit<k>:UPPer:THReshold <Limit>

This command defines an absolute limit for limit lines with a relative scale.

The R&S FSW uses the threshold for the limit check, if the limit line violates the threshold.

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<Limit> Numeric value.

The unit depends on CALCulate<n>:LIMit<k>:UNIT

on page 1053.

*RST: -200

Default unit: dBm

Analyzing Measurements (Basics)

Manual operation: See "Threshold" on page 546

Managing Limit Lines

Useful commands for managing limit lines described in the R&S FSW User Manual:

- MMEM:SEL[:ITEM]:LIN:ALL
- MMEM:STOR:TYPE
- MMEM:LOAD:TYPE

Remote commands exclusive to managing limit lines:

CALCulate <n>:LIMit<k>:ACTive?</k></n>	1057
CALCulate <n>:LIMit<k>:COPY</k></n>	1057
CALCulate <n>:LIMit<k>:DELete</k></n>	1058
CALCulate <n>:LIMit<k>:STATe</k></n>	
CALCulate <n>:LIMit<k>:TRACe<t>:CHECk</t></k></n>	

CALCulate<n>:LIMit<k>:ACTive?

This command queries the names of all active limit lines.

Suffix:

<n>, <k> irrelevant

Return values:

<LimitLines> String containing the names of all active limit lines in alphabeti-

cal order.

Example: CALC:LIM:ACT?

Queries the names of all active limit lines.

Usage: Query only

Manual operation: See "Visibility" on page 544

CALCulate<n>:LIMit<k>:COPY <Line>

This command copies a limit line.

Suffix:

<n> Window <k> Limit line

Parameters:

<Line> 1 to 8

number of the new limit line

<name>

String containing the name of the limit line.

Analyzing Measurements (Basics)

Example: CALC:LIM1:COPY 2

Copies limit line 1 to line 2. CALC:LIM1:COPY 'FM2'

Copies limit line 1 to a new line named FM2.

Manual operation: See "Copy Line" on page 545

CALCulate<n>:LIMit<k>:DELete

This command deletes a limit line.

Suffix:

<n> Window <k> Limit line Usage: Event

Manual operation: See "Delete Line" on page 545

CALCulate<n>:LIMit<k>:STATe <State>

This command turns the limit check for a specific limit line on and off.

To query the limit check result, use CALCulate<n>:LIMit<k>:FAIL?.

Note that a new command exists to activate the limit check and define the trace to be checked in one step (see CALCulate<n>:LIMit<k>:TRACe<t>:CHECk on page 1058).

Suffix:

<n> irrelevant <k> Limit line

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM:STAT ON

Switches on the limit check for limit line 1.

Usage: SCPI confirmed

Manual operation: See "Disable All Lines" on page 545

CALCulate<n>:LIMit<k>:TRACe<t>:CHECk <State>

This command turns the limit check for a specific trace on and off.

To query the limit check result, use CALCulate<n>:LIMit<k>:FAIL?.

Note that this command replaces the two commands from previous signal and spectrum analyzers (which are still supported, however):

• CALCulate<n>:LIMit<k>:TRACe on page 1168

Analyzing Measurements (Basics)

• CALCulate<n>:LIMit<k>:STATe on page 1058

Suffix:

<n> Window
<k> Limit line
<t> Trace

Parameters:

<State> ON | OFF

*RST: OFF

Example: CALC:LIM3:TRAC2:CHEC ON

Switches on the limit check for limit line 3 on trace 2.

Manual operation: See "Traces to be Checked" on page 544

Checking the Results of a Limit Check

CALCulate <n>:LIMit<k>:CLEar[:IMMediate]1</k></n>	059
CALCulate <n>:LIMit<k>:FAIL?</k></n>	059

CALCulate<n>:LIMit<k>:CLEar[:IMMediate]

This command deletes the result of the current limit check.

The command works on all limit lines in all measurement windows at the same time.

Suffix:

<n>, <k> irrelevant

Example: CALC:LIM:CLE

Deletes the result of the limit check.

Usage: SCPI confirmed

CALCulate<n>:LIMit<k>:FAIL?

This command queries the result of a limit check in the specified window.

Note that for SEM measurements, the limit line suffix <k> is irrelevant, as only one specific SEM limit line is checked for the currently relevant power class.

To get a valid result, you have to perform a complete measurement with synchronization to the end of the measurement before reading out the result. This is only possible for single sweep mode.

See also INITiate<n>: CONTinuous on page 728.

Suffix:

<n> Window <k> Limit line

Analyzing Measurements (Basics)

Return values:

<Result>

PASS 1 FAIL

Example: INIT; *WAI

Starts a new sweep and waits for its end.

CALC2:LIM3:FAIL?

Queries the result of the check for limit line 3 in window 2.

Usage: Query only

SCPI confirmed

Manual operation: See "Spectrum Emission Mask" on page 117

See "Limit Check <n>" on page 220 See "Limit Check" on page 253

Programming Example: Using Limit Lines

The following examples demonstrate how to work with limit lines in a remote environment.

Example: Configuring Limit Lines

This example demonstrates how to configure 2 limit lines - an upper and a lower limit - for a measurement in a remote environment.

```
//---- Configuing the limit lines -----
CALC: LIM1: NAME 'FM1'
//Names limit line 1 'FM1'.
CALC:LIM1:CONT:MODE ABS
//Selects absolute scaling for the horizontal axis.
CALC:LIM1:CONT 1 MHz,50MHz,100 MHz,150MHz,200MHz
//Defines 5 horizontal definition points for limit line 1.
CALC:LIM1:UPP:MODE ABS
//Selects an absolute vertical scale for limit line 1.
CALC:LIM1:UNIT DBM
//Selects the unit dBm for limit line 1.
CALC:LIM1:UPP -10,-5,0,-5,-10
//Defines 5 definition points for limit line 1.
CALC:I,TM1:UPP:MARG 5dB
//Defines an area of 5 dB around limit line 1 where limit check violations
//are still tolerated.
CALC:LIM1:UPP:SHIF -10DB
//Shifts the limit line 1 by -10 dB.
CALC:LIM1:UPP:OFFS -3dB
```

Analyzing Measurements (Basics)

```
//Defines an additional -3 dB offset for limit line 1.
CALC:LIM3:NAME 'FM3'
//Names limit line 3 'FM3'.
CALC:LIM3:LOW:MODE REL
//Selects a relative vertical scale for limit line 3.
CALC:LIM3:UNIT DB
CALC:LIM3:CONT 1 MHz,50MHz,100 MHz,150MHz,200MHz
//Defines 5 horizontal definition points for limit line 3.
CALC:LIM3:LOW -90,-60,-40,-60,-90
//Defines 5 definition points relative to the reference level for limit line 3.
CALC:LIM3:LOW:SHIF 2
//Shifts the limit line 3 by 2dB.
CALC:LIM3:LOW:OFFS 3
//Defines an additional 3 dB offset for limit line 3.
CALC:LIM3:LOW:THR -200DBM
//Defines a power threshold of -200 dBm that must be exceeded for limit to be checked
CALC:LIM3:LOW:MARG 5dB
//Defines an area of 5dB around limit line 3 where limit check violations
//are still tolerated.
//---- Storing the limit lines -----
MMEM:SEL:CHAN:LIN:ALL ON
MMEM:STOR:TYPE CHAN
MMEM:STOR:STAT 1, 'LimitLines FM1 FM3'
```

Example: Performing a Limit Check

This example demonstrates how to perform a limit check during a basic frequency sweep measurement in a remote environment. The limit lines configured in "Example: Configuring Limit Lines" on page 1060 are assumed to exist and be active.

Managing Settings and Results

```
//Sets the reference level to 0 dBm.
TRIG:SOUR IFP
TRIG:LEV:IFP -10dBm
//Defines triggering when the second intermediate frequency rises to a level
//of -10 dBm.
//----Configuring the Trace-----
DISP:TRAC2 ON
DISP:TRAC2:MODE AVER
DISP:TRAC3 ON
DISP:TRAC3:MODE MAXH
//Configures 3 traces: 1 (default): clear/write; 2: average; 3: max hold
//---- Configuring the limit check -----
MMEM:LOAD:TYPE REPL
MMEM:LOAD:STAT 1, 'LimitLines FM1 FM3'
//Loads the limit lines stored in 'LimitLines_FM1_FM3'
CALC:LIM1:NAME 'FM1'
CALC:LIM1:UPP:STAT ON
//Activates upper limit FM1 as line 1.
CALC:LIM3:NAME 'FM3'
CALC:LIM3:LOW:STAT ON
//Activates lower limit line FM3 as line 3.
CALC:LIM:ACT?
//Queries the names of all active limit lines
//Result: 'FM1,FM3'
CALC:LIM1:TRAC3:CHEC ON
//Activates the upper limit to be checked against trace3 (maxhold trace)
CALC:LIM3:TRAC2:CHEC ON
//Activates the upper limit to be checked against trace2 (average trace)
CALC:LIM:CLE
//Clears the previous limit check results
//---- Performing the measurement-----
TNTT: *WAT
//Initiates a new measurement and waits until the last sweep has finished.
//---- Retrieving limit check results-----
CALC:LIM1:FAIL?
//Queries the result of the upper limit line check
CALC:LIM3:FAIL?
//Queries the result of the lower limit line check
```

11.9 Managing Settings and Results

The commands required to store and load instrument settings and import and export measurement results in a remote environment are described here.

Managing Settings and Results

The tasks for manual operation are described in Chapter 8, "Data Management", on page 552.

Addressing drives

The various drives can be addressed via the "mass storage instrument specifier" <msis> using the conventional Windows syntax. The internal hard disk is addressed by "C:".

For details on storage locations refer to Chapter 8.3.2.2, "Storage Location and File Name", on page 559.

The file names (<FileName> parameter) are given as string parameters enclosed in quotation marks. They also comply with Windows conventions. Windows file names do not distinguish between uppercase and lowercase notation.

Wildcards

The two characters "*" and "?" can be used as "wildcards", i.e., they are variables for a selection of several files. The question mark "?" replaces exactly one character, the asterisk replaces any of the remaining characters in the file name. "*.*" thus means all files in a directory.

Path names

Storage locations can be specified either as absolute (including the entire path) or relative paths (including only subfolders of the current folder). Use the MMEM: CDIR? query to determine the current folder.

Secure user mode

In secure user mode, settings that are to be stored on the instrument are stored to volatile memory, which is restricted to 256 MHz. Thus, a "Memory full" error may occur although the hard disk indicates that storage space is still available.

•	General Data Storage and Loading Commands	1063
	Selecting the Items to Store	
	Storing and Loading Instrument Settings	
	Storing or Printing Screenshots	
	Storing Measurement Results	
	Examples: Managing Data	

11.9.1 General Data Storage and Loading Commands

See also:

• FORMat[:DATA] on page 980

FORMat:DEXPort:DSEParator	. 1064
MMEMory:CATalog?	. 1064
MMEMory:CATalog:LONG?	. 1065
MMEMory:CDIRectory	.1066

Managing Settings and Results

MMEMory:COMMent	1066
MMEMory:COPY	1066
MMEMory:DATA	1066
MMEMory:DELete	
MMEMory:MDIRectory	
MMEMory:MOVE	
MMEMory:MSIS	
MMEMory:NAME	
MMEMory:NETWork:DISConnect	
MMEMory:NETWork:MAP	
MMEMory:NETWork:UNUSeddrives?	
MMEMory:NETWork:USEDdrives?	
MMEMory:RDIRectory	

FORMat:DEXPort:DSEParator < Separator >

This command selects the decimal separator for data exported in ASCII format.

Parameters:

<Separator> COMMa

Uses a comma as decimal separator, e.g. 4,05.

POINt

Uses a point as decimal separator, e.g. 4.05.

*RST: *RST has no effect on the decimal separator.

Default is POINt.

Example: FORM: DEXP: DSEP POIN

Sets the decimal point as separator.

Manual operation: See "Saving the Result Summary (Evaluation List) to a File"

on page 232

See "Saving the Evaluation List" on page 255

See "Decimal Separator" on page 485 See "Exporting the Peak List" on page 532

MMEMory:CATalog? <Path>

This command returns the contents of a particular directory.

Query parameters:

<Path> String containing the path and directory

If you leave out the path, the command returns the contents of

the directory selected with MMEMory: CDIRectory.

The path may be relative or absolute. Using wildcards ('*') is

possible to query a certain type of files only.

If you use a specific file as a parameter, the command returns the name of the file if the file is found in the specified directory, or an error if the file is not found ("-256, "File name not

found").

Managing Settings and Results

Return values:

<FileNames> List of file and directory names, separated by commas

If no files are found, an error is displayed: "-256, "File name

not found"

Example: MMEM:CAT? 'C:\R S\Instr\user\SPOOL?.PNG'

Returns all files in C:\R_S\Instr\user whose names start with SPOOL, have 6 letters and the extension ".PNG", e.g.:

SPOOL1.PNG, SPOOL2.PNG, SPOOL3.PNG

Example: MMEM:CAT? 'C:\R S\Instr\user\SPOOL6.PNG'

Query whether the file 'SPOOL6. PNG' also exists in the directory;

Result:

-256, "File name not found;: MMEMory: CATalog? 'C:

\R S\Instr\user\SPOOL6.PNG'

Usage: Query only

SCPI confirmed

Manual operation: See "Selecting the Storage Location - Drive/ Path/ Files"

on page 230

MMEMory:CATalog:LONG? <Path>

This command returns the contents of a particular directory with additional information about the files.

Query parameters:

<Path> String containing the path and directory.

If you leave out the path, the command returns the contents of

the directory selected with MMEMory: CDIRectory.

The path may be relative or absolute. Using wildcards ('*') is

possible to query a certain type of files only.

Return values:

<UsedDiskSpace> Byte size of all files in the directory.

<FreeDiskSpace> Remaining disk space in bytes.

<FileInfo> <NameFileN>,<SuffixFileN>,<SizeFileN>

Describes the individual file.

<NameFileN>
Name of the file.
<SuffixFileN>

Type of the file. Possible suffixes are: ASCii, BINary, DIRectory,

STAT

<SizeFileN>

Size of the file in bytes.

Usage: Query only

Managing Settings and Results

MMEMory: CDIRectory < Directory>

This command changes the current directory.

Parameters:

<Directory> String containing the path to another directory.

The path may be relative or absolute.

Usage: SCPI confirmed

MMEMory: COMMent < Comment>

This command defines a comment for the stored settings.

Parameters:

<Comment> String containing the comment.

Example: MMEMory:COMMent "ACP measurement with Standard

Tetra from 23.05."

MMEMory::MMEMory:STORe1:STATe 1, "ACP T"

As a result, in the selection list for recall settings, the comment

"ACP measurement with Standard Tetra from

23.05." is added to the ACP entry.

Manual operation: See "Comment" on page 561

MMEMory: COPY < SourceFile>, < DestinationFile>

This command copies one or more files to another directory.

Parameters:

<SourceFile> String containing the path and file name of the source file.

<DestinationFile> String containing the path and name of the target file.

The path may be relative or absolute.

Usage: SCPI confirmed

MMEMory:DATA <FileName>, [<Block>]

This command writes block data into a file. The delimiter must be set to EOI to obtain error-free data transfer.

When you query the contents of a file, you can save them in a file on the remote control computer.

The command is useful for reading stored settings files or trace data from the instrument or for transferring them to the instrument

Parameters:

<FileName> String containing the path and name of the target file.

Managing Settings and Results

<Block> Data block with the following structure.

#

Hash sign. <number>

Length of the length information.

<number>

Length information of the binary data (number of bytes).

<data>

Binary data with the indicated <number> of bytes.

Example: MMEM:NAME '\Public\User\Testfile.txt'

Creates a new file called 'testfile.txt'.

MMEM:DATA 'Testfile.txt', #220Contents of the

file

The parameter means:

#2: hash sign and length of the length information (20 bytes = 2

digits)

20: indicates the number of subsequent binary data bytes.

Contents of the file: store 20 binary bytes (characters) to the file.

Usage: SCPI confirmed

MMEMory: DELete < File Name >

This command deletes a file.

Parameters:

<FileName> String containing the path and file name of the file to delete.

The path may be relative or absolute.

Usage: Event

SCPI confirmed

MMEMory: MDIRectory < Directory>

This command creates a new directory.

Parameters:

<Directory> String containing the path and new directory name

The path may be relative or absolute.

Usage: Event

MMEMory:MOVE <SourceFile>,<NewFileName>

This command moves a file to another directory.

The command also renames the file if you define a new name in the target directory.

If you do not include a path for <NewFileName>, the command just renames the file.

Parameters:

<SourceFile> String containing the path and file name of the source file.

Managing Settings and Results

<NewFileName> String containing the path and name of the target file.

Example: MMEM:MOVE 'C:\TEST01.CFG','SETUP.CFG'

Renames TEST01.CFG in SETUP.CFG in directory C:\.

Usage: Event

SCPI confirmed

MMEMory: MSIS < Device>

This command selects the default storage device used by all MMEMory commands.

Parameters:

<Device> 'A:' | 'C:' | ... | 'Z:'

String containing the device drive name

*RST: 'C:'

Usage: SCPI confirmed

MMEMory:NAME <FileName>

This command has several purposes, depending on the context it is used in.

• It creates a new and empty file.

• It defines the file name for screenshots taken with HCOPy[: IMMediate<device>]. Note that you have to route the printer output to a file.

Parameters:

<FileName> String containing the path and name of the target file.

Example: MMEM:NAME 'C:\R S\instr\user\PRINT1.BMP'

Selects the file name.

Usage: Event

SCPI confirmed

MMEMory:NETWork:DISConnect < Drive>

This command disconnects a network drive.

Parameters:

<Drive> String containing the drive name.

Usage: Event

MMEMory:NETWork:MAP <Drive>, <HostName> [, <UserName>, <Password>][, <Reconnect>]

This command maps a drive to a server or server directory of the network.

Note that you have to allow sharing for a server or folder in Microsoft networks first.

Managing Settings and Results

Parameters:

<Drive> String containing the drive name or path of the directory you

want to map.

<HostName> String containing the host name of the computer or the IP

address and the share name of the drive. '<\host name or IP address\share name>'

<UserName> String containing a user name in the network.

The user name is optional.

<Password> String containing the password corresponding to the <User-

Name>.

The password is optional.

<Reconnect> ON | OFF

ON

Reconnects at logon with the same user name.

OFF

Does not reconnect at logon.

Usage: Event

MMEMory: NETWork: UNUSeddrives?

This command returns a list of unused network drives.

Return values:

<DriveName> List of network drives in alphabetically descending order, e.g.

'W:,V:,U:,...'

Usage: Query only

MMEMory:NETWork:USEDdrives? <State>

This command returns a list of all network drives in use.

Parameters:

<State> You do not have to use the parameter. If you do not include the

parameter, the command returns a list of all drives in use. This is the same behavior as if you were using the parameter

OFF.

Returns a list of all drives in use including the folder information.

OFF

Returns al list of all drives in use.

Usage: Query only

MMEMory:RDIRectory < Directory>

This command deletes the indicated directory.

Managing Settings and Results

Parameters:

<Directory> String containing the path of the directory to delete.

Note that the directory you want to remove must be empty.

Usage: Event

11.9.2 Selecting the Items to Store

The following commands select the items to be included in the configuration file.

Depending on the used command, either the items from the entire instrument (MMEMory:Select[:ITEM]...), or only those from the currently selected channel (MMEM:Select:CHANnel[:ITEM]...) are stored.

MMEMory:SELect:CHANnel[:ITEM]:ALL	1070
MMEMory:SELect[:ITEM]:ALL	1070
MMEMory:SELect:CHANnel[:ITEM]:DEFault	1071
MMEMory:SELect[:ITEM]:DEFault	1071
MMEMory:SELect:CHANnel[:ITEM]:HWSettings	1071
MMEMory:SELect[:ITEM]:HWSettings	1071
MMEMory:SELect:CHANnel[:ITEM]:LINes:ALL	1071
MMEMory:SELect[:ITEM]:LINes:ALL	1071
MMEMory:SELect:CHANnel[:ITEM]:NONE	1072
MMEMory:SELect[:ITEM]:NONE	1072
MMEMory:SELect:CHANnel[:ITEM]:SGRam	1072
MMEMory:SELect[:ITEM]:SGRam	1072
MMEMory:SELect:CHANnel[:ITEM]:TRACe[:ACTive]	1072
MMEMory:SELect[:ITEM]:TRACe[:ACTive]	1072
MMEMory:SELect:CHANnel[:ITEM]:TRANsducer:ALL	
MMEMory:SELect[:ITEM]:TRANsducer:ALL	

MMEMory:SELect:CHANnel[:ITEM]:ALL MMEMory:SELect[:ITEM]:ALL

This command includes all items when storing or loading a configuration file.

The items are:

- Hardware configuration: MMEMory: SELect[:ITEM]: HWSettings
- Limit lines: MMEMory: SELect[:ITEM]:LINes:ALL
- Spectrogram data: MMEMory:SELect[:ITEM]:SGRam
- Trace data: MMEMory: SELect[:ITEM]:TRACe[:ACTive]
- Transducers: MMEMory: SELect[:ITEM]: TRANsducer: ALL

Example: MMEM:SEL:ALL

Usage: Event

Manual operation: See "Items" on page 561

Managing Settings and Results

MMEMory:SELect:CHANnel[:ITEM]:DEFault MMEMory:SELect[:ITEM]:DEFault

This command selects the current settings as the only item to store to and load from a configuration file.

Usage: Event

Manual operation: See "Items" on page 561

MMEMory:SELect:CHANnel[:ITEM]:HWSettings <State> MMEMory:SELect[:ITEM]:HWSettings <State>

This command includes or excludes measurement (hardware) settings when storing or loading a configuration file.

Measurement settings include:

- general channel configuration
- measurement hardware configuration including markers
- limit lines

Note that a configuration may include no more than 8 limit lines. This number includes active limit lines as well as inactive limit lines that were used last. Therefore the combination of inactivate limit lines depends on the sequence of use with MMEMory:LOAD:STATe.

- color settings
- configuration for the hardcopy output

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: MMEM:SEL:HWS ON

Manual operation: See "Items" on page 561

MMEMory:SELect:CHANnel[:ITEM]:LINes:ALL <State> MMEMory:SELect[:ITEM]:LINes:ALL <State>

This command includes or excludes all limit lines (active and inactive) when storing or loading a configuration file.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MMEM:SEL:LIN:ALL ON

Manual operation: See "Items" on page 561

Managing Settings and Results

MMEMory:SELect:CHANnel[:ITEM]:NONE MMEMory:SELect[:ITEM]:NONE

This command does not include any of the following items when storing or loading a configuration file.

• Hardware configuration: MMEMory: SELect[:ITEM]: HWSettings

• Limit lines: MMEMory: SELect[:ITEM]:LINes:ALL

Spectrogram data: MMEMory:SELect[:ITEM]:SGRam

Trace data: MMEMory:SELect[:ITEM]:TRACe[:ACTive]

• Transducers: MMEMory: SELect[:ITEM]: TRANsducer: ALL

Example: MMEM:SEL:NONE

Usage: Event

Manual operation: See "Items" on page 561

MMEMory:SELect:CHANnel[:ITEM]:SGRam <State> MMEMory:SELect[:ITEM]:SGRam <State>

This command includes or excludes spectrogram data when storing or loading a configuration file.

Parameters:

<State> ON | OFF

*RST: OFF

Example: MMEM:SEL:SGR ON

Adds the spectrogram data to the list of data subsets.

Manual operation: See "Items" on page 561

MMEMory:SELect:CHANnel[:ITEM]:TRACe[:ACTive] <State> MMEMory:SELect[:ITEM]:TRACe[:ACTive] <State>

This command includes or excludes trace data when storing or loading a configuration file.

Parameters:

<State> ON | OFF

*RST: OFF, i.e. no traces is stored

Example: MMEM:SEL:TRAC ON

Manual operation: See "Items" on page 561

MMEMory:SELect:CHANnel[:ITEM]:TRANsducer:ALL <State> MMEMory:SELect[:ITEM]:TRANsducer:ALL <State>

This command includes or excludes transducer factors when storing or loading a configuration file.

Managing Settings and Results

Parameters:

<State> ON | OFF

*RST: OFF

Example: MMEM:SEL:TRAN:ALL ON

Manual operation: See "Items" on page 561

See "Save" on page 601

11.9.3 Storing and Loading Instrument Settings

See also:

• INSTrument[:SELect] on page 720 to select the channel.

MMEMory:CLEar:ALL	1073
MMEMory:CLEar:STATe	1073
MMEMory:LOAD:AUTO	1074
MMEMory:LOAD:STATe	1074
MMEMory:LOAD:TYPE	1075
MMEMory:STORe <n>:STATe</n>	1076
MMEMory:STORe <n>:STATe:NEXT</n>	1076
MMEMory:STORe <n>:TYPE</n>	1077
SYSTem:PRESet	1077
SYSTem:PRESet:CHANnel[:EXECute]	1078

MMEMory:CLEar:ALL

This command deletes all instrument configuration files in the current directory.

You can select the directory with MMEMory: CDIRectory.

Example: MMEM:CLE:ALL

Usage: Event

MMEMory:CLEar:STATe 1,<FileName>

This command deletes a instrument configuration file.

Parameters:

1

<FileName> String containing the path and name of the file to delete.

The string may or may not contain the file's extension.

Example: MMEM:CLE:STAT 1,'TEST'

Usage: Event

Managing Settings and Results

MMEMory:LOAD:AUTO 1, 'Factory' | <FileName>

This command restores an instrument configuration and defines that configuration as the default state.

The default state is restored after a preset (*RST) or after you turn on the R&S FSW.

Parameters:

1

'Factory' | 'Factory'

<FileName> Restores the factory settings as the default state.

'<file_name>

String containing the path and name of the configuration file. Note that only *instrument* settings files can be selected for the startup recall function; channel settings files cause an error.

Example: MMEM:LOAD:AUTO 1, 'C:\R_S\Instr\user\TEST'

Usage: Event

Manual operation: See "Startup Recall" on page 563

MMEMory:LOAD:STATe 1, <FileName>

This command restores and activates the instrument configuration stored in a *.dfl file.

Note that files with other formats cannot be loaded with this command.

The contents that are reloaded from the file are defined by the last selection made either in the "Save/Recall" dialogs (manual operation) or through the MMEMory: SELect[:ITEM] commands (remote operation; the settings are identical in both cases).

By default, the selection is limited to the user settings ("User Settings" selection in the dialogs, $\verb|HWSettings|$ in SCPI). The selection is not reset by PRESET or *RST.

As a consequence, the results of a SCPI script using the MMEMory: LOAD: STATE command without a previous MMEMory: SELect [:ITEM] command may vary, depending on previous actions in the GUI or in previous scripts, even if the script starts with the *RST command.

It is therefore recommended that you use the appropriate MMEMory: SELect[:ITEM] command before using MMEMory:LOAD:STATe.

Parameters:

1

<FileName> String containing the path and name of the file to load.

The string may or may not include the file's extension.

Managing Settings and Results

Example: MMEM:SEL:ALL

//Save all items (User Settings, All Traces, All Limit Lines) from

the R&S FSW.

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

//Reloads all items

In the "Recall" dialog, select only "User Settings" and "All Limit

ines".

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

//Reloads user settings and all limit lines.

*RST

//Reset instrument.

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\TEST01'

//Selected items are retained. Reloads user settings and all limit

lines.

Restart the instrument.

(Switch the ON/OFF key off and on).

 $\label{eq:mmem:load:stat 1,'C:\R_S\setminus Instr\setminus user\setminus TEST01'} $$ // Selected items are set to default. Reloads only the user set-$

tings.

Usage: SCPI confirmed

Manual operation: See "Recall" on page 558

See "Recall in New Channel / Recall in Current Channel"

on page 562

MMEMory:LOAD:TYPE < Mode>

This command defines whether the channel-specific settings that will be loaded with the subsequent MMEM: LOAD: STAT command will replace the current channel or activate a new channel.

Parameters:

<Mode> NEW | REPLace

NEW

The loaded settings will be activated in a new channel.

REPLace

The loaded settings will replace the currently active channel.

*RST: NEW

Managing Settings and Results

Example: INST:SEL 'SPECTRUM2'

Selects measurement channel 'SPECTRUM2'.

MMEM:STOR:TYP CHAN

Specifies that channel-specific data is to be stored.

MMEM:STOR:STAT 1, 'C:\R_S\Instr\user\Spectrum'

Stores the settings from channel 'SPECTRUM2' to the file

'C:\R S\Instr\user\Spectrum'.

MMEM:LOAD:TYPE NEW

Specifies that channel-specific settings are to be activated in a

new channel.

MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\Spectrum'

Loads the channel-specific settings from the file

'C:\R S\Instr\user\Spectrum' to the new channel

'SPECTRUM2*'.

MMEMory:STORe<n>:STATe 1,<FileName>

This command saves the current instrument configuration in a *.dfl file.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> irrelevant

Parameters:

1

<FileName> String containing the path and name of the target file.

The file extension is .dfl.

Example: MMEM:STOR:STAT 1, 'Save'

Saves the current instrument settings in the file Save.dfl.

Usage: Event

SCPI confirmed

Manual operation: See "Save File" on page 561

See "Save" on page 601

MMEMory:STORe<n>:STATe:NEXT

This command saves the current instrument configuration in a *.dfl file.

Managing Settings and Results

The file name depends on the one you have set with MMEMory: STORe<n>: STATE.

This command adds a consecutive number to the file name.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> irrelevant

Example: MMEM:STOR:STAT 1, 'Save'

Saves the current instrument settings in the file Save.dfl.

MMEM:STOR:STAT:NEXT

Saves the current instrument settings in the file Save 001.dfl

MMEM:STOR:STAT:NEXT

Saves the current instrument settings in the file Save 002.dfl

Usage: Event

Manual operation: See "Save File" on page 561

MMEMory:STORe<n>:TYPE <Mode>

This command defines whether the data from the entire instrument or only from the current channel is stored with the subsequent MMEM: STOR... command.

Suffix:

<n> irrelevant

Parameters:

<Mode> INSTrument | CHANnel

INSTrument

Stores data from the entire instrument.

CHANnel

Stores data from an individual channel.

*RST: INST

Example: INST:SEL 'SPECTRUM2'

Selects measurement channel 'SPECTRUM2'.

MMEM:STOR:TYPE CHAN

Specifies that channel-specific data is to be stored.

SYSTem:PRESet

This command presets the R&S FSW.

Managing Settings and Results

Example: SYST: PRES

Usage: Event

SCPI confirmed

SYSTem:PRESet:CHANnel[:EXECute]

This command restores the default instrument settings in the current channel.

Use INST: SEL to select the channel.

For details see Chapter 8.1, "Restoring the Default Instrument Configuration (Preset)", on page 552.

Example: INST:SEL 'Spectrum2'

Selects the channel for "Spectrum2".

SYST: PRES: CHAN: EXEC

Restores the factory default settings to the "Spectrum2" channel.

Usage: Event

Manual operation: See "Preset Channel" on page 320

11.9.4 Storing or Printing Screenshots

Useful commands to configure screenshots described elsewhere

• MMEMory:NAME on page 1068

Remote commands exclusive to configure screenshots

HCOPy:ABORt	1079
HCOPy:CONTent	1079
HCOPy:CMAP <item>:DEFault<colors></colors></item>	1080
HCOPy:CMAP <item>:HSL</item>	1081
HCOPy:CMAP <item>:PDEFined</item>	1081
HCOPy:DESTination <device></device>	1082
HCOPy:DEVice:COLor	1082
HCOPy:DEVice:LANGuage <device></device>	1083
HCOPy[:IMMediate <device>]</device>	1083
HCOPy[:IMMediate <device>]:NEXT</device>	1083
HCOPy:ITEM:WINDow:TEXT	1084
HCOPy:PAGE:COUN:STATe	1084
HCOPy:PAGE:MARGin <device>:BOTTom</device>	1084
HCOPy:PAGE:MARGin <device>:LEFT</device>	
HCOPy:PAGE:MARGin <device>:RIGHt</device>	
HCOPy:PAGE:MARGin <device>:TOP</device>	
HCOPy:PAGE:MARGin <device>:UNIT</device>	1085
HCOPy:PAGE:ORIentation <device></device>	
HCOPy:PAGE:WINDow <device>:CHANnel:STATe</device>	1086

Managing Settings and Results

HCOPy:PAGE:WINDow <device>:COUN</device>	1087
HCOPy:PAGE:WINDow <device>:SCAL</device>	1087
HCOPy:PAGE:WINDow <device>:STATe</device>	1088
HCOPy:TDSTamp:STATe <device></device>	1089
SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?	1089
SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?	1089
SYSTem:COMMunicate:PRINter:SELect <device></device>	1090

DISPlay:LOGO <State>

Activates/deactivates the printout of the Rohde & Schwarz company logo at the top of each page.

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON

Logo is printed.

0 | OFF

Logo is not printed.

*RST: 1

Example: DISP:LOGO OFF

Manual operation: See "Print Logo" on page 576

HCOPy:ABORt

This command aborts a running hardcopy output.

Example: HCOP:ABOR

Usage: Event

SCPI confirmed

HCOPy:CONTent <ContType>

This command determines the type of content included in the printout. This setting is independent of the printing device.

Managing Settings and Results

Parameters:

<ContType> WINDows | HCOPy

WINDows

Includes only the selected windows in the printout. All currently active windows for the current measurement channel (or "Multi-View") are available for selection. How many windows are printed on a each page of the printout is defined by ${\tt HCOPy:PAGE:}$

WINDow<device>: COUN on page 1087.

This option is not available when copying to the clipboard (HCOP:DEST 'SYST:COMM:CLIP' or an image file (see HCOPy:DEVice:LANGuage<device> on page 1083). If the destination is currently set to an image file or the clipboard, it is automatically changed to be a PDF file for the currently selected printing device.

HCOPy

Selects all measurement results displayed on the screen for the current measurement channel (or "MultiView"): diagrams, traces, markers, marker lists, limit lines, etc., including the channel and status bars, for printout on a single page. Displayed items belonging to the software user interface (e.g. softkeys) are not included. The size and position of the elements in the printout is identical to the screen display.

*RST: HCOPy

Example: HCOP:DEST1 'SYST:COMM:CLIP'

HCOP:CONT WIND
HCOP:DEST1?
//Result: 'MMEM'
HCOP:DEV:LANG1?
//Result: 'PDF'

"Print to clipboard" is automatically switched to "print to PDF file"

when the contents are switched to "multiple windows".

Usage: SCPI confirmed

Manual operation: See "Print Screenshot" on page 575

See "Print Multiple Windows" on page 576

HCOPy:CMAP<item>:DEFault<colors>

This command defines the color scheme for print jobs.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Managing Settings and Results

<colors> 1...4

1

Current colors with a white background and a black grid.

2

Optimized colors.

3

Customized colors.

4

Current screen colors (setting for hardcopies).

Example: HCOP:CMAP:DEF2

Selects the optimized color set for the color settings of a printout

or a hardcopy.

Usage: Event

Manual operation: See "Print colors" on page 624

HCOPy:CMAP<item>:HSL <Color>

This command selects the color for various screen elements in print jobs.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Parameters:

<Color> hue

tint
sat
saturation
lum
brightness

The value range is 0 to 1 for all parameters.

Example: HCOP:CMAP2:HSL 0.3,0.8,1.0

Changes the grid color

Manual operation: See "Defining User-specific Colors" on page 625

HCOPy:CMAP<item>:PDEFined <Color>

This command selects a predefined color for various screen elements in print jobs.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Managing Settings and Results

Parameters:

<Color> BLACk | BLUE | BROWn | GREen | CYAN | RED | MAGenta |

YELLow | WHITe | DGRAy | LGRAy | LBLUe | LGREen |

LCYan | LRED | LMAGenta

Example: HCOP:CMAP2:PDEF GRE

Manual operation: See "Predefined Colors" on page 625

HCOPy:DESTination<device> < Destination>

This command selects the destination of a print job.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Destination> 'MMEM'

Sends the hardcopy to a file.

You can select the file name with MMEMory: NAME.
You can select the file format with HCOPy: DEVice:

LANGuage<device>.

'SYST:COMM:PRIN'

Sends the hardcopy to a printer.

You can select the printer with SYSTem: COMMunicate:

PRINter:SELect<device>.

'SYST:COMM:CLIP'

Sends the hardcopy to the clipboard.

The format should be WEMF.

*RST: 'SYST:COMM:CLIP'

Usage: SCPI confirmed

Manual operation: See "Destination" on page 581

HCOPy:DEVice:COLor <State>

This command turns color printing on and off.

Parameters:

<State> ON

Color printing

OFF

Black and white printing

*RST: ON

Example: HCOP:DEV:COL ON

Usage: SCPI confirmed

Managing Settings and Results

HCOPy:DEVice:LANGuage<device> <Format>

This command selects the file format for a print job.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Format> GDI

Graphics Device Interface

Default format for output to a printer configured under Windows.

Must be selected for output to the printer interface.

Can be used for output to a file. The printer driver configured under Windows is used to generate a printer-specific file format.

BMP | JPG | PNG | PDF | SVG Data format for output to files

Example: HCOP:DEV:LANG1 PNG

Usage: SCPI confirmed

Manual operation: See "Destination" on page 581

HCOPy[:IMMediate<device>]

This command initiates a print job.

If you are printing to a file, the file name depends on MMEMory: NAME.

Suffix:

<device> 1 | 2

Printing device.

Usage: Event

SCPI confirmed

Manual operation: See "Print" on page 579

HCOPy[:IMMediate<device>]:NEXT

This command initiates a print job.

If you are printing to a file, the file name depends on MMEMory: NAME. This command adds a consecutive number to the file name.

Suffix:

<device> 1 | 2

Printing device.

Usage: Event

Manual operation: See "Print" on page 579

Managing Settings and Results

HCOPy:ITEM:WINDow:TEXT < Comment>

This command defines a comment to be added to the printout.

Parameters:

<Comment> String containing the comment.

Usage: SCPI confirmed

Manual operation: See "Comment" on page 576

HCOPy:PAGE:COUN:STATe <State>

This command includes or excludes the page number for printouts consisting of multiple pages (HCOP:CONT WIND).

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON

The page number is printed.

0 | OFF

The page number is not printed.

*RST: 1

Example: HCOP:PAGE:COUN:STAT ON

Manual operation: See "Print Page Count" on page 576

HCOPy:PAGE:MARGin<device>:BOTTom <Margin>

This command defines the margin at the bottom of the printout page on which no elements are printed. The margins are defined according to HCOPy: PAGE:

MARGin<device>:UNIT on page 1085.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Margin> numeric value

*RST: 4.23 mm

Example: HCOP:PAGE:MARG2:BOTT 2

Manual operation: See "Margins" on page 583

HCOPy:PAGE:MARGin<device>:LEFT <Margin>

This command defines the margin at the left side of the printout page on which no elements are printed. The margins are defined according to ${\tt HCOPy:PAGE:}$

MARGin<device>:UNIT on page 1085.

Managing Settings and Results

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Margin> numeric value

*RST: 4.23 mm

Example: HCOP:PAGE:MARG2:LEFT 2

Manual operation: See "Margins" on page 583

HCOPy:PAGE:MARGin<device>:RIGHt < Margin>

This command defines the margin at the right side of the printout page on which no elements are printed. The margins are defined according to HCOPY: PAGE:

MARGin<device>:UNIT on page 1085.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Margin> numeric value

*RST: 4.23 mm

Example: HCOP:PAGE:MARG2:RIGH 2

Manual operation: See "Margins" on page 583

HCOPy:PAGE:MARGin<device>:TOP <Margin>

This command defines the margin at the top of the printout page on which no elements are printed. The margins are defined according to HCOPy:PAGE:MARGin<device>:
UNIT on page 1085.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Margin> numeric value

*RST: 4.23 mm

Example: HCOP:PAGE:MARG2:TOP 2

Manual operation: See "Margins" on page 583

HCOPy:PAGE:MARGin<device>:UNIT <Unit>

This command defines the unit in which the margins for the printout page are configured.

Managing Settings and Results

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Unit> MM | IN

MM

millimeters

IN inches

*RST: MM

Example: HCOP: PAGE: MARG2: BOTT 2

Manual operation: See "Margins" on page 583

HCOPy:PAGE:ORlentation<device> <Orientation>

The command selects the page orientation of the printout.

The command is only available if the output device is a printer or a PDF file.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<Orientation> LANDscape | PORTrait

*RST: PORTrait

Example: HCOP:DEV:LANG1 PDF

HCOP:PAGE:ORI2 LAND

Usage: SCPI confirmed

Manual operation: See "Orientation" on page 583

HCOPy:PAGE:WINDow<device>:CHANnel:STATe <ChannelName>, <State>

This command selects all windows of the specified channel to be included in the printout for HCOP:CONT WIND.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<ChannelName> String containing the name of the channel.

For a list of available channel types use INSTrument:LIST?

on page 718.

Managing Settings and Results

<State> 1 | 0 | ON | OFF

1 | ON

The channel windows are included in the printout.

0 | OFF

The channel windows are not included in the printout.

*RST: 1

Example: HCOP:CONT WIND

HCOP:PAGE:WIND2:CHAN 'IQ Analyzer', 0
HCOP:PAGE:WIND2:STAT 'IQ Analyzer', '1', 1
Prints only window 1 in the IQ Analyzer channel.

Manual operation: See "Print Multiple Windows" on page 576

HCOPy:PAGE:WINDow<device>:COUN <WinPerPage>

This command defines how many windows are displayed on a single page of the printout for HCOP:CONT WIND.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<WinPerPage> integer

*RST: 1

Example: HCOP:PAGE:WIND2:COUN 2

Manual operation: See "Windows per Page" on page 583

HCOPy:PAGE:WINDow<device>:SCAL <Mode>

This command determines the scaling of the windows in the printout for HCOP:CONT WIND.

Suffix:

<device> 1 | 2

Printing device.

Managing Settings and Results

Parameters:

<Mode> 1 | 0 | ON | OFF

1 | ON

Each window is scaled to fit the page size optimally, not regarding the aspect ratio of the original display. If more than one win-

dow is printed on one page (see HCOPy:PAGE:

WINDow<device>: COUN on page 1087), each window is prin-

ted in equal size. ("Size to fit")

0 | OFF

Each window is printed as large as possible while maintaining

the aspect ratio of the original display.

("Maintain aspect ratio")

*RST: 1

Example: HCOP:PAGE:WIND2:SCAL 0

Manual operation: See "Scaling" on page 583

HCOPy:PAGE:WINDow<device>:STATe <ChannelName>, <WindowName>,<State>

This command selects the windows to be included in the printout for HCOP:CONT WIND.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<ChannelName> String containing the name of the channel.

For a list of available channel types use INSTrument:LIST?

on page 718.

<WindowName> String containing the name of the existing window.

By default, the name of a window is the same as its index. To determine the name and index of all active windows in the active measurement channel, use the LAYout:CATalog[:WINDow]?

query.

<State> 1 | 0 | ON | OFF

1 | ON

The window is included in the printout.

0 | OFF

The window is not included in the printout.

*RST: 1

Example: HCOP:PAGE:WIND2:STAT 'IQ Analyzer','1',1

Manual operation: See "Print Multiple Windows" on page 576

Managing Settings and Results

HCOPy:TDSTamp:STATe<device> <State>

This command includes or excludes the time and date in the printout.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<State> 1 | 0 | ON | OFF

1 | ON

The time and date are printed.

0 | OFF

The time and date are not printed.

*RST: 1

Manual operation: See "Print Date and Time" on page 577

SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?

This command gueries the name of the first available printer.

To query the name of other installed printers, use SYSTem:COMMunicate:PRINter: ENUMerate[:NEXT]?.

Return values:

<PrinterName> String containing the name of the first printer as defined in Win-

dows.

If the command cannot find a printer, it returns an empty string

(' ').

Usage: Query only

Manual operation: See "Printer Name" on page 581

SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?

This command queries the name of available printers.

You have to use SYSTem: COMMunicate: PRINter: ENUMerate: FIRSt? for this command to work properly.

Return values:

<PrinterName> String containing the name of one printer as defined in Windows.

To get a complete list of printers you have to send this query several times until no more printers could be found. In that case, the return value is an empty string (' '). Further queries after the

empty string result in an error.

Usage: Query only

Manual operation: See "Printer Name" on page 581

Managing Settings and Results

SYSTem:COMMunicate:PRINter:SELect<device> < PrinterName>

This command selects the printer that processes jobs sent by the R&S FSW.

Use HCOPy:DESTination<device> to select another output destination.

Suffix:

<device> 1 | 2

Printing device.

Parameters:

<PrinterName> String containing the printer name.

Use

• SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt? and • SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?

to query all available printers.

*RST: NONE

Manual operation: See "Printer Name" on page 581

11.9.5 Storing Measurement Results

The following commands can be used to store the results of a measurement.

Useful commands for storing results described elsewhere:

FORMat[:DATA] on page 980

Remote commands exclusive to storing results:

FORMat:DEXPort:HEADer	1090
FORMat:DEXPort:TRACes	1091
MMEMory:STORe <n>:LIST</n>	1091
MMEMory:STORe <n>:PEAK</n>	1092
MMEMory:STORe <n>:SGRam</n>	1092
MMEMory:STORe <n>:SPECtrogram</n>	1092
MMEMory:STORe <n>:SPURious</n>	1093
MMEMory:STORe <n>:TRACe</n>	1093

FORMat:DEXPort:HEADer <State>

If enabled, additional instrument and measurement settings are included in the header of the export file for result data. If disabled, only the pure result data from the selected traces and tables is exported.

See Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570 for details.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Usage: SCPI confirmed

Manual operation: See "Include Instrument Measurement Settings" on page 485

Managing Settings and Results

FORMat:DEXPort:TRACes <Selection>

This command selects the data to be included in a data export file (see MMEMory: STORe<n>: TRACe on page 1093).

For details on exporting data see Chapter 7.3.2.3, "Trace / Data Export Configuration", on page 484.

Parameters:

<Selection> SINGle

Only a single trace is selected for export, namely the one speci-

fied by the MMEMory: STORe<n>: TRACe command.

ALL

Selects all active traces and result tables (e.g. Result Summary, marker peak list etc.) in the current application for export to an

ASCII file.

The <trace> parameter for the MMEMory:STORe<n>:TRACe

command is ignored.
*RST: SINGle

Usage: SCPI confirmed

Manual operation: See "Export all Traces and all Table Results" on page 485

MMEMory:STORe<n>:LIST <FileName>

This command exports the SEM and spurious emission list evaluation to a file.

The file format is *.dat.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> Window

Parameters:

<FileName> String containing the path and name of the target file.

Example: MMEM:STOR:LIST 'test'

Stores the current list evaluation results in the test.dat file.

Manual operation: See "Saving the Result Summary (Evaluation List) to a File"

on page 232

See "Saving the Evaluation List" on page 255

Managing Settings and Results

MMEMory:STORe<n>:PEAK <FileName>

This command exports the marker peak list to a file.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> Window

Parameters:

<FileName> String containing the path,name and extension of the target file.

Example: MMEM:STOR:PEAK 'test.dat'

Saves the current marker peak list in the file test.dat.

Usage: Event

Manual operation: See "Exporting the Peak List" on page 532

MMEMory:STORe<n>:SGRam <FileName>
MMEMory:STORe<n>:SPECtrogram <FileName>

This command exports spectrogram data to an ASCII file.

The file contains the data for every frame in the history buffer. The data corresponding to a particular frame begins with information about the frame number and the time that frame was recorded.

Note that, depending on the size of the history buffer, the process of exporting the data can take a while.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> Window

Parameters:

<FileName> String containing the path and name of the target file.

Managing Settings and Results

Example: MMEM:STOR:SGR 'Spectrogram'

Copies the spectrogram data to a file.

Manual operation: See "Export Trace to ASCII File" on page 486

MMEMory:STORe<n>:SPURious <FileName>

This command exports the marker peak list available for spurious emission measurements to a file.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> irrelevant

Parameters:

<FileName> String containing the path and name of the target file.

Example: MMEM:STOR:SPUR 'test'

Saves the current marker peak list in the file test.dat.

Usage: Event

MMEMory:STORe<n>:TRACe <Trace>, <FileName>

This command exports trace data from the specified window to an ASCII file.

For details on the file format see Chapter 8.4.4, "Reference: ASCII File Export Format", on page 570.

Secure User Mode

In secure user mode, settings that are stored on the instrument are stored to volatile memory, which is restricted to 256 MB. Thus, a "Memory full" error can occur although the hard disk indicates that storage space is still available.

To store data permanently, select an external storage location such as a USB memory device.

For details, see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Suffix:

<n> Window

Managing Settings and Results

Parameters:

<Trace> Number of the trace to be stored

(This parameter is ignored if the option "Export all Traces and all Table Results" is activated in the Export configuration settings,

see FORMat: DEXPort: TRACes on page 1091).

<FileName> String containing the path and name of the target file.

Example: MMEM:STOR1:TRAC 3,'C:\TEST.ASC'

Stores trace 3 from window 1 in the file TEST. ASC.

Usage: SCPI confirmed

Manual operation: See "Export Trace to ASCII File" on page 486

11.9.6 Examples: Managing Data

•	Storing Data	1094
	Loading Data	
	Storing Instrument Settings	
	Loading Instrument Settings	
	Storing Multiple Graphical Measurement Results to a PDF File	

11.9.6.1 Storing Data

```
MMEM:MSIS 'C:'
//Selects drive C: as the default storage device.
//----Connecting a network drive-----
MMEM:NETW:USED?
//Returns a list of all drives in use in the network.
MMEM:NETW:UNUS?
//Returns a list of free drive names in the network.
MMEM:NETW:MAP 'Q:','Server\ACLRTest'
//Maps drive Q: to the directory 'Server\ACLRTest'
//----Saving data on the instrument----
MMEM:MDIR 'C:\R S\INSTR\USER\Results'
//Creates a directory called 'Results' on drive C:
MMEM:NAME 'C:\R S\INSTR\USER\Results\Test001.txt'
//Defines a file called 'Test001.txt'
MMEM:COMM 'ACLR test results'
//Creates a comment for the settings to be displayed in gui.
MMEM:DATA 'Test001.txt',#212FileContents
//Creates the file 'Test001.txt'and writes 12 characters to it
//----Copying the data to another location---
MMEM:COPY 'C:\R S\INSTR\USER\Results\Test001.txt','Q:'
//Copies the specified file to network drive Q:.
MMEM:DEL 'C:\R_S\INSTR\USER\Results\Test001.txt'
```

Managing Settings and Results

```
//Deletes the specified file from the instrument hard disk.
//or
//MMEM:MOVE 'C:\R_S\INSTR\USER\Results\Test001.xml','Q:\TestResults.txt'//
//Moves the file 'Test001.txt' to drive Q:, renames it to 'Testresults.txt'
//and removes it from the instrument hard disk.
MMEM:RDIR 'C:\R_S\INSTR\USER\Results'
//Deletes the directory called 'Results' from drive C:, unless it still contains any content.
//-----Disconnecting the network drive---
MMEM:NETW:DISC 'Q:'
//Disconnect drive Q:.
```

11.9.6.2 Loading Data

```
MMEM:CDIR?
//Returns the path of the current directory.
//e.g.
C:\R_S\Instr\user\
MMEM:CDIR 'C:\R_S\INSTR\USER\Results'
//Changes the current directory.
MMEM:CAT? 'C:\R_S\INSTR\USER\Results\*.xml'
//or
MMEM:CAT? '*.xml'
//Returns a list of all xml files in the directory 'C:\R_S\INSTR\USER\Results'.
MMEM:CAT:LONG? '*.xml'
//Returns additional information about the xml files in the directory 'C:\R S\INSTR\USER\Resu
```

11.9.6.3 Storing Instrument Settings

In this example we will store the instrument settings for the "Spectrum" channel.

```
INST:SEL 'SPECTRUM'
//Selects measurement channel 'SPECTRUM'.
MEMM:STOR:TYPE CHAN
//Specifies that channel-specific data is to be stored.
MMEM:STOR:STAT 1, 'C:\R_S\Instr\user\Spectrum'
//Stores the channel settings from the 'Spectrum' channel
// to the file 'Spectrum.dfl'.
```

11.9.6.4 Loading Instrument Settings

In this example we will load the hardware settings from the configuration file Spectrum.dfl to a new "Spectrum2" channel.

```
MEMM:LOAD:TYPE NEW

//Specifies that settings will be loaded to a new channel besides the existing

//'Spectrum' channel.

MMEM:SEL:CHAN:HWS ON

//Selects only hardware settings to be loaded.
```

Managing Settings and Results

```
MMEM:LOAD:STAT 1, 'C:\R S\Instr\user\Spectrum'
//Loads the channel-specific settings from the file 'C:\R S\Instr\user\Spectrum.dfl'
//to a new channel. The new channel is named 'Spectrum2' to avoid a naming conflict
//with the existing 'Spectrum' channel.
INST:REN 'Spectrum2','Spectrum3'
//Renames the loaded channel to 'Spectrum3'.
```

11.9.6.5 Storing Multiple Graphical Measurement Results to a PDF File

This example demonstrates how to store graphical results from measurements in the Spectrum application and the I/Q Analyzer to a single PDF file. It assumes the Spectrum and I/Q Analyzer measurements have already been configured and performed,

```
with the following screen layout:
'Spectrum': 1 Frequency Sweep
'Spectrum': 2 Spectrogram
'IQ Analyzer': 1 Magnitude
'IQ Analyzer': 2 Spectrum
//Switch to MultiView tab
DISP:ATAB ON
//Select windows to be stored to file
HCOP: CONT WIND
HCOP: PAGE: WIND: STAT 'Spectrum', '1', ON
HCOP:PAGE:WIND:STAT 'Spectrum','2',ON
HCOP:PAGE:WIND:STAT 'IQ Analyzer','1',ON
HCOP:PAGE:WIND:STAT 'IQ Analyzer','2',ON
//Define contents to be printed on each page (logo, timestamp, page count)
DISP:LOGO ON
HCOP:TDST:STAT ON
HCOP:PAGE:COUN:STAT ON
//Define comment to be printed on each page
HCOP:ITEM:WIND:TEXT 'Measurement Test Report'
//Configure page layout (landscape, 1 display per page, margins 2cm on each side)
HCOP:PAGE:ORI1 LAND
HCOP:PAGE:WIND1:COUN 1
HCOP: PAGE: WIND1: SCAL 1
HCOP:PAGE:MARG1:BOTT 20
HCOP:PAGE:MARG1:LEFT 20
HCOP:PAGE:MARG1:RIGH 20
HCOP:PAGE:MARG1:TOP 20
//Configure the use of optimized colors for printout
HCOP:CMAP:DEF2
//Set destination of printout to file for printing device 1
```

Configuring the R&S FSW

```
HCOP:DEST1 'MMEM'

//Define file name of printout

MMEM:NAME 'C:\R_S\instr\user\MeasurementTestReport.pdf'

//Set format of printout to PDF.

HCOP:DEV:LANG1 PDF

//Store pdf of printout to file

HCOP:IMM
```

11.10 Configuring the R&S FSW

The remote commands required to set up the R&S FSW are described here.

•	Configuring the Reference Frequency	1097
	Calibration and Checks	
•	Working with Transducers	1104
	Customizing the Screen Layout	
	Configuring the Network and Remote Control	
	Checking the System Configuration	
	Using Service Functions.	

11.10.1 Configuring the Reference Frequency

[SENSe:]ROSCillator:LBWidth	1097
[SENSe:]ROSCillator:O100	1098
[SENSe:]ROSCillator:O640	
SOURce:EXTernal:ROSCillator:EXTernal:FREQuency	
[SENSe:]ROSCillator:OSYNc	1098
[SENSe:]ROSCillator:SOURce	1099
[SENSe:]ROSCillator:SOURce:EAUTo?	
[SENSe:]ROSCillator:TRANge	

[SENSe:]ROSCillator:LBWidth <Bandwidth>

Defines the loop bandwidth, that is, the speed of internal synchronization with the reference frequency. The setting requires a compromise between performance and increasing phase noise.

For a variable external reference frequency with a narrow tuning range (+/- 0.5 ppm), the loop bandwidth is fixed to 0.1 Hz and cannot be changed.

Parameters:

<Bandwidth> 0.1 Hz | 1 Hz | 3 Hz | 10 Hz | 30 Hz | 100 Hz | 300 Hz

The possible values depend on the reference source and tuning

range (see Table 9-1).

Default unit: Hz

Example: ROSC:LBW 3

Configuring the R&S FSW

Manual operation: See "Loop Bandwidth" on page 596

[SENSe:]ROSCillator:O100 <State>

If enabled, a 100 MHz reference signal is provided to the REF OUTPUT 100 MHZ connector.

Parameters:

<State> ON | OFF

*RST: OFF

Example: ROSC:0100 ON

Manual operation: See "Reference Frequency Output" on page 596

[SENSe:]ROSCillator:O640 <State>

If enabled, a 640 MHz reference signal is provided to the REF OUTPUT 640 MHZ connector.

Parameters:

<State> ON | OFF

*RST: OFF

Example: ROSC:0640 ON

Manual operation: See "Reference Frequency Output" on page 596

SOURce: EXTernal: ROSCillator: EXTernal: FREQuency < Frequency >

This command defines the frequency of the external reference oscillator.

If the external reference oscillator is selected, the reference signal must be connected to the rear panel of the instrument.

Parameters:

<Frequency> Range: 1 MHz to 20 MHz

Example: ROSC:EXT:FREQ 13MHZ

Sets the frequency to 13 MHz.

SOUR: EXT: ROSC: EXT: FREQ 13MHZ

Manual operation: See "Reference Frequency Input" on page 594

[SENSe:]ROSCillator:OSYNc <State>

If enabled, a 100 MHz reference signal is provided to the SYNC TRIGGER OUTPUT connector.

Parameters:

<State> ON | OFF

*RST: OFF

Configuring the R&S FSW

Example: ROSC:OSYN ON

Manual operation: See "Reference Frequency Output" on page 596

[SENSe:]ROSCillator:SOURce <Source>

This command selects the reference oscillator.

If you want to select the external reference, it must be connected to the R&S FSW.

Parameters:

<Source> INTernal

the internal reference is used (10 MHz)

EXTernal

the external reference from REF INPUT 1..20 MHZ connector is used with a variable frequency; if none is available, an error flag is displayed in the status bar

E10

the external reference from REF INPUT 1..20 MHZ connector is used with a fixed 10 MHZ frequency; if none is available, an error flag is displayed in the status bar

E100

the external reference from REF INPUT 100 MHZ connector is used; if none is available, an error flag is displayed in the status bar

EAUTo

the external reference is used as long as it is available, then the instrument switches to the internal reference

SYNC

the external reference is used; if none is available, an error flag is displayed in the status bar

Example: ROSC:SOUR EXT

Usage: SCPI confirmed

Manual operation: See "Reference Frequency Input" on page 594

See "Behavior in case of missing external reference"

on page 595

[SENSe:]ROSCillator:SOURce:EAUTo?

This command queries the current reference type in case you have activated an automatic switch to the internal reference if the external reference is missing.

Parameters:

<Reference> INT

internal reference

EXT

external reference

Configuring the R&S FSW

Example: SENS:ROSC:SOUR:EAUT?

Queries the currently available reference type.

Usage: Query only

Manual operation: See "Behavior in case of missing external reference"

on page 595

[SENSe:]ROSCillator:TRANge <Range>

Defines the tuning range. The tuning range is only available for the variable external reference frequency. It determines how far the frequency may deviate from the defined level in parts per million (10⁻⁶).

Parameters:

<Range> The possible values depend on the reference source (see

Table 9-1).

SMALI

With this smaller deviation (+/- 0.5 ppm) a very narrow fixed loop bandwidth of 0.1 Hz is realized. With this setting the instrument can synchronize to an external reference signal with a very precise frequency. Due to the very narrow loop bandwidth, unwanted noise or spurious components on the external reference input signal are strongly attenuated. Furthermore, the loop requires about 30 seconds to reach a locked state. During this locking process, "NO REF" is displayed in the status bar.

WIDE

The larger deviation (+/- 6 ppm) allows the instrument to synchronize to less precise external reference input signals.

Example: ROSC:TRAN WIDE

Manual operation: See "Tuning Range" on page 595

11.10.2 Calibration and Checks

The following commands control calibration and checks on the R&S FSW.

CALibration[:ALL]?	1101
CALibration:RESult?	1101
DIAGnostic:SERVice:INPut:MC:CFRequency	1102
DIAGnostic:SERVice:INPut:MC:DISTance	1102
DIAGnostic:SERVice:INPut:PULSed:CFRequency	1102
DIAGnostic:SERVice:INPut:RF:SPECtrum	1102
DIAGnostic:SERVice:INPut:AIQ[:TYPE]	1103
DIAGnostic:SERVice:INPut[:SELect]	1103
DIAGnostic:SERVice:STESt:RESult?	1104
SOURce:TEMPerature:FRONtend?	1104

Configuring the R&S FSW

CALibration[:ALL]?

This command initiates a calibration (self-alignment) routine and queries if calibration was successful.

During the acquisition of correction data the instrument does not accept any remote control commands.

Note: If you start a self-alignment remotely, then select the "Local" softkey while the alignment is still running, the instrument only returns to the manual operation state after the alignment is completed.

In order to recognize when the acquisition of correction data is completed, the MAV bit in the status byte can be used. If the associated bit is set in the Service Request Enable (SRE) register, the instrument generates a service request after the acquisition of correction data has been completed.

Return values:

<CalibrationState>

The command returns a '0' if calibration was successful.

Example: *CLS

Resets the status management.

*SRE 16

Enables MAV bit in the Service Request Enable register.

*CAL?

Starts the correction data recording, and then a service request

is generated.

Usage: Query only

SCPI confirmed

Manual operation: See "Starting a Self-alignment" on page 602

CALibration:RESult?

This command returns the results collected during calibration.

Return values:

<CalibrationData> String containing the calibration data.

Example: CAL:RES?

would return, e.g.

Total Calibration Status:

PASSED, Date (dd/mm/yyyy): 12/07/2004,

Time: 16:24:54, Runtime: 00.06

Usage: Query only

Manual operation: See "Alignment Results" on page 603

Configuring the R&S FSW

DIAGnostic:SERVice:INPut:MC:CFRequency < Frequency >

This command defines the frequency of the calibration signal for R&S FSW models 43 MHz and higher.

This command only takes effect if a microwave calibration signal is selected for input (DIAGnostic:SERVice:INPut[:SELect] on page 1103)

Parameters:

<Frequency> *RST: 8.004 GHz

Default unit: Hz

Manual operation: See "Calibration Frequency MW" on page 613

DIAGnostic:SERVice:INPut:MC:DISTance < Bandwidth>

This command selects the distance of the peaks of the microwave calibration signal for calibration of the YIG filter.

This command is only available for instrument models R&S FSW13/26.

Parameters:

<Bandwidth> SMALI

Small offset of combline frequencies.

WIDE

Wide offset of combline frequencies.

Manual operation: See "Calibration Frequency MW" on page 613

DIAGnostic:SERVice:INPut:PULSed:CFRequency < Frequency >

This command defines the frequency of the calibration signal.

Before you can use the command, you have to feed in a calibration signal with DIAGnostic:SERVice:INPut[:SELect].

Parameters:

<Frequency> Possible frequencies of the calibration signal are fix.

If you define a frequency that is not available, the R&S FSW uses the next available frequency. Example: a frequency of 20 MHz is rounded up to the next available frequency

(21.33 MHz).

*RST: 64 MHz Default unit: Hz

Manual operation: See "Calibration Frequency RF" on page 612

DIAGnostic:SERVice:INPut:RF:SPECtrum <Bandwidth>

This command selects the bandwidth of the calibration signal.

Configuring the R&S FSW

Parameters:

<Bandwidth> NARRowband

Narrowband signal for power calibration of the frontend.

BROadband

Broadband signal for calibration of the IF filter.

Manual operation: See "Spectrum" on page 613

DIAGnostic:SERVice:INPut:AIQ[:TYPE] <SignalType>

This command defines the type of calibration signal to be used for Analog Baseband. This command is only available if the R&S FSW-B71 option is installed.

Parameters:

<SignalType> AC

1.5625 MHz square wave AC signal

DC

DC signal
DCZ
no signal

*RST: AC

Example: DIAG:SERV:INP:AIQ:TYPE DCZ

Manual operation: See "Calibration Signal Type" on page 613

DIAGnostic:SERVice:INPut[:SELect] <Signal>

This command activates or deactivates the use of an internal calibration signal as input for the R&S FSW.

Parameters:

<Signal> CALibration

Uses the calibration signal as RF input.

MCALibration

Uses the calibration signal for the microwave range as RF input.

RF

Uses the signal from the RF input.

AIQ

Uses the Analog Baseband calibration signal as input to the optional Analog Baseband interface. This signal is only available

if the R&S FSW-B71 option is installed.

*RST: RF

Example: DIAG:SERV:INP CAL

Uses the calibration signal as RF input.

Configuring the R&S FSW

Manual operation: See "None" on page 612

See "Calibration Frequency RF" on page 612
See "Calibration Frequency MW" on page 613
See "Calibration Analog Baseband" on page 613

DIAGnostic:SERVice:STESt:RESult?

This command queries the self-test results.

Return values:

<Results> String of data containing the results.

The rows of the self-test result table are separated by commas.

Example: DIAG:SERV:STES:RES?

would return, e.g.

"Total Selftest Status:

PASSED", "Date (dd/mm/yyyy): 09/07/2004 TIME:

16:24:54", "Runtime: 00:06", "...

Usage: Query only

SOURce:TEMPerature:FRONtend?

This command queries the current frontend temperature of the R&S FSW.

During self-alignment, the instrument's (frontend) temperature is also measured (as soon as the instrument has warmed up completely). This temperature is used as a reference for a continuous temperature check during operation. If the current temperature deviates from the stored self-alignment temperature by a certain degree, a warning is displayed in the status bar indicating the resulting deviation in the measured power levels. A status bit in the STATUS:QUEStionable:TEMPerature register indicates a possible deviation.

Return values:

<Temperature > Temperature in degrees Celsius.

Example: SOUR: TEMP: FRON?

Queries the temperature of the frontend sensor.

Usage: Query only

11.10.3 Working with Transducers

The following commands configure and control transducer factors.

Useful commands for transducer managament described elsewhere

MMEMory:SELect[:ITEM]:TRANsducer:ALL on page 1072

Configuring the R&S FSW

Remote commands exclusive to transducer management

[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe]	1105
[SENSe:]CORRection:TRANsducer:CAT?	1105
[SENSe:]CORRection:TRANsducer:COMMent	1106
[SENSe:]CORRection:TRANsducer:DATA	1106
[SENSe:]CORRection:TRANsducer:DELete	1106
[SENSe:]CORRection:TRANsducer:SCALing	1107
[SENSe:]CORRection:TRANsducer:SELect	1107
[SENSe:]CORRection:TRANsducer[:STATe]	1107
[SENSe:]CORRection:TRANsducer:UNIT	1107

[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe] <State>

This command turns an automatic adjustment of the reference level to the transducer on and off.

Before you can use the command, you have to select and turn on a transducer.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Adjusting the Reference Level" on page 599

[SENSe:]CORRection:TRANsducer:CAT?

This command queries all transducer factors stored on the R&S FSW.

After general data for the transducer storage directory, data for the individual files is listed.

The result is a comma-separated list of values with the following syntax:

<UsedMem>,<FreeMem>,<FileSize>,<FileName>[,<FileSize>,<FileName>]

For details see Chapter 9.2, "Basics on Transducer Factors", on page 591.

Return values:

<UsedMem> numeric value in bytes

Amount of storage space required by all transducers files in the C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\

trd directory (= sum of all individual <FileSize> values)

<FreeMem> numeric value in bytes

Amount of free storage space on the R&S FSW

<FileSize> numeric value in bytes

Size of a single transducer file

<FileName> string

Name of a single transducer file

Configuring the R&S FSW

Example: SENSE: CORR: TRAN: CAT?

//Result: 2743,2312620544,720,'FactorGSM.TDF',2023,'FactorBTS.TDF'

Usage: Query only

[SENSe:]CORRection:TRANsducer:COMMent < Comment>

This command defines the comment for the selected transducer factor.

Before you can use the command, you have to select and turn on a transducer.

Parameters:

<Comment> *RST: (empty comment)
Manual operation: See "Comment" on page 600

[SENSe:]CORRection:TRANsducer:DATA

<Frequency>,<Level>[,<Frequency>,<Level>]

This command configures transducer factors for specific trace points. A set of transducer factors defines an interpolated transducer line and can be stored on the instrument.

For details see Chapter 9.2, "Basics on Transducer Factors", on page 591.

Parameters:

<Frequency> The unit for <Frequency> is Hz, which may or may not be omit-

ted. Frequencies have to be sorted in ascending order.

<Level> The unit for <Level> depends on [SENSe:] CORRection:

TRANsducer: UNIT.

Example: SENSel:CORRection:TRANsducer:UNIT 'DB'

// Frequency Span 0 Hz to 4 Ghz

SENSel:CORRection:TRANsducer:DATA 0,8,2e6,5,4GHz,3

Creates the transducer points:

Manual operation: See "Data points" on page 601

Frequency	Level
0 Hz	8 dB
2 GHz	5 dB
4 GHz	3 dB

[SENSe:]CORRection:TRANsducer:DELete

This command deletes the currently selected transducer factor.

Before you can use the command, you have to select a transducer.

Example: CORR:TRAN:DEL

Configuring the R&S FSW

Usage: Event

Manual operation: See "Delete Line" on page 599

[SENSe:]CORRection:TRANsducer:SCALing <ScalingType>

This command selects the frequency scaling of the transducer factor.

Parameters:

<ScalingType> LINear | LOGarithmic

*RST: LINear

Manual operation: See "X-Axis Scaling" on page 601

[SENSe:]CORRection:TRANsducer:SELect <Name>

This command selects a transducer factor.

Parameters:

<Name> String containing the name of the transducer factor.

If the name does not exist yet, the R&S FSW creates a trans-

ducer factor by that name.

Example: CORR:TRAN:SEL 'FACTOR1'

Manual operation: See "Activating/Deactivating" on page 598

See "Create New Line" on page 599

See "Name" on page 600

[SENSe:]CORRection:TRANsducer[:STATe] <State>

This command turns the selected transducer factor on or off.

Before you can use the command, you have to select a transducer.

Parameters:

<State> ON | OFF

*RST: OFF

Manual operation: See "Activating/Deactivating" on page 598

[SENSe:]CORRection:TRANsducer:UNIT <Unit>

This command selects the unit of the transducer factor.

Before you can use the command, you have to select and turn on a transducer.

Parameters:

<Unit> string as defined in table below

*RST: DB

Example: CORR:TRAN:UNIT 'DBUV'

Manual operation: See "Unit" on page 600

Configuring the R&S FSW

String	Unit
'DB'	dB
'DBM'	dBm
'DBMV'	dBmV
'DBUV'	dΒμV
'DBUV/M'	dBμV/m
'DBUA'	dΒμΑ
'DBUA/M'	dBμA/m
'DBPW'	dBpW
'DBPT'	dBpT

11.10.4 Customizing the Screen Layout

The remote commands required to set up the display of the R&S FSW are described here.

•	General Display Settings and Items	1108
•	Colors and Themes	1111
•	CMAP Suffix Assignment	1113

11.10.4.1 General Display Settings and Items

The following commands add, remove or customize general display and screen elements.

Useful commands for general display settings described elsewhere

- DISPlay:MTABle on page 992
- DISPlay: FORMat on page 871

Remote commands exclusive to general display settings

DISPlay:ANNotation:CBAR	1108
DISPlay:ANNotation:FREQuency	1109
DISPlay:SBAR[:STATe]	1109
DISPlay:SKEYs[:STATe]	1109
DISPlay:TBAR[:STATe]	1109
DISPlay:TOUChscreen:STATe	1110
DISPlay[:WINDow]:TIME	1110
DISPlay[:WINDow]:TIME:FORMat	1110
SYSTem:DISPlay:FPANel[:STATe]	1111

DISPlay:ANNotation:CBAR <State>

This command hides or displays the channel bar information.

Configuring the R&S FSW

Parameters:

<State> ON | OFF | 0 | 1

*RST:

Example: DISP:ANN:CBAR OFF

Usage: SCPI confirmed

Manual operation: See "Channel Bar" on page 619

DISPlay:ANNotation:FREQuency <State>

This command turns the label of the x-axis on and off.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: DISP:ANN:FREQ OFF

Usage: SCPI confirmed

Manual operation: See "Diagram Footer (Annotation)" on page 619

DISPlay:SBAR[:STATe] <State>

This command turns the status bar on and off.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: DISP:SBAR:OFF

Manual operation: See "Status Bar" on page 619

DISPlay:SKEYs[:STATe] <State>

This command turns the softkey bar on and off.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Example: DISP:SKEY:OFF

Manual operation: See "Softkey Bar" on page 619

DISPlay:TBAR[:STATe] <State>

This command turns the toolbar on or off.

Configuring the R&S FSW

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP: TOOL ON

Manual operation: See "Toolbar" on page 619

DISPlay:TOUChscreen:STATe <State>

This command controls the touch screen functionality.

Parameters:

<State> ON | 1

Touch screen is active for entire screen

OFF | 0

Touch screen is inactivate for entire screen

FRAMe

Touch screen is inactivate for the diagram area of the screen,

but active for softkeys, toolbars and menus.

*RST: 1

Example: DISP:TOUC:STAT ON

Manual operation: See "Deactivating and Activating the Touchscreen" on page 617

DISPlay[:WINDow]:TIME <State>

This command adds or removes the date and time from the display.

Parameters:

<State> ON | OFF

*RST: OFF

Example: DISP:TIME ON

Manual operation: See "Date and Time" on page 619

DISPlay[:WINDow]:TIME:FORMat <Format>

This command selects the time and date format.

Parameters:

<Format> **DE**

dd.mm.yyyy hh:mm:ss

24 hour format.

US

mm/dd/yyyy hh:mm:ss

12 hour format. *RST: DE

Configuring the R&S FSW

Example: DISP:TIME ON

Switches the screen display of date and time on.

DISP:TIME:FORM US

Switches the date and time format to US.

Manual operation: See "Date and Time Format" on page 618

SYSTem:DISPlay:FPANel[:STATe] <State>

This command includes or excludes the front panel keys when working with the remote desktop.

Parameters:

<State> ON | OFF | 0 | 1

*RST: 1

Manual operation: See "Front Panel" on page 620

See "Mini Front Panel" on page 622

11.10.4.2 Colors and Themes

Useful commands to customize display colors described elsewhere

The HCOPY commands define the print colors and thus only take effect on the display colors, if the display shows the printing colors.

- HCOPy:CMAP<item>:DEFault<colors> on page 1080
- HCOPy:CMAP<item>:HSL on page 1081
- HCOPy:CMAP<item>:PDEFined on page 1081

Remote commands exclusive to customize the display colors and themes

DISPlay:CMAP <item>:DEFault<colors></colors></item>	1111
DISPlay:CMAP <item>:HSL</item>	1112
DISPlay:CMAP <item>:PDEFined</item>	1112
DISPlay:THEMe:CATalog?	1113
DISPlay:THEMe:SELect	

DISPlay:CMAP<item>:DEFault<colors>

This command resets the color scheme for the display.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Configuring the R&S FSW

<colors> 1...4

1

Current colors with a white background and a black grid.

2

Optimized colors.

3

Customized colors.

4

Current screen colors (setting for hardcopies).

Example: DISP:CMAP:DEF2

Selects default setting 2 for setting the colors.

Usage: Event

SCPI confirmed

Manual operation: See "Screen colors" on page 623

DISPlay:CMAP<item>:HSL <Color>

This command selects the color for various screen elements in the display.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Parameters:

<Color> hue

tint
sat
saturation
lum
brightness

The value range is 0 to 1 for all parameters.

Example: DISP:CMAP2:HSL 0.3,0.8,1.0

Changes the grid color.

DISPlay:CMAP<item>:PDEFined <Color>

This command selects a predefined color for various screen elements.

Suffix:

<item> Selects the item for which the color scheme is to be defined.

For more information see Chapter 11.10.4.3, "CMAP Suffix

Assignment", on page 1113.

Parameters:

<Color> BLACk | BLUE | BROWn | GREen | CYAN | RED | MAGenta |

YELLow | WHITe | DGRAy | LGRAy | LBLUe | LGREen |

LCYan | LRED | LMAGenta

Configuring the R&S FSW

Example: DISP:CMAP2:PDEF GRE

Manual operation: See "Restoring the User Settings to Default Colors" on page 626

DISPlay:THEMe:CATalog?

This command queries all available display themes.

Parameters:

<Themes> String containing all available display themes.

Example: DISP:THEMe:CAT?

Usage: Query only

DISPlay:THEMe:SELect <Theme>

This command selects the display theme.

Parameters:

<Theme> String containing the name of the theme.

*RST: SPL

Example: DISP:THEM:SEL "OceanBlue"

Manual operation: See "Theme" on page 623

11.10.4.3 CMAP Suffix Assignment

Several commands to change the color settings of individual items of the display or printout are available. Which item is to be configured is defined using a <CMAP> suffix. The following assignment applies:

Suffix	Description
CMAP1	Background
CMAP2	Grid
CMAP3 *)	Common Text
CMAP4 *)	Check Status OK
CMAP5 *)	Check Status Error
CMAP6 *)	Text Special 1
CMAP7 *)	Text Special 2
CMAP8	Trace 1
CMAP9	Trace 2
CMAP10	Trace 3
CMAP11	Marker Info Text
CMAP12	Limit Lines

Configuring the R&S FSW

Suffix	Description
CMAP13	Limit and Margin Check – "Pass"
CMAP14	Limit and Margin Check – "Fail"
CMAP15 *)	Softkey Text
CMAP16 *)	Softkey Background
CMAP17 *)	Selected Field Text
CMAP18 *)	Selected Field Background
CMAP19 *)	Softkey 3D Bright Part
CMAP20 *)	Softkey 3D Dark Part
CMAP21 *)	Softkey State "On"
CMAP22 *)	Softkey State "Dialog open"
CMAP23 *)	Softkey Text Disabled
CMAP24	Logo
CMAP25	Trace 4
CMAP26	Grid – Minorlines
CMAP27	Marker
CMAP28	Display Lines
CMAP29 *)	Sweepcount – Text
CMAP30	Limit and Margin Check – Text
CMAP31	Limit and Margin Check – \"Margin\"
CMAP32 *)	Table Overall – Title Text
CMAP33 *)	Table Overall – Title Background
CMAP34 *)	Table Overall – Text
CMAP35 *)	Table Overall – Background
CMAP36 *)	Table Value – Title Text
CMAP37 *)	Table Value – Title Background
CMAP38 *)	Table Value – Text
CMAP39 *)	Table Value – Background
CMAP40	Trace 5
CMAP41	Trace 6

^{*)} these settings can only be defined via the theme (DISPlay: THEMe: SELect) and are thus ignored in the SCPI command

Configuring the R&S FSW

11.10.5 Configuring the Network and Remote Control

The following commands are required to configure a network or remote control for the R&S FSW.

Useful commands for configuring remote control described elsewhere:

• SYSTem:LANGuage on page 1132

Remote commands exclusive to configuring a network and remote control

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	1115
SYSTem:COMMunicate:GPIB[:SELF]:RTERminator	1115
SYSTem:DISPlay:UPDate	1116
SYSTem:ERRor:DISPlay	1116
SYSTem:IDENtify:FACTory	1116
SYSTem:IDENtify[:STRing]	1117
SYSTem:LXI:INFo?	1117
SYSTem:LXI:LANReset	1117
SYSTem:LXI:MDEScription	1117
SYSTem:LXI:PASSword	1117

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess < Address >

This command sets the GPIB address of the R&S FSW.

Parameters:

<Address> Range: 0 to 30

*RST: (no influence on this parameter, factory default 20)

Example: SYST:COMM:GPIB:ADDR 18

Usage: SCPI confirmed

Manual operation: See "GPIB Address" on page 679

SYSTem:COMMunicate:GPIB[:SELF]:RTERminator < Terminator >

This command selects the GPIB receive terminator.

Output of binary data from the instrument to the control computer does not require such a terminator change.

Configuring the R&S FSW

Parameters:

<Terminator> LFEOI | EOI

LFEOI

According to the standard, the terminator in ASCII is <LF>

and/or <EOI>.

EOI

For binary data transfers (e.g. trace data) from the control computer to the instrument, the binary code used for <LF> might be included in the binary data block, and therefore should not be interpreted as a terminator in this particular case. This can be availed by using only the receive terminator FOT.

avoided by using only the receive terminator EOI.

*RST: LFEOI

Example: SYST:COMM:GPIB:RTER EOI

Manual operation: See "GPIB Terminator" on page 680

SYSTem:DISPlay:UPDate <State>

This command turns the display during remote operation on and off.

If on, the R&S FSW updates the diagrams, traces and display fields only.

The best performance is obtained if the display is off during remote control operation.

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYST:DISP:UPD ON

Manual operation: See "Remote Display Update" on page 680

SYSTem:ERRor:DISPlay <State>

This command the error display during remote operation on and off.

If activated, the R&S FSW displays a message box at the bottom of the screen that contains the most recent type of error and the command that caused the error.

Parameters:

<State> ON | OFF | 1 | 0

*RST: 0

Example: SYST:ERR:DISP ON

Manual operation: See "Display Remote Errors" on page 680

SYSTem:IDENtify:FACTory

This command resets the query to *IDN? to its default value.

Usage: Event

Configuring the R&S FSW

Manual operation: See "Reset to Factory String" on page 679

SYSTem:IDENtify[:STRing] <String>

This command defines the response to *IDN?.

Parameters:

<String> String containing the description of the instrument.

Manual operation: See "Identification String" on page 679

SYSTem:LXI:INFo?

This command queries the LXI settings.

Return values:

<MAC adress> | <IP adress> | <Auto MDIX> String containing the current LXI parameters.

<version><LXIClass>

<ComputerName><MACAddress><IPAddress><AutoMDIX>

Usage: Query only

Manual operation: See "Current LXI Configuration" on page 685

SYSTem:LXI:LANReset

This command resets the LAN configuration as required by the LXI standard. The command also resets the LXI password and instrument description.

Usage: Event

Manual operation: See "LAN Reset" on page 686

SYSTem:LXI:MDEScription < Description >

This command defines the LXI instrument description.

Parameters:

<Description> String containing the instrument description.

Manual operation: See "LXI Manufacturer Description" on page 686

SYSTem:LXI:PASSword < Password>

This command defines the LXI password.

Configuring the R&S FSW

Parameters:

<Password> String containing the password.

Return values:

<Password> The query returns the current password.

Manual operation: See "LXI Password" on page 685

11.10.6 Checking the System Configuration

The following commands are required to check the system configuration on the R&S FSW.

Useful commands for obtaining system information described elsewhere:

• DIAGnostic:SERVice:SINFo? on page 1125

Remote commands exclusive to obtaining system information:

DIAGnostic:INFO:CCOunter?	1118
DIAGnostic:SERVice:BIOSinfo?	1119
DIAGnostic:SERVice:HWINfo?	1119
DIAGnostic:SERVice:VERSinfo?	1120
SYSTem:ERRor:CLEar:ALL	1120
SYSTem:ERRor:CLEar:REM	1121
SYSTem:ERRor:EXTended?	1121
SYSTem:ERRor:LIST?	1121
SYSTem:ERRor[:NEXT]?	1122
SYSTem:FIRMware:UPDate	1122
SYSTem:FORMat:IDENt	1123
SYSTem:PRESet:COMPatible	
SYSTem:SECurity[:STATe]	1123

DIAGnostic:INFO:CCOunter? <Relay>

This command queries how many switching cycles the individual relays have performed since they were installed.

Configuring the R&S FSW

Query parameters:

<Relay> ACDC

Mechanical Attenuation Coupling

ATT5

Mechanical Attenuation 05 DB

ATT10

Mechanical Attenuation 10 DB

ATT20

Mechanical Attenuation 20 DB

ATT40

Mechanical Attenuation 40 DB

CAL

Mechanical Calibration Source

EATT

Electrical Attenuation Bypass

PREamp

Preamplifier Bypass

Return values:

<Cycles> Number of switching cycles.

Example: DIAG:INFO:CCO? CAL

Usage: Query only

Manual operation: See "Relay Cycle Counter" on page 616

DIAGnostic:SERVice:BIOSinfo?

This command queries the BIOS version of the CPU board.

Return values:

<BiosInformation> String containing the BIOS version.

Example: DIAG:SERV:BIOS?

Returns the BIOS version.

Usage: Query only

DIAGnostic:SERVice:HWINfo?

This command queries hardware information.

Configuring the R&S FSW

Return values:

<Hardware> String containing the following information for every hardware

component.

<component>: name of the hardware component

<serial#>: serial number of the component
<order#>: order number of the component

<model>: model of the component <code>: code of the component <revision>: revision of the component

<subrevision>: subrevision of the component

Example: DIAG:SERV:HWIN?

Queries the hardware information.

"FRONTEND|100001/003|1300.3009|03|01|00|00",
"MOTHERBOARD|123456/002|1300.3080|02|00|00|00",

. . .

Usage: Query only

DIAGnostic:SERVice:VERSinfo?

This command queries information about the hardware and software components.

Return values:

<Information> String containing the version of hardware and software compo-

nents including the types of licenses for installed options.

Example: DIAG:SERV:VERS?

Queries the version information.

Response:

Instrument Firmware |1.10

BIOS | FSW Analyzer BIOS V1.03-1-32-4-3 IPC10

Image Version |1.2.0

PCI-FPGA |9.01 SA-FPGA |2.43 MB-FPGA |2.0.8.0 SYNTH-FPGA |3.9.0.0 REF-FPGA |3.4.0.0

Data Sheet Version |01.00 Time Control Management |active Analog Demod K7| |permanent

Usage: Query only

SCPI confirmed

SYSTem:ERRor:CLEar:ALL

This command deletes all contents of the "System Messages" table.

Example: SYST:ERR:CLE:ALL

Usage: Event

Configuring the R&S FSW

SYSTem:ERRor:CLEar:REM

This command deletes all contents of the "Remote Errors" table.

Note: The remote error list is automatically cleared when the R&S FSW is shut down.

Example: SYST:ERR:CLE:REM

Usage: Event

Manual operation: See "Display Remote Errors" on page 680

See "Clear Error List" on page 687

SYSTem:ERRor:EXTended? <MessageType>[, <ChannelName>]

This command queries all system messages, or all messages of a defined type, displayed in the status bar for a specific measurement channel (application).

Note: This command queries the strings displayed for manual operation. For remote programs, do not define processing steps depending on these results. Instead, query the results of the STATus:QUEStionable:EXTended:INFO status register, which indicates whether messages of a certain type have occurred (see "STATus:QUEStionable:EXTended:INFO Register" on page 665).

Query parameters:

<MessageType> ALL | INFO | WARNing | ERRor | FATal | MESSage

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Return values:

<Messages> String containing all messages of the selected type for the speci-

fied measurement channel. Each message is separated by a comma and inserted in parentheses. If no messages are availa-

ble, empty parentheses are returned.

Example: SYST:ERR:EXT? ALL

Returns all messages for the currently active application, e.g.

"Message 1", "Message 2".

Example: SYST:ERR:EXT? FAT, 'Spectrum2'

Queries fatal errors in the 'Spectrum2' application. If none have

occurred, the result is: " ".

Usage: Query only

SYSTem:ERRor:LIST? [<MessType>]

This command queries the error messages that occur during R&S FSW operation.

Configuring the R&S FSW

Query parameters:

<MessType> SMSG

(default) Queries the system messages which occurred during

manual operation.

REMote

Queries the error messages that occurred during remote opera-

tion.

Note: The remote error list is automatically cleared when the

R&S FSW is shut down.

Return values:

<SystemMessages> String containing all messages in the "System Messages" table.

<RemoteErrors> <Error no> | <Description> | <Command> | <Date> | <Time>

Comma-separated list of errors from the "Remote Errors" table,

where:

<Error_no>: device-specific error code
<Description>: brief description of the error
<Command>: remote command causing the error
<Date>|<Time>: date and time the error occurred

Example: SYST:ERR:LIST?

Usage: Query only

SYSTem:ERRor[:NEXT]?

This command queries the most recent error queue entry and deletes it.

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is returned.

For details on error queues see Chapter 10.1.7, "Status Reporting System", on page 655.

Usage: Query only

SYSTem:FIRMware:UPDate

This command starts a firmware update using the *.msi files in the selected directory. The default path is D:\FW_UPDATE. The path is changed via the MMEMory:COMMent command. To store the update files the MMEMory:DATA command is used.

Only user accounts with administrator rights can perform a firmware update.

Example: SYST:FIRM:UPD 'D:\FW UPDATE'

Starts the firmware update from directory "D: \FW_UPDATE ".

Usage: Event

Configuring the R&S FSW

SYSTem:FORMat:IDENt <IDNFormat>

This command selects the response format to the *IDN? query.

Parameters:

<IDNFormat> LEGacy

Format is compatible to R&S FSP/FSU/FSQ/FSG family.

NEW | FSL

R&S FSW format

Format is also compatible to the R&S FSL and R&S FSV family

*RST: not reset!

Example: SYST: FORM: IDEN LEG

Adapts the return value of *IDN? to the R&S FSP/FSU/FSQ fam-

ily.

Manual operation: See "*IDN Format" on page 680

SYSTem:PRESet:COMPatible < OpMode>

This command defines the operating mode that is activated when you switch on the R&S FSW or press the PRESET key.

For details on operating modes see Chapter 4, "Applications and Operating Modes", on page 100.

Parameters:

<OpMode> SANalyzer

(Default:) Defines Signal and Spectrum Analyzer operating

mode as the presetting.

MSRA

Defines Multi-Standard Radio Analysis (MSRA) as the preset

default operating mode.

RISM

Defines Multi-Standard Real-Time (MSRT) as the preset default

operating mode.

Usage: Event

Manual operation: See "Preset Mode" on page 608

SYSTem:SECurity[:STATe] <State>

Activates or queries secure user mode.

Note: Before you activate secure user mode, store any instrument settings that are required beyond the current session, such as predefined instrument settings, transducer files, or self-alignment data.

Note: Initially after installation of the R&S FSW-K33 option, secure user mode must be enabled manually once before remote control is possible. This is necessary to prompt for a change of passwords.

Configuring the R&S FSW

For details on the secure user mode see Chapter 3.1.7, "Protecting Data Using the Secure User Mode", on page 37.

Parameters:

<State> ON | OFF | 0 | 1

ON | 1

The R&S FSW automatically reboots and starts in secure user mode. In secure user mode, no data is written to the instrument's internal solid-state drive. Data that the R&S FSW normally stores on the solid-state drive is redirected to SDRAM.

OFF | 0

The R&S FSW is set to normal instrument mode. Data is stored to the internal solid-state drive.

Note: this parameter is for query only. Secure user mode cannot

be deactivated via remote operation.

*RST: 0

Manual operation: See "Secure User Mode" on page 608

11.10.7 Using Service Functions

DIAGnostic:SERVice:SFUNction	1124
DIAGnostic:SERVice:SFUNction:LASTresult?	1125
DIAGnostic:SERVice:SFUNction:RESults:DELete	1125
DIAGnostic:SERVice:SFUNction:RESults:SAVE	1125
DIAGnostic:SERVice:SINFo?	1125

DIAGnostic:SERVice:SFUNction <ServiceFunction>

This command starts a service function.

The service functions are available after you have entered the level 1 or level 2 system password.

Parameters:

<ServiceFunction> String containing the ID of the service function.

The ID of the service function is made up out of five numbers,

separated by a point.

- function group number
- board number
- function number
- parameter 1 (see the Service Manual)
- parameter 2 (see the Service Manual)

Usage: Event

Manual operation: See "Service Function" on page 614

See "Send" on page 615

Configuring the R&S FSW

DIAGnostic:SERVice:SFUNction:LASTresult?

This command queries the results of the most recent service function you have used.

Usage: Query only

DIAGnostic:SERVice:SFUNction:RESults:DELete

This command deletes the results of the most recent service function you have used.

Usage: Event

Manual operation: See "Clear Results" on page 615

DIAGnostic:SERVice:SFUNction:RESults:SAVE <FileName>

This command saves the results of the most recent service function you have used.

Parameters:

<FileName> String containing the file name.

Manual operation: See "Save Results" on page 615

DIAGnostic:SERVice:SINFo? <FileName>

This command creates a *.zip file with important support information. The *.zip file contains the system configuration information ("device footprint"), the current eeprom data and a screenshot of the screen display (if available).

This data is stored to the $C:\R S\setminus Instr\setminus user\setminus directory$ on the instrument.

As a result of this command, the created file name (including the drive and path) is returned.

You can use the resulting file name information as a parameter for the MMEM: COPY command to store the file on the controller PC.

(See MMEMory: COPY on page 1066)

If you contact the Rohde&Schwarz support to get help for a certain problem, send this file to the support in order to identify and solve the problem faster.

Using the Status Register

Return values:

<FileName> C:\R_S\Instr\user\<R&S Device ID>_<CurrentDate>_<Current-</pre>

Time>

String containing the drive, path and file name of the created support file, where the file name consists of the following ele-

ments: <R&S Device ID>: The unique R&S device ID indicated in the

"Versions + Options" information

(See Chapter 9.3.4.2, "Information on Versions and Options",

on page 604)

<CurrentDate>: The date on which the file is created

(<YYYYMMDD>)

<CurrentTime>: The time at which the file is created

(<HHMMSS>)

Example: DIAG:SERV:SINF?

Result:

"c:\R&S\instr\user\FSW-26_1312.8000K26-100005-xx_20130116_165858.zip"

MMEM:COPY "c:\R&S\instr\user\FSW-26_ 1312.8000K26-100005-xx_20130116_165858.zip", "S:\Debug\ESW-26_1312.8000K26-100005-xx_ 20130116 165858.zip"

Usage: Query only

Manual operation: See "Creating R&S Support Information" on page 610

11.11 Using the Status Register

For more information on the contents of the status registers see:

- "STATus:OPERation Register" on page 661
- "STATus:QUEStionable:ACPLimit Register" on page 664
- "STATus:QUEStionable:EXTended Register" on page 664
- "STATus:QUEStionable:FREQuency Register" on page 665
- "STATus:QUEStionable:LIMit Register" on page 666
- "STATus:QUEStionable:LMARgin Register" on page 667
- "STATus:QUEStionable:POWer Register" on page 667
- "STATus:QUEStionable:TEMPerature Register" on page 668
- "STATus:QUEStionable:TIMe Register" on page 668

•	General Status Register Commands	1127
	Reading Out the CONDition Part	
	Reading Out the EVENt Part	
	Controlling the ENABle Part	
	Controlling the Negative Transition Part	
	Controlling the Positive Transition Part.	

Using the Status Register

11.11.1 General Status Register Commands

STATus:PRESet	. 1127
STATus:QUEue[:NEXT]?	1127

STATus:PRESet

This command resets the edge detectors and ENABle parts of all registers to a defined value. All PTRansition parts are set to FFFFh, i.e. all transitions from 0 to 1 are detected. All NTRansition parts are set to 0, i.e. a transition from 1 to 0 in a CONDition bit is not detected. The ENABle part of the STATUS:OPERation and STATUS:QUEStionable registers are set to 0, i.e. all events in these registers are not passed on.

Usage: Event

STATus:QUEue[:NEXT]?

This command queries the most recent error queue entry and deletes it.

Positive error numbers indicate device-specific errors, negative error numbers are error messages defined by SCPI. If the error queue is empty, the error number 0, "No error", is returned.

This command is identical to the SYSTem: ERROR [: NEXT]? command.

Usage: Query only

11.11.2 Reading Out the CONDition Part

For more information on the condition part see Chapter 10.1.7.2, "Structure of a SCPI Status Register", on page 657.

STATus:OPERation:CONDition? STATus:QUEStionable:CONDition?

STATus:QUEStionable:CONDition? <ChannelName>
STATus:QUEStionable:EXTended:CONDition? <ChannelName>
STATus:QUEStionable:EXTended:INFO:CONDition? <ChannelName>
STATus:QUEStionable:FREQuency:CONDition? <ChannelName>
STATus:QUEStionable:LIMit<n>:CONDition? <ChannelName>
STATus:QUEStionable:LMARgin<n>:CONDition? <ChannelName>
STATus:QUEStionable:POWer:CONDition? <ChannelName>
STATus:QUEStionable:POWer:CONDition? <ChannelName>
STATus:QUEStionable:TEMPerature:CONDition? <ChannelName>

STATus:QUEStionable:TIME:CONDition? <ChannelName>

These commands read out the CONDition section of the status register.

The commands do not delete the contents of the CONDition section.

Suffix:

<n> Window

Using the Status Register

Query parameters:

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Usage: Query only

11.11.3 Reading Out the EVENt Part

For more information on the event part see Chapter 10.1.7.2, "Structure of a SCPI Status Register", on page 657.

STATus:OPERation[:EVENt]? STATus:QUEStionable[:EVENt]?

STATus:QUEStionable:ACPLimit[:EVENt]? <ChannelName>
STATus:QUEStionable:EXTended[:EVENt]? <ChannelName>
STATus:QUEStionable:EXTended:INFO[:EVENt]? <ChannelName>
STATus:QUEStionable:FREQuency[:EVENt]? <ChannelName>
STATus:QUEStionable:LIMit<n>[:EVENt]? <ChannelName>
STATus:QUEStionable:LMARgin<n>[:EVENt]? <ChannelName>
STATus:QUEStionable:POWer[:EVENt]? <ChannelName>
STATus:QUEStionable:TEMPerature[:EVENt]? <ChannelName>

STATus:QUEStionable:TIME[:EVENt]? < ChannelName>

These commands read out the EVENt section of the status register.

At the same time, the commands delete the contents of the EVENt section.

Suffix:

<n> Window

Query parameters:

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Usage: Query only

11.11.4 Controlling the ENABle Part

For more information on the enable part see Chapter 10.1.7.2, "Structure of a SCPI Status Register", on page 657.

STATus:OPERation:ENABle <SumBit> **STATus:QUEStionable:ENABle** <SumBit>

STATus:QUEStionable:ACPLimit:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:INFO:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:FREQuency:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:LIMit<n>:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:LMARgin<n>:ENABle <SumBit>,<ChannelName>

Using the Status Register

STATus:QUEStionable:POWer:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:TEMPerature:ENABle <SumBit>,<ChannelName>
STATus:QUEStionable:TIME:ENABle <SumBit>,<ChannelName>

These commands control the ENABle part of a register.

The ENABle part allows true conditions in the EVENt part of the status register to bereported in the summary bit. If a bit is 1 in the enable register and its associated event bit transitions to true, a positive transition will occur in the summary bit reported to the next higher level.

Suffix:

<n> Window

Parameters:

<SumBit> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

11.11.5 Controlling the Negative Transition Part

For more information on the positive transition part see Chapter 10.1.7.2, "Structure of a SCPI Status Register", on page 657.

STATus:OPERation:NTRansition <SumBit>

STATus:QUEStionable:NTRansition <SumBit>

STATus:QUEStionable:ACPLimit:NTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:NTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:NEO:NTRansition <SumBit>,<ChannelName>

STATus:QUEStionable:EXTended:INFO:NTRansition <SumBit>,<ChannelName> **STATus:QUEStionable:FREQuency:NTRansition** <SumBit>,<ChannelName>

STATus:QUEStionable:LIMit<n>:NTRansition <SumBit>,<ChannelName>

STATus:QUEStionable:LMARgin<n>:NTRansition <SumBit>,<ChannelName> **STATus:QUEStionable:POWer:NTRansition** <SumBit>,<ChannelName>

STATus:QUEStionable:TEMPerature:NTRansition <SumBit>,<ChannelName>

STATus:QUEStionable:TIME:NTRansition <SumBit>,<ChannelName>

These commands control the Negative TRansition part of a register.

Setting a bit causes a 1 to 0 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Suffix:

<n> Window

Parameters:

<SumBit> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

Commands for Remote Instrument Operation

11.11.6 Controlling the Positive Transition Part

For more information on the negative transition part see Chapter 10.1.7.2, "Structure of a SCPI Status Register", on page 657.

STATus:QUEStionable:PTRansition <SumBit>
STATus:QUEStionable:ACPLimit:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:EXTended:INFO:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:FREQuency:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:LIMit<n>:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:LMARgin<n>:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:POWer:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:TEMPerature:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:TEMPerature:PTRansition <SumBit>,<ChannelName>
STATus:QUEStionable:TIME:PTRansition <SumBit>,<ChannelName>

These commands control the Positive TRansition part of a register.

Setting a bit causes a 0 to 1 transition in the corresponding bit of the associated register. The transition also writes a 1 into the associated bit of the corresponding EVENt register.

Suffix:

<n> Window

Parameters:

<SumBit> Range: 0 to 65535

<ChannelName> String containing the name of the channel.

The parameter is optional. If you omit it, the command works for

the currently active channel.

11.12 Commands for Remote Instrument Operation

The following commands are required to shutdown or reboot the R&S FSW from a remote PC.

SYSTem:CLOGging	1130
SYSTem:REBoot	1131
SYSTem:SHUTdown	1131

SYSTem:CLOGging <State>

This command turns logging of remote commands on and off.

Emulating Other Instruments' Commands

Parameters:

<State> ON

Writes all remote commands that have been sent to a file.

The destination is C:

\R S\instr\ScpiLogging\ScpiLog.txt.

OFF

*RST: OFF

Manual operation: See "I/O Logging" on page 680

SYSTem:REBoot

This command reboots the instrument, including the operating system.

Usage: Event

SYSTem:SHUTdown

This command shuts down the instrument.

Usage: Event

11.13 Emulating Other Instruments' Commands

The R&S FSW analyzer family supports a subset of the GPIB commands of several HP and PSA instruments.

For details see Chapter 10.2, "GPIB Languages", on page 673.

•	Setting up Instrument Emulation	1131
•	Reference: GPIB Commands of Emulated HP Models	1135
•	Reference: Command Set of Emulated PSA Models	1163
	Reference: Command Set of Emulated PXA Models	1167

11.13.1 Setting up Instrument Emulation

The following commands are required to set up the use of commands to emulate other instruments.

SYSTem:HPCoupling	1132
SYSTem:IFGain:MODE	
SYSTem:LANGuage	1132
SYSTem:PREamplifier	
SYSTem:PSA:WIDeband	1133
SYSTem:REVision:FACTory	1134
SYSTem:REVision[:STRing]	
SYSTem:RSW	

Emulating Other Instruments' Commands

SYSTem:HPCoupling < Coupling Type>

Controls the default coupling ratios in the HP emulation mode for:

- span and resolution bandwidth (Span/RBW) and
- resolution bandwidth and video bandwidth (RBW/VBW)

For FSP (=FSW), the standard parameter coupling of the instrument is used. As a result, in most cases a shorter sweep time is used than in case of HP.

This command is only available if a HP language is selected using SYSTem: LANGuage on page 1132.

Parameters:

<CouplingType> HP | FSP

*RST: FSP

Example: SYSTem: HPC HP

Manual operation: See "Coupling" on page 683

SYSTem:IFGain:MODE < Mode>

Configures the internal IF gain settings in HP emulation mode due to the application needs. This setting is only taken into account for resolution bandwidth < 300 kHz and is only available if a HP language is selected using SYSTem: LANGuage.

Parameters:

<Mode> NORM | PULS

NORM

Optimized for high dynamic range, overload limit is close to ref-

erence level.

PULS

Optimized for pulsed signals, overload limit up to 10 dB above

reference level.

*RST: NORM

Example: SYST:IFG:MODE PULS

Manual operation: See "IF Gain" on page 683

SYSTem:LANGuage < Language >

This command defines the system language.

For details see Chapter 10.2, "GPIB Languages", on page 673.

Note:This command is also used to emulate previous R&S signal and spectrum analyzers, making the SYST:COMP command obsolete.

Note: For PSA89600 emulation, the option is indicated as "B7J" for the *OPT? query ("B7J, 140" if Wideband is activated).

Emulating Other Instruments' Commands

Parameters:

<Language> "SCPI" | "8560E" | "8561E" | "8562E" | "8563E" | "8564E" |

"8565E" | "8566A" | "8566B" | "8568A" | "8568A DC" | "8568B" |

"8568B_DC" | "8591E" | "8594E" | "71100C" | "71200C" | "71209A" | "PSA89600" | "PSA" | "PXA" | "FSP" | "FSU" | "FSQ" | "FSV" | "FSEA" | "FSEB" | "FSEM" | "FSEK"

*RST: SCPI

Example: SYST:LANG '8560E'

Sets the system language to 8560E to simulate the HP model.

Usage: SCPI confirmed

Manual operation: See "Language" on page 682

Note: If you use **"PSA89600"**, you must switch to an HP language first before returning to SCPI (in remote operation only). For the identical language "PSA", this intermediate step is not necessary.

SYSTem:PREamplifier < Option>

This setting defines which option is returned when the *OPT? query is executed, depending on the used preamplifier.

It is only available for FSU/FSQ emulation, and only if an optional preamplifier is used by the R&S FSW.

Parameters:

<Option> B23 | B24

*RST: B23

Manual operation: See "FSU/FSQ Preamplifier" on page 684

SYSTem:PSA:WIDeband <State>

This command defines which option is returned when the *OPT? query is executed, depending on the state of the wideband option.

It is only available for PSA89600 emulation.

Parameters:

<State> ON | OFF | HIGH

OFF

The option is indicated as "B7J"

ON

The 40 MHz wideband is used. The option is indicated as "B7J, 140".

HIGH

The 80 MHz wideband is used. The option is indicated as "B7J, 122".

*RST: OFF

Emulating Other Instruments' Commands

Manual operation: See "Language" on page 682

See "Wideband" on page 683

SYSTem:REVision:FACTory

Resets the response to the REV? query to the default value, e.g. after a user string was defined using the SYSTem:REVision[:STRing] command. (REV? query available for HP emulation only, see SYSTem:LANGuage on page 1132.)

Example: Define the system language:

SYST:LANG '8563E'

Set the response back to factory setting:

SYS: REV: FACT Query the revision:

REV?
Response: 920528

Manual operation: See "Resetting the Factory Revision" on page 684

SYSTem:REVision[:STRing] < Name>

Sets the response to the REV? query to the defined string (HP emulation only, see SYSTem: LANGuage on page 1132).

Parameters:

<Name>

Example: Define the system language:

SYST:LANG '8563E' Query the revision:

REV? Response:

920528

Set the response to 'NewRevision': SYST:REV:STR 'NewRevision'

Query the response: SYST:REV:STR?

Response: NewRevision

Manual operation: See "Revision String" on page 684

SYSTem:RSW <State>

Controls a repeated sweep of the E1 and MKPK HI HP model commands (for details on the commands refer to Chapter 11.13.2, "Reference: GPIB Commands of Emulated HP Models", on page 1135). If the repeated sweep is OFF, the marker is set without sweeping before.

Emulating Other Instruments' Commands

This command is only available if a HP language is selected using SYSTem: LANGuage on page 1132

Parameters:

<State> ON | OFF

*RST: OFF

Example: SYSTem: RSW ON

Manual operation: See "Sweep Repeat" on page 683

11.13.2 Reference: GPIB Commands of Emulated HP Models

The R&S FSW analyzer family supports a subset of the GPIB commands of HP models 8560E, 8561E, 8562E, 8563E, 8564E, 8565E, 8566A, 8566B, 8568A, 8568B and 8594E.

Despite the differences in system architecture and device features, the supported commands have been implemented in a way to ensure a sufficiently high degree of correspondence with the original.

This includes the support of syntax rules for not only newer device families (B and E models) but for the previous A family as well.

In many cases the selection of commands supported by the R&S FSW is sufficient to run an existing GPIB program without adaptation.

After the introduction, this section includes the following topics:

- 11.13.2.1 Command Set of Models 8560E, 8561E, 8562E, 8563E, 8564E, 8565E, 8566A/B, 8568A/B, 8591E, 8594E, 71100C, 71200C, and 71209A

As with the original units, the R&S FSW includes the command set of the A models in the command set of the B models.

The HP model 8591E is compatible to HP model 8594E, the HP models 71100C, 71200C, and 71209A are compatible to HP models 8566A/B.

Command	Supported subset	Function	Corresp. HP- Models	Status
A1	A1	Clear/Write A	HP 8566A/ HP 8568A	available
A2	A2	Max Hold A	HP 8566A/ HP 8568A	available
A3	A3	View A	HP 8566A/ HP 8568A	available
A4	A4	Blank A	HP 8566A/ HP 8568A	available
ABORT 1)	ABORT	Stop previous function	HP 856xE/ HP 8566B/HP 8568B/HP 8594E	available
ADD		Add	HP 8566B/ HP 8568B/ HP 8594E	available
ADJALL	ADJALL	Adjust all	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ADJCRT ²⁾	ADJCRT	Adjust CRT	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ADJIF ²⁾	ADJIF	Auto adjust IF	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AMB	AMB ON OFF AMB 1 0 AMB?	Trace A – B -> Trace A	HP 856xE/ HP 8594E	available
AMBPL	AMBPL ON OFF AMBPL 1 0 AMBPL?		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AMPCORDATA	AMPCORDATA <freq>,<amp>, AMPCORDATA?</amp></freq>	Amplitude Correction Data	HP 856xE	available
AMPCOR	AMPCOR ONJOFF AMPCOR 1 0 AMPCOR?	Amplitude Correction	HP 856xE	available

Command	Supported subset	Function	Corresp. HP- Models	Status
AMPCORSIZE	AMPCORSIZE?	Amplitude Correction Data Array Size	HP 856xE	available
AMPCORRCL	AMPCORRCL <numeric value=""></numeric>	Amplitude Correction Recall	HP 856xE	available
AMPCORSAVE	AMPCORSAVE <numeric value=""></numeric>	Amplitude Correction Save	HP 856xE	available
ANNOT	ANNOT ON OFF ANNOT 1 0 ANNOT?	Annotation	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
АРВ	АРВ	Trace A + B -> Trace A	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AT	AT <numeric_value> DB DM DM AT DN AT UP AT AUTO AT?</numeric_value>	Attenuation	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AUNITS	AUNITS DBM DBMV DBUV AUNITS?	Amplitude Units	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AUTOCPL	AUTOCPL	Coupling default	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
AXB	AXB	Exchange trace A and B	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
B1	B1	Clear/Write B	HP 8566A/ HP 8568A	available
B2	B2	Max Hold B	HP 8566A/ HP 8568A	available
B3	В3	View B	HP 8566A/ HP 8568A	available
B4	B4	Blank B	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
BL	BL	Trace B – Display Line - > Trace B	HP 8566A/ HP 8568A	available
BML	BML	Trace B – Display Line - > Trace B	HP 856xE/ HP8594E	available
втс	ВТС	Transfer Trace B -> C	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
BXC	BXC	Exchange Trace B and C	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
BLANK	BLANK TRA TRB TRC	Blank Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
C1	C1	A-B off	HP 8566A/ HP 8568A	available
C2	C2	A-B -> A	HP 8566A/ HP 8568A	available
CA	CA	Couple Attenuation	HP 8566A/ HP 8568A	available
CAL 1)	CAL ALL CAL ON CAL OFF	Start analyzer self alignment	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CF	CF <numeric_value> HZ KHZ MHZ GHZ CF UP CF DN CF?</numeric_value>	Center Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CHANPWR	CHANPWR TRA TRB, <numeric_value>,?</numeric_value>	Channel Power Measurement	HP 856xE/ HP 8594E	available
CHPWRBW	CHPWRBW <numeric_value> HZ KHZ MHZ GHZ</numeric_value>	Channel Power Bandwidth	HP 856xE/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
CLRW	CLRW TRA TRB TRC	Clear/Write Trace	HP 856xE/ HP 8566B/ HP 8568B/	available
			HP 8594E	
CLS 1)	CLS	Clear all status bits	HP 856xE/ HP 8566B/ HP 8568B/	available
			HP 8594E	
CONTS	CONTS		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
COUPLE	COUPLE ACIDC	Input coupling	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
CR	CR	Couple RBW	HP 8566A/ HP 8568A	available
CS	CS	Couple Step Size	HP 8566A/ HP 8568A	available
СТ	СТ	Couple SWT	HP 8566A/ HP 8568A	available
СТА		Convert to absolute units	HP 8566B/ HP 8568B/ HP 8594E	available
CV	CV	Couple VBW	HP 8566A/ HP 8568A	available
D1 ²⁾	D1	Display Size normal	HP 8566A/ HP 8568A	available
DA ²⁾	DA	Display address		available
DEMOD 1)	DEMOD ON OFF AM FM	AF Demodulator	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DEMODAGC ²⁾	DEMODAGC ON OFF 1 0 DEMODAGC?	Demodulation AGC	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
DEMODT	DEMODT <numeric_value> S MS US SC DEMODT UP DN DEMODT?</numeric_value>	Demodulation time	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DET	DET POS SMP NEG DET?	Detector	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DISPOSE 2)	ONEOS TRMATH ONSWP ALL <numeric_value></numeric_value>			available
DIV		Divide	HP 8566B/ HP 8568B/ HP 8594E	available
DL	DL <numeric_value> DB DM DL DN DL UP DL ON DL OFF DL?</numeric_value>	Display Line	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DLE	DLE ON OFF	Display Line enable	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DONE	DONE DONE?	Done query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
DW ²⁾	DW	Write to display and increment address		available
E1	E1	Peak Search	HP 8566A/ HP 8568A	available
E2	E2	Marker to Center Freq.	HP 8566A/ HP 8568A	available
E3	E3	Deltamarker Step Size	HP 8566A/ HP 8568A	available
E4	E4	Marker to Ref. Level	available	available
EDITDONE		limit line edit done	HP 856xE	available
EDITLIML		edit limit line	HP 856xE	available

Command	Supported subset	Function	Corresp. HP- Models	Status
ERR	ERR 250 cal level error ERR 300 LO unlock ERR 472 cal error digital filter ERR 473 cal error ana- log filter ERR 552 cal error log amp ERR 902 unscale track- ing generator ERR 906 oven cold ERR 117 numeric unit error ERR 112 Unrecognized Command	Now some FSx errors are mapped to HP errors.	HP8568A HP856xE	not yet availa- ble
ERR?	ERR?	Error queue query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not yet availa- ble
EX	EX	Exchange trace A and B	HP 8566A/ HP 8568A	available
FA	FA <numeric_value> HZ KHZ MHZ GHZ FA UP FA DN FA?</numeric_value>	Start Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FB	FB <numeric_value> HZ KHZ MHZ GHZ FB UP FB DN FB?</numeric_value>	Stop Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FDSP		Frequency display off	8560E 8561E 8562E 8563E 8564E 8565E	available
FOFFSET 1)	FOFFSET <numeric_value> HZ KHZ MHZ GHZ FOFFSET?</numeric_value>	Frequency Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
FREF	FREF INT EXT	Reference Frequency	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
FS	FS	Full Span	HP 8566A/ HP 8568A	available
FUNCDEF		Define Function Function must be in one line between delimiters @	HP 8594E/ HP 856xE/ HP 8566B	available
GATE 1)	GATE ON OFF GATE 1 0		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GATECTL 1)	GATECTL EDGE LEVEL GATECTL?		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GD ¹⁾	GD <numeric_value> US MS SC GD DN GD UP GD?</numeric_value>		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GL ¹⁾	GL <numeric_value> US MS SC GL DN GL UP GL?</numeric_value>		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GP ¹⁾	GP POS NEG GP?		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
GRAT ²⁾	GRAT ON OFF	Graticule	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
I1	l1		HP 8566A/ HP 8568A	available
12	12		HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
ID	ID	Identify	HP 8566A/	available
	ID?		HP 8568A/	
			HP 856xE/	
			HP 8566B/	
			HP 8568B/	
			HP 8594E	
INZ 1)	INZ 75	Input Impedance	HP 856xE/	available
	INZ 50		HP 8566B/	
	INZ?		HP 8568B/	
			HP 8594E	
IP	IP	Instrument preset	HP 8566A/	available
			HP 8568A	
KEYDEF	KEYDEF	Key definition	HP 8566B/	available
			HP 856xE/	
			HP 859xE	
KEYEXEC	KEYEXEC	Key execute	HP 8566B	available
KS=	KS= <numeric_value></numeric_value>	Marker Frequency Coun-	HP 8566A/	available
	HZ KHZ MHZ GHZ	ter Resolution	HP 8568A	
	KS= DN			
	KS= UP			
	KS=?			
KS/	KS/	Manual Peaking	HP 8566A/	available
			HP 8568A	
KS(KS(Lock register	HP 8566A/	available
			HP 8568A	
KS)	KS)	Unlock register	HP 8566A/	available
			HP 8568A	
KS91	KS91	Read Amplitude Error	HP 8566A/	available
			HP 8568A	
KSA	KSA	Amplitude Units in dBm	HP 8566A/	available
			HP 8568A	
KSB	KSB	Amplitude Units in dBmV	HP 8566A/	available
			HP 8568A	
KSC	KSC	Amplitude Units in dBuV	HP 8566A/	available
			HP 8568A	
KSD	KSD	Amplitude Units in V	HP 8566A/	available
			HP 8568A	
KSE	KSE <numeric_value> </numeric_value>	Title mode	HP 8566A/	available
	<char data="">@</char>		HP 8568A	

Command	Supported subset	Function	Corresp. HP- Models	Status
KSG	KSG KSG ON KSG <numeric_value></numeric_value>	Video Averaging on	HP 8566A/ HP 8568A	available
KSH	KSH	Video Averaging Off	HP 8566A/ HP 8568A	available
KSK		Marker to Next Peak	HP 8566A/ HP 8568A	available
KSL		Marker Noise off	HP 8566A/ HP 8568A	available
KSM		Marker Noise on	HP 8566A/ HP 8568A	available
KSO	KSO	Deltamarker to span	HP 8566A/ HP 8568A	available
KSP	KSP <numeric_value></numeric_value>	HPIB address	HP 8566A/ HP 8568A	available
KSQ ²⁾	KSQ	Band lock off	HP 8566A/ HP 8568A	available
KST	KST	Fast Preset	HP 8566A/ HP 8568A	available
KSV	KSV <numeric_value> HZ KHZ MHZ GHZ KSV?</numeric_value>	Frequency Offset	HP 8566A/ HP 8568A	available
KSW	KSW	Error Correction Routine	HP 8566A/ HP 8568A	available
KSX	KSX	Correction Values On	HP 8566A/ HP 8568A	available
KSY	KSY	Correction Values Off	HP 8566A/ HP 8568A	available
KSZ	KSZ <numeric_value> DB KSZ?</numeric_value>	Reference Value Offset	HP 8566A/ HP 8568A	available
KSa	KSa	Normal Detection	HP 8566A/ HP 8568A	available
KSb	KSb	Pos Peak Detection	HP 8566A/ HP 8568A	available
KSd	KSd	Neg Peak Detection	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
KSe	KSe	Sample Detection	HP 8566A/ HP 8568A	available
KSg		CRT beam off		available
KSh		CRT beam on		available
KSj	KSj	View Trace C	HP 8566A/ HP 8568A	available
KSk	KSk	Blank Trace C	HP 8566A/ HP 8568A	available
KSI	KSI	Transfer B to C	HP 8566A/ HP 8568A	available
KSm	KSm	Graticule off	HP 8566A/ HP 8568A	available
KSn ²⁾	KSn	Grid on	HP 8566A/ HP 8568A	available
KSo	KSn	Character display off	HP 8566A/ HP 8568A	available
KSp	KSp	Character display on	HP 8566A/ HP 8568A	available
KSr	KSr	Create service request	HP 8566A/ HP 8568A	available
KSt 2)	KSt	Band lock on	HP 8566A/ HP 8568A	available
KSv ²⁾	KSv	Signal ident on	HP 8566A/ HP 8568A	available
L0	LO	Display line off	HP 8566A/ HP 8568A	available
LB	LB <numeric_value> <char data="">@</char></numeric_value>	Label	HP 8566A/ HP 8568A	available
LF	LF	Low frequency band preset	HP 8566A/ HP 8568A	available
LIMD		limit line delta	HP 856xE	available
LIMF		limit line frequency	HP 856xE	available
LIMIFAIL		limit fail query	HP 856xE	available
LIMIPURGE		purge limit line	HP 856xE	available
LIMIRCL		recall limit line	HP 856xE	available
LIMIREL		relative limit line	HP 856xE	available

Command	Supported subset	Function	Corresp. HP- Models	Status
LIMISAV		save limit line	HP 856xE	available
LIMITEST		limit line test	HP 856xE	available
LIML		lower limit line value	HP 856xE	available
LIMM		middle limit line value	HP 856xE	available
LIMTFL		flat limit line segment	HP 856xE	available
LIMTSL		slope limit line segment	HP 856xE	available
LIMU		upper limit line value	HP 856xE	available
LG	LG <numeric_value> DB DM LG?</numeric_value>	Amplitude Scale Log	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
LL ²⁾	LL	Plot command	HP 8566A/ HP 8568A	available
LN	LN	Amplitude Scale Lin	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
M1	M1	Marker Off	HP 8566A/ HP 8568A	available
M2	M2 M2 <numeric_value> HZ KHZ MHZ GHZ M2 DN M2 UP M2?</numeric_value>	Marker Normal	HP 8566A/ HP 8568A	available
M3	M3 M3 <numeric_value> HZ KHZ MHZ GHZ M3 DN M3 UP M3?</numeric_value>	Delta Marker	HP 8566A/ HP 8568A	available
M4	M4 <numeric_value> HZ KHZ MHZ GHZ</numeric_value>	Marker Zoom	HP 8566A/ HP 8568A	available
MA	MA	Marker Amplitude	HP 8566A/ HP 8568A	available
MC0	MC0	Marker Count off	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
MC1	MC1	Marker Count on	HP 8566A/ HP 8568A	available
MDS	MDS	Measurement data size	HP 8566B	available
MEAS		Measurement status	HP 856xE	available
MF	MF MF?	Marker Frequency	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MINH ¹⁾	MINH TRC	Minimum Hold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
МКА	MKA <numeric_value> MKA?</numeric_value>	Marker Amplitude	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKACT	MKACT 1 MKACT?	Select the active marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
MKBW 1)	MKBW <numeric_value> MKBW ON MKBW OFF</numeric_value>	N dB Down	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKD	MKD MKD <numeric_value> HZ KHZ MHZ GHZ MKD DN MKD UP MKD ON MKD OFF MKD?</numeric_value>	Delta Marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKDR	MKDR <numeric_value> HZ KHZ MHZ GHZ S SC MS MSEC USMKDR?</numeric_value>	Delta Marker reverse	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
MKDR?		Delta Marker reverse query		available
MKF	MKF <numeric_value> HZ KHZ MHZ GHZ MKF?</numeric_value>	Set Marker Frequency	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKFC	MKFC ON OFF	Frequency Counter on/off	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKFCR 1)	MKFCR <numeric_value> HZ KHZ MHZ GHZ MKFCR DN MKFCR UP MKFCR?</numeric_value>	Frequency Counter Resolution	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKMIN	MKMIN	Marker -> Min	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKN	MKN MKN <numeric_value> HZ KHZ MHZ GHZ MKN DN MKN UP MKN ON MKN OFF MKN?</numeric_value>	Normal Marker	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKNOISE	MKNOISE ON OFF MKNOISE 1 0 MKNOISE?	Noise Measurement	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKOFF	MKOFF MKOFF ALL	Marker off	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
МКР	MKP <numeric_value> MKP?</numeric_value>	Marker position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
МКРК	MKPK MKPK HI MKPK NH MKPK NR MKPK NL	Marker Search	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
МКРТ	MKPT MKPT HI MKPT NH MKPT NR MKPT NL	Marker Peak Threshold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKPX	MKPX <numeric_value> DB MKPX DN MKPX UP MKPX?</numeric_value>	Peak Excursion	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKRL	MKRL	Ref Level = Marker Level	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKSP	MKSP	Deltamarker to span	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKSS	MKSS	CF Stepsize = Marker Freq	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKT	MKT <numeric_value> S MS US SC MKT?</numeric_value>	MKF = fstart + MKT/ SWT*Span	HP 856xE/ HP 8594E	available
MKTRACE	MKTRACE TRA TRB TRC	Marker to Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MKTRACK	MKTRACK ON OFF MKTRACK 1 0 MKTRACK?	Signal Track	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
MKTYPE	MKTYPE AMP MK TYPE?	Marker type	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ML		Mixer level	HP 856xE	available
MOV	MOV TRA TRB TRC, TRA TRB T RC	Move Trace Contents	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
MPY		Multiply	HP 8566B/ HP 8568B/ HP 8594E	available
МТО	МТО	Marker Track Off	HP 8566A/ HP 8568A	available
MT1	MT1	Marker Track On	HP 8566A/ HP 8568A	available
МХМН	MXMH TRA TRB	Maximum Hold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
NORMALIZE	NORMALIZE	Normalize trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available available
NRL ¹⁾	NRL <numeric_value> DB DM NRL?</numeric_value>	Normalized Reference Level	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
NRPOS	NRPOS <numeric_value> NRL?</numeric_value>	Normalize position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
O1	01	Format ASCII, Values 0 to 4095	HP 8566A/ HP 8568A	available
O2	O2	Format Binary, Values 0 to 4095	HP 8566A/ HP 8568A	available
О3	О3	Format ASCII	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
OA	OA	Output All	HP 8566A/ HP 8568A	available
OL	OL <80 characters> OL?	Output Learn String	HP 8566A/ HP 8568A	available
ОТ	ОТ	Output Trace Annotations	HP 8566A/ HP 8568A	available
PA	PA <numeric_value>, <numeric_value< td=""><td>Plot command</td><td>HP 8566A/ HP 8568A</td><td>available</td></numeric_value<></numeric_value>	Plot command	HP 8566A/ HP 8568A	available
PD	PD <numeric_value>, <numeric_value< td=""><td>Plot command</td><td>HP 8566A/ HP 8568A</td><td>available</td></numeric_value<></numeric_value>	Plot command	HP 8566A/ HP 8568A	available
PH_MKF		Spot frequency in Hz	HP 856xE	available
PH_FMIN		Min offset frequency to be measured	HP 856xE	available
PH_FMAX		Max offset frequency to be measured	HP 856xE	available
PH_MKA		Queries amplitude at the spot frequency	HP 856xE	available
PH_DRIFT		0: for stable signals, 1: for drifty	HP 856xE	available
PH_RLVL		Reference level for the log plot	HP 856xE	available
PH_SMTHV		Trace smoothing	HP 856xE	available
PH_VBR		Filtering	HP 856xE	available
PH_RMSPT		Amount of data points to skip when doing the integration	HP 856xE	available
PH_RMSFL		Lower integration frequency in Hz	HP 856xE	available
PH_RMSFU		Upper integration frequency in Hz	HP 856xE	available
PH_EXIT		Quits phase noise	HP 856xE	available
PH_F_UDT		Updates internal frequency variables	HP 856xE	available
PH_LMT_L		Apply limits to PH_FMIN and PH_FMAX	HP 856xE	available
PH_MEAS		Generates log frequency plot	HP 856xE	available
PH_MKF_D		Updates the spot frequency	HP 856xE	available

Command	Supported subset	Function	Corresp. HP- Models	Status
PH_RMS		Requests the rms phase noise	HP 856xE	available
PH_RMSFT		Updates internal frequency variables	HP 856xE	available
PH_RMSX		Calculates the rms phase noise	HP 856xE	available
PH_SPOTF		Executes the spot frequency measurement	HP 856xE	available
PLOTORG ²⁾	PLOTORG DSP GRT	Plot command	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PLOTSRC ²⁾	PLOTSRC ANNT GRT TRB TRA ALLDSP GRT	Plot command	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PP	PP	Preselector Peaking	HP 8566A/ HP 8568A	available
PRINT ¹⁾	PRINT 1 0	Hardcopy	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PSDAC ²⁾	PSDAC <numeric_value> PSDAC UP DN</numeric_value>	Preselector DAC value	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PSTATE ²⁾	PSTATE ON OFF 1 0	Protect State	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
PU	PU	Pen Up	HP 8566A/ HP 8568A	available
PWRBW	PWRBW	Power Bandwidth	HP 8566B/ HP 859x/ HP 856xE	available
R1	R1	Set Status Bit Enable	HP 8566A/ HP 8568A	available
R2	R2	Set Status Bit Enable	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
R3	R3	Set Status Bit Enable	HP 8566A/ HP 8568A	available
R4	R4	Set Status Bit Enable	HP 8566A/ HP 8568A	available
RB	RB <numeric_value> HZ KHZ MHZ GHZ RB DN RB UP RB AUTO RB?</numeric_value>	Resolution Bandwidth	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RBR	RBR <numeric_value> RBR DN RBR UP RBR?</numeric_value>	Resolution Bandwidth Ratio	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RC16	RC16	Recall Last State	HP 8566A/ HP 8568A	available
RCLS	RCLS <numeric_value></numeric_value>	Recall State Register	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RCLT	RCLT TRA TRB, <num- ber></num- 	Recall Trace	HP856xE/ HP8594E	available
RESET	RESET	Instrument preset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
REV	REV REV?	Firmware revision	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RL	RL <numeric_value> DB DM RL DN RL UP RL?</numeric_value>	Reference Level	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RLCAL	RLCAL <numeric_value> RL?</numeric_value>	Reference Level Calibration	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
RCLOSCAL	RCLOSCAL	Recall Open/Short Average	HP 856xE/ HP 8594E	not available
RCLTHRU	RCLTHRU	Recall Thru	HP 856xE/ HP 8594E	not available
RLPOS 1)	RLPOS <numeric_value> RLPOS DN RLPOS UP RLPOS?</numeric_value>	Reference Level Position	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ROFFSET	ROFFSET <numeric_value> DB DM ROFFSET?</numeric_value>	Reference Level Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
RQS	RQS	Service Request Bit mask	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
S1	S1	Continuous Sweep	HP 8566A/ HP 8568A	available
S2	S2	Single Sweep	HP 8566A/ HP 8568A	available
SADD		add a limit line segment	HP 856xE	available
SAVES	SAVES <numeric_value></numeric_value>	Save State Register	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SAVET	SAVET TRA TRB, <num- ber></num- 	Save Trace	HP856xE/ HP8594E	available
SDEL		delete limit line segment	HP 856xE	available
SDON		limit line segment done	HP 856xE	available
SEDI		edit limit line segment	HP 856xE	available
SMOOTH	SMOOTH TRA TRB TRC, <number of<br="">points></number>	Smooth Trace	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SNGLS	SNGLS	Single Sweep	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
SQUELCH 2)	SQUELCH <numeric_value> DM DB SQUELCH UP DN SQUELCH ON OFF</numeric_value>	Squelch	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SP	SP <numeric_value> HZ KHZ MHZ GHZ SP DN SP UP SP?</numeric_value>	Span	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SRCNORM 1)	SRCNORM ON OFF SRCNORM 1 0	Source Normalization	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
SRCPOFS 1)	SRCPOFS <numeric_value> DB DM SRCPOFS DN SRCPOFS UP SRCPOFS?</numeric_value>	Source Power Offset	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
SRCPWR 1)	SRCPWR <numeric_value> DB DM SRCPWR DN SRCPWR UP SRCPWR ON SRCPWR OFF SRCPWR?</numeric_value>	Source Power	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	not available
SS	SS <numeric_value> HZ KHZ MHZ GHZ SS DN SS UP SS AUTO SS?</numeric_value>	CF Step Size	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ST	ST <numeric_value> US MS SC ST DN ST UP ST AUTO ST?</numeric_value>	Sweep Time	HP 8566A/ HP 8568A/ HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Command	Supported subset	Function	Corresp. HP- Models	Status
STB	STB	Status byte query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
STOREOPEN	STOREOPEN	Store Open	HP 856xE/ HP 8594E	not available
STORESHORT	STORESHORT	Store Short	HP 856xE/ HP 8594E	not available
STORETHRU	STORETHRU	Store Thru	HP 856xE/ HP 8594E	not available
SUB		Subtract	HP 8566B/ HP 8568B/ HP 8594E	available
SUM		sum of trace amplitudes	HP 8566B/ HP 8568B/ HP 8594E	available
SV16	SV16	Save State	HP 8566A/ HP 8568A	available
SWPCPL ²⁾	SWPCPL SA SR SWPCPL?	Sweep Couple	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
SWPOUT ²⁾	SWPOUT FAV FAVA RAMP SWPOUT?	Sweep Output	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
ТО	ТО	Threshold off	HP 8566A/ HP 8568A	available
T1	T1	Free Run Trigger	HP 8566A/ HP 8568A	available
T2 ²⁾	T2	Line Trigger	HP 8566A/ HP 8568A	available
Т3	ТЗ	External Trigger	HP 8566A/ HP 8568A	available
T4	T4	Video Trigger	HP 8566A/ HP 8568A	available
TA	ТА	Transfer A	HP 8566A/ HP 8568A	available

Command	Supported subset	Function	Corresp. HP- Models	Status
TACL	TACL?	Returns instantaneous measurement results. See TRACe <trace #="">:IMMediate:LEVel? for full description.</trace>		not available
TBCL	TBCL?			
TCCL	TCCL?			
TACR	TACR?	Returns instantaneous measurement results. See TRACe <trace #="">:IMMediate:LEVel? for full description.</trace>		not available
TBCR	TBCR?			
TCCR	TCCR?			
ТВ	ТВ	Transfer B	HP 8566A/ HP 8568A	available
TDF	TDF P TDF M TDF B TDF A TDF I	Trace Data Format	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TH	TH <numeric_value> DB DM TH DN TH UP TH ON TH OFF TH AUTO TH?</numeric_value>	Threshold	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
THE	THE ON OFF	Threshold Line enable	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TIMEDSP 1)	TIMEDSP ON OFF TIMEDSP 1 0 TIMEDSP?	Time Display	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TM	TM FREE VID EXT LINE ²⁾ TM?	Trigger Mode	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TM LINE 2)	TM LINE	Trigger Line	HP 8566B	available

Command	Supported subset	Function	Corresp. HP- Models	Status
TRA	TRA B TRA A TRA I	Transfer A	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TRB	TRB B TRB A TRB I	Transfer B	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TRSTAT	TRSTAT?	Trace State Query	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
TS	TS	Take Sweep	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
UR ²⁾	UR	Plot Command	HP 8566A/ HP 8568A	available
VARDEF	VARDEF	Variable definition, arrays are not supported	HP 8566B/ HP 8568B/ HP 8594E	available
VAVG	VAVG VAVG TRA TRB TRC	Video Averaging	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VB	VB <numeric_value> HZ KHZ MHZ GHZ VB DN VB UP VB AUTO VB?</numeric_value>	Video Bandwidth	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VBR ¹⁾	VBR <numeric_value> VBR DN VBR UP VBR?</numeric_value>	Video Bandwidth Ratio	HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available
VIEW	VIEW TRA TRB TRC		HP 856xE/ HP 8566B/ HP 8568B/ HP 8594E	available

Emulating Other Instruments' Commands

Command	Supported subset	Function	Corresp. HP- Models	Status
VTL	VTL <numeric_value> DB DM</numeric_value>	Video Trigger Level	HP 856xE/ HP 8594E	not available
	VTL DN			
	VTL UP			
	VTL?			
1) HP 8594E only				
2) Command is accepted without error message, but is ignored				

11.13.2.2 Special Features of the Syntax Parsing Algorithms for 8566A and 8568A Models

The command syntax is very different for models A and B. Different names are assigned to identical instrument functions, and the command structure likewise differs considerably between models A and models B.

The command structure for models A is as follows:

```
<command>::= <command
code>[<SPC>][<data>|<step>][<SPC>][<delimiter>][<command
code>]...<delimiter>

<data>::= <Value>[<SPC>][<units
code>][<SPC>][<delimiter>][<SPC>][<data>]...

<step>::= UP|DN

where

<command code> = see Table "Supported Commands"

<Value> = integer or floating-point numerical value

<units code> = DM|-DM|DB|HZ|KZ|MZ|GZ|MV|UV|SC|MS|US

<delimiter> = <CR>|<LF>|<,>|<;>|<ETX>
<SPC> = 3210

<ETX> = 310
```

Command sections given in [] are optional.

The R&S FSW GPIB hardware differs from that used in the HP analyzers. Therefore, the following constraint exists:

<LF>| <EOI> are still used as delimiters since the GPIB hardware is able to identify them. The other delimiters are identified and evaluated during syntax analysis.

Emulating Other Instruments' Commands

11.13.2.3 Special Behavior of Commands

Command	Known Differences
ABORT	Does not automatically set the command complete bit (bit 4) in the status byte. An additional DONE is required for that purpose.
ANNOT	Only frequency axis annotation is affected.
AT	AT DN/UP: Step size
CAL	The CAL commands do not automatically set the command complete bit (bit 4) in the status byte. An additional DONE command is required for that purpose.
CF	Default value, range, step size
CR	Default ratio Span/RBW
СТ	Formula for coupled sweep time
CV	Default ratio RBW/VBW
DEMOD	requires option R&S FSW-B3
DET	DET? returns SAMP instead of SMP on the R&S FSW.
	DET not automatically set the command complete bit (bit 4) in the status byte. An additional DONE is required for that purpose.
ERR?	Deletes the error bit in the status register but always returns a '0' in response.
FA	Default value, range, step size
FB	Default value, range, step size
ID	Query of instrument ID. The instrument ID defined in "SETUP > Network + Remote > GPIB > Identification String" is returned.
M2	Default value, range, step size
M3	Default value, range, step size
MKACT	Only marker 1 is supported as the active marker.
MKBW	Default value
MKPT	Step size
MKPX	Step size
OL?	Storage of instrument settings:
	80 characters are returned as information on the instrument settings.
	The contents of the 80 characters returned does not correspond to the original data contents of the 8566A/8568A family.
OL	Readout of instrument settings:
	The 80 characters read by means of OL? are accepted as information on the corresponding instrument settings.
	The contents of the 80 characters read does not correspond to the original data contents of the 8566A/8568A family.
RB	Default value, range, step size
RL	Default value, step size

Emulating Other Instruments' Commands

Command	Known Differences
RLPOS	Adapts the position of the reference level even if the tracking generator normalization is not active.
RQS	Supported bits:
	1 (Units key pressed)
	2 (End of Sweep)
	3 (Device error)
	4 (Command complete)
	5 (Illegal command)

11.13.2.4 Model-Dependent Default Settings

If the GPIB language is switched over to an 85xx model, the GPIB address is automatically switched over to 18 provided that the default address of the R&S FSW (20) is still set. If a different value is set, this value is maintained. Upon return to SCPI, this address remains unchanged.

The following table shows the default settings obtained after a change of the GPIB language and for the commands IP, KST and RESET:

Model	# of Trace Points	Start Freq.	Stop Freq.	Ref Level	Input Coupling
8566A/B	1001	2 GHz	22 GHz	0 dBm	AC
8568A/B	1001	0 Hz	1.5 GHz	0 dBm	AC
8560E	601	0 Hz	2.9 GHz	0 dBm	AC
8561E	601	0 Hz	6.5 GHz	0 dBm	AC
8562E	601	0 Hz	13.2 GHz	0 dBm	AC
8563E	601	0 Hz	26.5 GHz	0 dBm	AC
8564E	601	0 Hz	40 GHz	0 dBm	AC
8565E	601	0 Hz	50 GHz	0 dBm	AC
8594E	401	0 Hz	3 GHz	0 dBm	AC

Stop frequency

The stop frequency given in the table may be limited to the corresponding frequency range of the R&S FSW.

Command LF sets the stop frequency for 8566A/B to a maximum value of 2 GHz.

Test points (trace points)

The number of trace points is switched over only upon transition to the REMOTE state.

Emulating Other Instruments' Commands

11.13.2.5 Data Output Formats

In the case of the SCPI and IEEE488.2 standards, the output formats for numerical data are flexible to a large extent. The output format for the HP units, by contrast, is accurately defined with respect to the number of digits. The memory areas for reading instrument data have therefore been adapted accordingly in the remote-control programs for instruments of this series.

Therefore, in response to a query, the R&S FSW returns data of the same structure as that used by the original instruments; this applies in particular to the number of characters returned.

Two formats are currently supported when trace data is output: Display Units (command O1) and physical values (command O2, O3 or TDF P). As to the "Display Units" format, the level data of the R&S FSW is converted to match the value range and the resolution of the 8566/8568 series. Upon transition to the **REMOTE** state, the R&S FSW is reconfigured such that the number of test points (trace points) corresponds to that of the 85xx families (1001 for 8566A/B and 8568A/B, 601 for 8560E to 8565E, 401 for 8594E).

11.13.2.6 Trace Data Output Formats

All formats are supported for trace data output: display units (command O1), display units in two byte binary data (command O2 or TDF B and MDS W), display units in one byte binary data (command O4 or TDF B and MDS B) and physical values (commands O3 or TDF P). With format "display units" the level data is converted into value range and resolution of the 8566/8568 models. On transition to REMOTE state the number of trace points are reconfigured in order to be conform to the selected instrument model (1001 for 8566A/B and 8568 A/B, 601 for 8560E to 8565E, 401 for 8594E).

11.13.2.7 Trace Data Input Formats

Trace data input is only supported for binary date (TDF B, TDF A, TDF I, MDS W, MDS B).

11.13.2.8 GPIB Status Reporting

The assignment of status bits by commands R1, R2, R3, R4, RQS is supported.

The STB command and the serial poll respond with an 8-bit value with the following assignment:

Bit enabled by RQS	Description
0	not used (value 0)
1	Units key pressed
2	End of Sweep
3	Device Error

Emulating Other Instruments' Commands

Bit enabled by RQS	Description
4	Command Complete
5	Illegal Command
6	Service Request
7	not used (value 0)

Bits 0 and 7 are not used and always have the value 0.

Please note that the R&S FSW reports any key pressed on the front panel rather than only the unit keys if bit 1 was enabled.

Another difference is the behavior of bit 6 when using the STB? query. On the HP analyzers this bit monitors the state of the SRQ line on the bus. On the R&S FSW this is not possible. Therefore this bit is set, as soon as one of the bits 1 to 5 is set. It won't be reset by performing a serial poll.

11.13.3 Reference: Command Set of Emulated PSA Models

The R&S FSW analyzer family supports a subset of the GPIB commands of PSA89600 and ESA instruments.

Despite the differences in system architecture and device features, the supported commands have been implemented in a way to ensure a sufficiently high degree of correspondence with the original.

In many cases the selection of commands supported by the R&S FSW is sufficient to run an existing GPIB program without adaptation.

supported 89600 commands
CAL?
CLS
ESE
ESR?
DN?
ST?
OPC
OPT?
PCB
PRE
PSC
RST
SRE

Supported 89600 commands
*STB?
*TRG
*TST?
*WAI
:CALibration:AUTO OFF ON ALERt
:CALibration:TCORrections AUTO ON OFF
:CONFigure:WAVeform
:DIAGnostic:EABY ON OFF
:DIAGnostic:LATCh:VALue <numeric></numeric>
:DIAGnostic:LATCh:SELect <string></string>
:DISPlay:ANNotation:TITLe:DATA <string></string>
:DISPlay:ENABle OFF ON
:DISPlay:WINDow:TRACe:Y:[SCALe]:PDIVision <numeric></numeric>
:DISPlay:WINDow:TRACe:Y:[SCALe]:RLEVel <numeric></numeric>
:DISPlay:WINDow:TRACe:Y:[SCALe]:RLEVel:OFFSet <numeric></numeric>
:FORMat:BORDer NORMal SWAPped
:FORMat[:DATA] ASCii REAL UINT MATLAB, <numeric></numeric>
:INITiate:CONTinuous OFF ON
:INITiate[:IMMediate]
:INSTrument:CATalog?
:INSTrument:NSELect <numeric></numeric>
:MMEMory:CATalog? <dir_name></dir_name>
:MMEMory:COPY <'file_name1'>,<'file_name2'>
:MMEMory:DATA <'file_name'>, <definite_length_block></definite_length_block>
:MMEMory:DELete <'file_name'>
:MMEMory:LOAD:STATe 1,<'file_name'>
:MMEMory:LOAD:TRACe 1,<'file_name'>
:MMEMory:MDIRectory <'dir_name'>
:MMEMory:MOVE <'file_name1'>,<'file_name2'>
:MMEMory:STORe:STATe 1,<'file_name'>
:MMEMory:STORe:TRACe <numeric>,<'file_name'></numeric>
:READ:WAVform?
[:SENSe]:FREQuency:CENTer <numeric></numeric>

Supported 20000 commands
Supported 89600 commands
[:SENSe]:FREQuency:STARt < numeric>
[:SENSe]:FREQuency:STOP <numeric></numeric>
[:SENSe]:FREQuency:SPAN <numeric></numeric>
[:SENSe]:POWer:ATTenuation <numeric></numeric>
[:SENSe]:ROSCillator:EXTernal:FREQuency <numeric></numeric>
[:SENSe]:ROSCillator:OUTPut OFF ON
[:SENSe]:ROSCillator:SOURce INTernal EXTernal EAUTo
[:SENSe]:SPECtrum:TRIGger:SOURce EXTernal<1 2> IF IMMediate
[:SENSe]:WAVeform:ADC:RANGe P6
[:SENSe]:WAVeform:APER?
[:SENSe]:WAVeform:AVERage:TACount <numeric></numeric>
[:SENSe]:WAVeform:BWIDth:ACTive?
[:SENSe]:WAVeform:BWIDth:TYPE FLAT GAUSsian
[:SENSe]:WAVeform:IFGain <numeric></numeric>
[:SENSe]:WAVeform:IFPath NARRow WIDE
[:SENSe]:WAVeform:NCPTrace ON OFF
[:SENSe]:WAVeform:PDIT ON OFF
[:SENSe]:WAVeform:SRATe <numeric></numeric>
[:SENSe]:WAVeform:SWEep:TIME <numeric></numeric>
[:SENSe]:WAVeform:TRIGger:EOFFset?
[:SENSe]:WAVeform:TRIGger:INTerpolation ON OFF
[:SENSe]:WAVeform:TRIGger:SOURce EXTernal<1 2> IF IMMediate
:STATus:QUEStionable:CONDition?
:STATus:QUEStionable:ENABle <number></number>
:STATus:QUEStionable:NTRansition <number></number>
:STATus:QUEStionable:PTRansition <number></number>
:STATus:QUEStionable[:EVENt]?
:STATus:QUEStionable:CALibration:CONDition?
:STATus:QUEStionable:CALibration:ENABle <number></number>
:STATus:QUEStionable:CALibration:NTRansition <number></number>
:STATus:QUEStionable:CALibration:PTRansition <number></number>
:STATus:QUEStionable:CALibration[:EVENt]?
:STATus:QUEStionable:FREQuency:CONDition?

Emulating Other Instruments' Commands

Supported 89600 commands
:STATus:QUEStionable:FREQuency:ENABle <number></number>
:STATus:QUEStionable:FREQuency:NTRansition <number></number>
:STATus:QUEStionable:FREQuency:PTRansition <number></number>
:STATus:QUEStionable:FREQuency[:EVENt]?
:STATus:QUEStionable:INTegrity:CONDition?
:STATus:QUEStionable:INTegrity:ENABle <number></number>
:STATus:QUEStionable:INTegrity:NTRansition <number></number>
:STATus:QUEStionable:INTegrity:PTRansition <number></number>
:STATus:QUEStionable:INTegrity[:EVENt]?
:STATus:OPERation:CONDition?
:STATus:OPERation:ENABle <integer></integer>
:STATus:OPERation:NTRansition <integer></integer>
:STATus:OPERation:PTRansition <integer></integer>
:STATus:OPERation[:EVENt]?
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <integer></integer>
:SYSTem:DATE <year>,<month>,<day></day></month></year>
:SYSTem:ERRor[:NEXT]?
:SYSTem:KLOCK?
:SYSTem:MESSage <string></string>
:SYSTem:PRESet
:SYSTem:TIME <hour>,<minute>,<second></second></minute></hour>
:SYSTem:VERSion?
:TRACe:COPY <src_trace>,<dest_trace></dest_trace></src_trace>
:TRACe[:DATA] TRACE1 TRACE2 TRACE3 TRACE4 TRACE5 TRACE6, <definite_length_block> <comma_separated_ascii_data></comma_separated_ascii_data></definite_length_block>
:TRACe:MODE WRITe MAXHold MINHold VIEW BLANk
:TRIGger[:SEQuence]:DELay <numeric></numeric>
:TRIGger[:SEQuence]:DELay:STATe OFF ON 0 1
:TRIGger[:SEQuence]:EXTermal:DELay <numeric></numeric>
:TRIGger[:SEQuence]:EXTermal:LEVel <numeric></numeric>
:TRIGger[:SEQuence]:EXTermal:SLOPe POSitive NEGative
:TRIGger[:SEQuence]:HOLDoff <numeric></numeric>
:TRIGger[:SEQuence]:IF:DELay <numeric></numeric>
:TRIGger[:SEQuence]:IF:LEVel <numeric></numeric>

Emulating Other Instruments' Commands

Supported 89600 commands
:TRIGger[:SEQuence]:IF:SLOPe POSitive NEGative
:TRIGger[:SEQuence]:SLOPe POSitive NEGative
:TRIGger[:SEQuence]:SOURce IMMediate VIDeo EXTernal<1 2>
:TRIGger[:SEQuence]:VIDeo:LEVel <numeric></numeric>
:TRIGger[:SEQuence]:VIDeo:LEVel:FREQuency <freq></freq>

11.13.4 Reference: Command Set of Emulated PXA Models

The R&S FSW analyzer family supports a subset of the GPIB commands of PXA instruments.

Despite the differences in system architecture and device features, the supported commands have been implemented in a way to ensure a sufficiently high degree of correspondence with the original.

In many cases the selection of commands supported by the R&S FSW is sufficient to run an existing GPIB program without adaptation.

Table 11-11: Supported PXA commands

MMEMory:DELete <file_name>[, <directory_name>]</directory_name></file_name>
MMEMory:LOAD:STATe 1, <filename></filename>
MMEMory:MDIRectory <directory_name></directory_name>
MMEMory:MOVE <string>, <string>, <string>]</string></string></string>
MMEMory:RDIRectory <directory_name></directory_name>
MMEMory:STORe:STATe 1, <filename></filename>
[:SENSe]:FREQuency:CARRier[?] <freq></freq>
[:SENSe]:FREQuency:CARRier:SEARch
[:SENSe]:FREQuency:CARRier:TRACk:ACCuracy[?] LOW MED HIGH
[:SENSe]:FREQuency:CARRier:TRACk:SPAN[?] <freq></freq>
[:SENSe]:FREQuency:CARRier:TRACk:SPAN:AUTO[?] ON OFF 1 0
[:SENSe]:FREQuency:CARRier:TRACk[:STATe][?] OFF ON 0 1
[:SENSe]:LPLot:AMRejection[?} ON OFF 1 0
[:SENSe]:LPLot:AVERage:COUNt[?] <integer></integer>
[:SENSe]:LPLot:AVERage[:STATe][?] OFF ON 0 1
[:SENSe]:LPLot:AVERage:TCONtrol[?] EXPonential REPeat
[:SENSe]:LPLot:CANCellation:DELTa[?] <rel_ampl></rel_ampl>
[:SENSe]:LPLot:CANCellation[:STATe][?] OFF ON 0 1
[:SENSe]:LPLot:CANCellation:TRACe[?] <integer></integer>

Deprecated Commands

[:SENSe]:LPLot:DETector[:FUNCtion]?
[:SENSe]:LPLot:FILTering NONE LITTle MEDium MAXimum
[:SENSe]:LPLot:FILTering:LITTle
[:SENSe]:LPLot:FILTering:MAXimum
[:SENSe]:LPLot:FILTering:MEDium
[:SENSe]:LPLot:FILTering:NONE
[:SENSe]:LPLot:FREQuency:OFFSet:STARt[?] <freq></freq>
[:SENSe]:LPLot:FREQuency:OFFSet:STOP[?] <freq></freq>
[:SENSe]:LPLot:METHod[?] DANL PN
[:SENSe]:LPLot:ODRive[?] ON OFF 1 0
[:SENSe]:LPLot:ODRive:ATTenuation:ZERO[?] ON OFF 1 0
[:SENSe]:LPLot:SMOoth[?] <real></real>
TRACe[1] 2 3:LPLot:TYPE[?] RAW SMOothed VIEW BLANk

11.14 Deprecated Commands

The following commands are provided for compatibility to other signal analyzers only. For new remote control programs use the specified alternative commands.

CALCulate <n>:LIMit<k>:TRACe</k></n>	1168
DISPlay[:WINDow <n>]:STATe</n>	1169
DISPlay[:WINDow <n>]:TYPE</n>	1169
HCOPy:ITEM:ALL	1169
SOURce:EXTernal:FREQuency:SWEep[:STATe]	1169
SYSTem:COMPatible	1170
TRIGger[:SEQuence]:BBPower:HOLDoff	1170
TRIGger[:SEQuence]:RFPower:HOLDoff	1170

CALCulate<n>:LIMit<k>:TRACe <TraceNumber>

This command links a limit line to one or more traces.

Note that this command is maintained for compatibility reasons only. Limit lines no longer need to be assigned to a trace explicitely. The trace to be checked can be defined directly (as a suffix) in the new command to activate the limit check (see

 $\label{eq:calculate} $$\operatorname{CALCulate}_n>: \operatorname{LIMit}_k>: \operatorname{TRACe}_t>: \operatorname{CHECk} \text{ on page 1058}).$

Suffix:

<n> Window <k> Limit line

Deprecated Commands

Parameters:

<TraceNumber> 1 to 6

*RST: 1

Example: CALC:LIM2:TRAC 3

Assigns limit line 2 to trace 3.

DISPlay[:WINDow<n>]:STATe <State>

This command changes the display state of the selected measurement window.

Note that this command is maintained for compatibility reasons only. Use the LAYout commands for new remote control programs

(See Chapter 11.6.2, "Working with Windows in the Display", on page 872).

Suffix:

<n> Window

Parameters:

<State> ON | OFF

OFF

The window is closed. *RST: OFF

Usage: SCPI confirmed

DISPlay[:WINDow<n>]:TYPE <WindowType>

This command selects the results displayed in a measurement window.

Note that this command is maintained for compatibility reasons only. Use the LAYout commands for new remote control programs (see Chapter 11.6.2, "Working with Windows in the Display", on page 872).

The parameter values are the same as for LAYout: ADD[:WINDow]? on page 872.

Suffix:

<n> Window

HCOPy:ITEM:ALL

This command is maintained for compatibility reasons only. It has no effect.

Usage: SCPI confirmed

SOURce:EXTernal:FREQuency:SWEep[:STATe] <State>

Note that this command is maintained for compatibility reasons only. It is not required in new remote control programs.

This command activates or deactivates the frequency sweep for the selected generator.

Deprecated Commands

Parameters:

<State> ON | OFF

*RST: OFF

Example: SOUR: EXT: FREQ: SWE ON

Activates the frequency sweep for the external generator.

SYSTem:COMPatible < Mode>

This command enables compatibility to other spectrum and signal analyzers by R&S.

Compatibility is necessary, for example, regarding the number of sweep points.

Note that this command is maintained for compatibility reasons only. Use the SYST: LANG command for new remote control programs (see SYSTem: LANGuage on page 1132).

Parameters:

<Mode> DEFault | FSU | FSP | FSQ | FSV

Example: SYST:COMP FSP

TRIGger[:SEQuence]:BBPower:HOLDoff < Period>

This command defines the holding time before the baseband power trigger event.

The command requires the optional Digital Baseband Interface or the optional Analog Baseband Interface.

Note that this command is maintained for compatibility reasons only. Use the <code>TRIGger[:SEQuence]:IFPower:HOLDoff</code> on page 904 command for new remote control programs.

Parameters:

<Period> Range: 150 ns to 1000 s

*RST: 150 ns

Example: TRIG:SOUR BBP

Sets the baseband power trigger source.

TRIG:BBP:HOLD 200 ns Sets the holding time to 200 ns.

TRIGger[:SEQuence]:RFPower:HOLDoff <Time>

This command defines the holding time before the next trigger event. Note that this command is available for any trigger source, not just RF Power.

Note that this command is maintained for compatibility reasons only. Use the <code>TRIGger[:SEQuence]:IFPower:HOLDoff</code> on page 904 command for new remote control programs.

Parameters:

<Time> Default unit: S

Programming Examples

11.15 Programming Examples

Some advanced programming examples for complex measurement tasks are provided here.

- Service Request......1173

11.15.1 Programming Example: Performing a Basic Frequency Sweep

This example demonstrates how to configure and perform a basic frequency sweep measurement in a remote environment.

```
//----Preparing the measurement -----
//Resets the instrument
INIT: CONT OFF
//Selects single sweep mode.
//----Configuring the Frequency and Span-----
FREQ:CENT 100MHz
//Defines the center frequency
FREQ:SPAN 200MHz
//Sets the span to 100 MHz on either side of the center frequency.
//Activate signal tracking to keep the center frequency on the signal peak:
CALC:MARK:FUNC:STR ON
CALC:MARK:FUNC:STR:BAND 20MHz
CALC:MARK:FUNC:STR:THR -90dBm
CALC:MARK:FUNC:STR:TRAC 1
//After each sweep the maximum on trace 1 is searched within a range of 20 MHz
//around the center frequency. It must have a minimum power of -90dBm.
//-----Configuring the Bandwidth-----
BAND: AUTO OFF
BAND 1MHz
BAND: TYPE RRC
//Defines the RBW as 1 MHz using an RRC filter
BAND: VID: AUTO OFF
BAND: VID 500kHz
//Decouples the VBW from the RBW and decreases it to smooth the trace.
//----Configuring the Sweep-----
SENS:SWE:COUN 10
//Defines 10 sweeps to be performed in each measurement.
SENS:SWE:POIN 500
//During each sweep, 500 trace points will be measured.
SENS: SWE: TIME: AUTO OFF
```

Programming Examples

```
SENS:SWE:TIME 50ms
//Decouples the sweep time from the RBW,VBW and span and increases it to
//make the measurement more precise.
//----Configuring Attenuation-----
//Only if electronic attenuator is available:
//INP:EATT:STAT ON
//Switches on the electronic attenuator.
//INP:EATT 30dB
//Sets the electronic attenuation to 30 dB.
INP:ATT 10dB
//Sets the mechanical attenuation to 10 dB and couples the reference level
//to the attenuation instead of vice versa.
//----Configuring the Amplitude and Scaling-----
DISP:TRAC1:Y:RLEV -10dBm
//Sets the reference level to -10~\mathrm{dBm}.
DISP:TRAC1:Y:RLEV:OFFS 10dB
//Shifts the trace display in the diagram up by 10dB.
CALC:UNIT:POW V
//Sets the unit of the y-axis to Volt. The reference level is now 70.711 mV.
DISP:TRAC1:Y:SPAC LOG
//Uses logarithmic scaling with absolute values (V).
DISP:TRAC1:Y 110dB
//Increases the displayed range of the y-axis to 110 dB.
DISP:TRAC1:Y:RPOS 80PCT
//Shifts the display of the reference level down, it is no longer the top line
//in the diagram. The reference level is displayed as a red line.
//----Triggering-----
TRIG:SOUR IFP
TRIG:LEV:IFP -10dBm
TRIG:SLOP POS
TRIG:DTIM 50ms
TRIG:IFP:HYST 5dB
TRIG:HOLD 10ms
//Defines triggering when the second intermediate frequency rises to a level
//of -10 dBm, with a dropout time of 50 ms, a hysteresis of 5 dB and a delay
//of 10 ms.
SWE:EGAT ON
SWE:EGAT:TYPE EDGE
SWE:EGAT:LENG 5ms
//Defines gating. Values are measured for 5 ms after triggering.
OUTP:TRIG2:DIR OUTP
OUTP:TRIG2:OTYP UDEF
OUTP:TRIG2:LEV HIGH
OUTP:TRIG2:PULS:LENG 100us
```

Programming Examples

```
OUTP:TRIG2:PULS:IMM
//Configures a high trigger signal with a pulse length of 100 us to be output at
//the front TRIGGER INPUT/OUTPUT connector once.
//----Configuring the Trace-----
DISP:TRAC2 ON
DISP:TRAC2:MODE AVER
DISP:TRAC3 ON
DISP:TRAC3:MODE MAXH
//Configures 3 traces: 1 (default): clear/write; 2: average; 3: max hold
SENS:DET1 POS
SENS:DET2 RMS
SENS:DET3 POS
//Configures traces 1 and 3 to use the positive peak detector; trace 2 uses
//the RMS detector.
TRAC: COPY TRACE4, TRACE1
//Copies trace 1 to a new trace 4 which will then be averaged.
SENS:AVER:STAT4 ON
SENS:AVER:COUN 10
SENS:AVER:TYPE LIN
//Configures trace 4 to be averaged linearly over 10 sweeps.
CALC: MATH: STAT ON
CALC:MATH:MODE LIN
CALC:MATH (TRACE1-TRACE2)
CALC:MATH:POS 100
\/\/\/Calculates the linear difference between the measured and average values.
//The resulting trace is displayed at the top of the diagram.
//----Performing the Measurement-----
INIT; *WAI
//{\rm Initiates} a new measurement and waits until the last sweep has finished.
//-----Retrieving Results-----
TRAC:DATA? TRACE1
TRAC:DATA? TRACE2
TRAC:DATA? TRACE3
TRAC:DATA? TRACE4
//Returns one power and one frequency value per sweep point for each trace.
```

11.15.2 Service Request

The service request routine requires an extended initialization of the instrument in which the relevant bits of the transition and enable registers are set. In addition the service request event must be enabled in the VISA session.

Programming Examples

11.15.2.1 Initiate Service Request

```
REM ---- Example of initialization of the SRQ in the case
' of errors -----
PUBLIC SUB SetupSRQ()
CALL InstrWrite (analyzer, "*CLS") 'Reset status reporting system
CALL InstrWrite (analyzer, "*SRE 168") 'Enable service request for
'STAT: OPER, STAT: OUES and ESR
'register
CALL InstrWrite (analyzer, "*ESE 60") 'Set event enable bit for
'command, execution, device-
'dependent and query error
CALL InstrWrite (analyzer, "STAT:OPER:ENAB 32767")
'Set OPERation enable bit for
'all events
CALL InstrWrite (analyzer, "STAT:OPER:PTR 32767")
'Set appropriate OPERation
'Ptransition bits
CALL InstrWrite (analyzer, "STAT:QUES:ENAB 32767")
'Set questionable enable bits
'for all events
CALL InstrWrite (analyzer, "STAT:QUES:PTR 32767")
'Set appropriate questionable
'Ptransition bits
CALL viEnableEvent(analyzer, VI EVENT SERVICE REQ, VI QUEUE, 0)
'Enable the event for service
Status = viWaitOnEvent(analyzer, VI_EVENT_SERVICE_REQ, SRQWaitTimeout, VI_NULL,
IF (status = VI SUCCESS) THEN CALL Srq
'If SRO is recognized =>
'subroutine for evaluation
END SUB
Private mbSession As MessageBasedSession
Sub Main()
   Console.WriteLine("Example of initialization
              of the SRQ in the case of errors.")
   Dim SRQWaitTimeout = 4000 ' Timeout As Integer for WaitOnEvent
   'Opening session
   Try
       'FSW is alias, instead of use resource string.
              'For example on TCP use TCPIP0::192.168.1.2::inst0::INSTR
       mbSession = CType(ResourceManager.GetLocalManager().Open("FSW"),
                                  MessageBasedSession)
       mbSession.TerminationCharacterEnabled = True
```

Programming Examples

```
mbSession.Write("*SRE 168") 'Enable service request for
        'STAT:OPER, STAT:QUES and ESR register
        mbSession.Write("*ESE 60") 'Set event enable bit for
        'command, execution, device-dependent and query error
        mbSession.Write("STAT:OPER:ENAB 32767")
        'Set OPERation enable bit for all events
        mbSession.Write("STAT:OPER:PTR 32767")
        'Set appropriate OPERation Ptransition bits
        mbSession.Write("STAT:QUES:ENAB 32767")
        'Set questionable enable bits for all events
        mbSession.Write("STAT:QUES:PTR 32767")
        'Set appropriate questionable Ptransition bits
        Console.WriteLine("Wait on event - Blocking")
        mbSession.EnableEvent(MessageBasedSessionEventType.ServiceRequest,
                                           EventMechanism.Queue)
        'Enable the event for service request
        1_____
        ' Your command plase use here
        ' mbSession.Write("Your command")
        Dim Status = mbSession.WaitOnEvent(
                           MessageBasedSessionEventType.ServiceRequest, SRQWaitTimeout)
        If (Status.EventType() =
                           MessageBasedSessionEventType.ServiceRequest) Then
            Console.WriteLine("SRQ is recognized")
            'If SRQ is recognized => subroutine for evaluation
           Srq()
        End If
    Catch exp As Exception
        Console.WriteLine(exp.Message)
   End Try
Catch exp As InvalidCastException
    {\tt Console.WriteLine} \, (\hbox{\tt "Resource selected must be a message-based session"})
Catch exp As Exception
   Console.WriteLine(exp.Message)
End Try
' Close session
mbSession.Dispose()
' Wait for end
Console.WriteLine("Press any key to end")
Console.ReadKey()
```

11.15.2.2 Waiting for the Arrival of a Service Request

There are basically two methods of waiting for the arrival of a service request:

End Sub

Programming Examples

Blocking (user inputs not possible):

This method is appropriate if the waiting time until the event to be signaled by an SRQ is short (shorter than the selected timeout), if no response to user inputs is required during the waiting time, and if – as the main criterion – the event is absolutely certain to occur.

Reason:

From the time the viWaitOnEvent() function is called until the occurrence of the expected event, it does not allow the program to respond to mouse clicks or key entries during the waiting time. Moreover, it returns an error if the SRQ event does not occur within the predefined timeout period.

The method is, therefore, in many cases not suitable for waiting for measurement results, especially when using triggered measurements.

The following function calls are required:

```
Status = viWaitOnEvent(analyzer, VI_EVENT_SERVICE_REQ, SRQWaitTimeout, VI_NULL,
VI NULL)
'Wait for service request user
'inputs are not possible during
'the waiting time!
IF (status = VI SUCCESS) THEN CALL Srq
'If SRQ is recognized =>
'subroutine for evaluation
'----- Sweep in first Spectrum Tab and query marker -----
Dim Status = mbSession.WaitOnEvent(
MessageBasedSessionEventType.ServiceRequest, SRQWaitTimeout)
'Wait for service request user inputs are not possible
'during the waiting time!
If (Status.EventType() = MessageBasedSessionEventType.ServiceRequest) Then
'If SRQ is recognized => subroutine for evaluation
   Srq()
End If
```

Non-blocking (user inputs possible):

This method is recommended if the waiting time until the event to be signaled by an SRQ is long (longer than the selected timeout), and user inputs should be possible during the waiting time, or if the event is not certain to occur. This method is, therefore, the preferable choice for waiting for the end of measurements, i.e. the output of results, especially in the case of triggered measurements.

The method necessitates a waiting loop that checks the status of the SRQ line at regular intervals and returns control to the operating system during the time the expected event has not yet occurred. In this way, the system can respond to user inputs (mouse clicks, key entries) during the waiting time.

It is advisable to employ the Hold() auxiliary function, which returns control to the operating system for a selectable waiting time (see section Waiting Without Blocking the Keyboard and Mouse), so enabling user inputs during the waiting time.

Programming Examples

```
result% = 0
For i = 1 To 10 'Abort after max. 10 loop
'iterations
Status = viWaitOnEvent(analyzer, VI EVENT SERVICE REQ, VI TMO IMMEDIATE, VI NULL,
VI NULL)
'Check event queue
If (status = VI SUCCESS) Then
result% = 1
CALL Srq 'If SRQ is recognized =>
'subroutine for evaluation
Else
CALL Hold(20) 'Call hold function with
'20 ms 'waiting time. User inputs
'are possible.
Endif
Next i
If result% = 0 Then
Debug.Print "Timeout Error; Program aborted"'Output error message
STOP 'Stop software
Endif
```

11.15.2.3 Waiting Without Blocking the Keyboard and Mouse

A frequent problem with remote control programs using Visual Basic is to insert waiting times without blocking the keyboard and the mouse.

If the program is to respond to user inputs also during a waiting time, control over the program events during this time must be returned to the operating system. In Visual Basic, this is done by calling the <code>DoEvents</code> function. This function causes keyboard-or mouse-triggered events to be executed by the associated elements. For example, it allows the operation of buttons and input fields while the user waits for an instrument setting to be completed.

The following programming example describes the <code>Hold()</code> function, which returns control to the operating system for the period of the waiting time selectable in milliseconds.

Programming Examples

The waiting procedure is activated simply by calling Hold (<Waiting time in milliseconds>).

11.15.2.4 Service Request Routine

A service request is processed in the service request routine.

The variables userN% and userM% must be pre-assigned usefully!

```
REM ----- Service request routine -----
Public SUB Srq()
ON ERROR GOTO noDevice 'No user existing
CALL viReadSTB(analyzer, STB%) 'Serial poll, read status byte
IF STB% > 0 THEN 'This instrument has bits set in
the STB
SRQFOUND% = 1
IF (STB% AND 16) > 0 THEN CALL Outputqueue
IF (STB% AND 4) > 0 THEN CALL ErrorQueueHandler
IF (STB% AND 8) > 0 THEN CALL Questionablestatus
IF (STB% AND 128) > 0 THEN CALL Operationstatus
IF (STB% AND 32) > 0 THEN CALL Esrread
END IF
noDevice:
END SUB 'End of SRQ routine
REM ----- Subroutine for evaluation Service Request Routine -----
Public Sub Srq()
   Try
       Dim mySTB As Short = mbSession.ReadStatusByte()
                              'Serial poll, read status byte
       Console.WriteLine("Reading Service Request Routine:" + mySTB.ToString())
       If mySTB > 0 Then 'This instrument has bits set in the STB
           If (mySTB And 16) > 0 Then Call Outputqueue()
           If (mySTB And 4) > 0 Then Call ErrorQueueHandler()
           If (mySTB And 8) > 0 Then Call Questionablestatus()
           If (mySTB And 128) > 0 Then Call Operationstatus()
           If (mySTB And 32) > 0 Then Call Esrread()
       End If
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
End Sub 'End of SRQ routine
```

Programming Examples

Reading out the status event registers, the output buffer and the error/event queue is effected in subroutines.

11.15.2.5 Reading Out the Output Buffer

11.15.2.6 Reading Error Messages

```
REM ----- Subroutine for reading the error queue ------
Public SUB ErrorOueueHandler()
ERROR$ = SPACE$(100) 'Make space for error variable
CALL InstrWrite (analyzer, "SYSTEM:ERROR?")
CALL InstrRead(analyzer, ERROR$)
Debug.Print "Error Description:"; ERROR$
REM ----- Subroutine for reading the error queue ------
Sub ErrorQueueHandler()
   Dim result As String
   Dim hasErr As Boolean = True
   Dο
      mbSession.Write("SYST:ERR?")
      result = mbSession.ReadString()
      Dim parts As String() = result.Split(",")
      If parts(0) = 0 Then
         hasErr = False
          Console.WriteLine(result)
      Else
          Console.WriteLine(result)
      End If
```

Programming Examples

```
 \begin{tabular}{ll} Loop While has Err \\ End Sub \end{tabular}
```

11.15.2.7 Evaluation of SCPI Status Registers

```
REM ----- Subroutine for evaluating Questionable Status Register ------
Public SUB Questionablestatus()
Ques$ = SPACE$(20)
'Preallocate blanks to text
'variable
CALL InstrWrite (analyzer, "STATus:QUEStionable:EVENt?")
CALL InstrRead(analyzer, Ques$)
Debug.Print "Questionable Status:"; Ques$
END SUB
REM ----- Subroutine for evaluating Operation Status Register ------
Public SUB Operationstatus()
Oper$ = SPACE$(20) 'Preallocate blanks to text
'variable
CALL InstrWrite (analyzer, "STATus:OPERation:EVENt?")
CALL InstrRead(analyzer, Oper$)
Debug.Print "Operation Status:"; Oper$
END SUB
REM ----- Subroutine for evaluating Questionable Status Register -----
Public Sub Questionablestatus()
   Dim myQSR As String = Nothing
      myQSR = mbSession.Query("STATus:QUEStionable:EVENt?") 'Read QSR
      Console.WriteLine("Questionable Status:" + myQSR)
   Catch exp As Exception
      Console.WriteLine(exp.Message)
   End Try
End Sub
REM ----- Subroutine for evaluating Operation Status Register ------
Public Sub Operationstatus()
   Dim myOSR As String = Nothing
   Trv
       myOSR = mbSession.Query("STATus:OPERation:EVENt?") 'Read OSR
       Console.WriteLine("Operation Status:" + myOSR)
   Catch exp As Exception
      Console.WriteLine(exp.Message)
   End Try
End Sub
```

Programming Examples

11.15.2.8 Evaluation of Event Status Register

```
REM ----- Subroutine for evaluating the Event Status Register ------
Public SUB Esrread()
Esr$ = SPACE$(20) 'Preallocate blanks to text
'variable
CALL InstrWrite (analyzer, "*ESR?") 'Read ESR
CALL InstrRead(analyzer, Esr$)
IF (VAL(Esr$) AND 1) > 0 THEN Debug.Print "Operation complete"
IF (VAL(Esr$) AND 2) > 0 THEN Debug.Print "Request Control"
IF (VAL(Esr\$) AND 4) > 0
THEN Debug.Print "Query Error"
IF (VAL(Esr\$) AND 8) > 0
THEN Debug. Print "Device dependent error"
IF (VAL(Esr\$) AND 16) > 0
THEN Debug.Print "Execution Error; Program aborted"'Output error message
STOP 'Stop software
END IF
IF (VAL(Esr\$) AND 32) > 0
THEN Debug. Print "Command Error; Program aborted" Output error message
STOP 'Stop software
IF (VAL(Esr$) AND 64) > 0 THEN Debug.Print "User request"
IF (VAL(Esr$) AND 128) > 0 THEN Debug.Print "Power on"END SUB
REM ----- Subroutine for evaluating the Event Status Register ------
Public Sub Esrread()
   Try
       Dim myESR As Short = mbSession.Query("*ESR?") 'Read ESR
       If (myESR And 1) > 0 Then Console.WriteLine("Operation complete")
       If (myESR And 2) > 0 Then Console.WriteLine("Request Control")
       If (myESR And 4) > 0 Then Console.WriteLine("Query Error")
       If (myESR And 8) > 0 Then Console.WriteLine("Device dependent error")
       If (myESR And 16) > 0 Then
           Console.WriteLine("Execution Error; Program aborted") 'Output error message
           Stop 'Stop software
       If (myESR And 32) > 0 Then
           Console.WriteLine("Command Error; Program aborted") 'Output error message
           Stop 'Stop software
       If (myESR And 64) > 0 Then Console.WriteLine("User request")
       If (myESR And 128) > 0 Then Console.WriteLine("Power on")
   Catch exp As Exception
       Console.WriteLine(exp.Message)
   End Try
End Sub
```

R&S®FSW Maintenance

12 Maintenance

The R&S FSW does not require regular maintenance. Maintenance is essentially restricted to cleaning the R&S FSW. It is however advisable to check the nominal data from time to time.

NOTICE

Instrument damage caused by cleaning agents

Cleaning agents contain substances that may damage the instrument. For example, cleaning agents that contain a solvent may damage the front panel labeling, plastic parts, or the display.

Never use cleaning agents such as solvents (thinners, acetone, etc), acids, bases, or other substances.

The outside of the instrument can be cleaned sufficiently using a soft, lint-free dust cloth.

The storage temperature range for the R&S FSW is specified in the data sheet. The instrument must be protected against dust if it is to be stored for a long period.

When transporting or shipping the instrument, it is advisable to use the original packing material (especially the two protective covers for the front and rear panel).

Error Information

13 Optimizing and Troubleshooting

If the results do not meet your expectations, the following sections may contain helpful hints and information.

Error Information	1183
Error Messages in Remote Control Mode	1185
Troubleshooting Remote Operation	
Minimizing the Measurement Duration	
Improving Averaging Results	
Miscellaneous Troubleshooting Hints	
Obtaining Technical Support	

13.1 Error Information

If errors or irregularities are detected, a keyword and an error message, if available, are displayed in the status bar.

Depending on the type of message, the status message is indicated in varying colors.

Table 13-1: Status bar information - color coding

Color	Туре	Description
Red	Error	An error occurred at the start or during a measurement, e.g. due to missing data or wrong settings, so that the measurement cannot be started or completed correctly.
Orange	Warning	An irregular situation occurred during measurement, e.g. the settings no longer match the displayed results, or the connection to an external device was interrupted temporarily.
Gray	Information	Information on the status of individual processing steps.
No color	No errors	No message displayed - normal operation.
Green	Measurement successful	Some applications visualize that the measurement was successful by showing a message.

If any error information is available for a measurement channel, an exclamation mark is displayed next to the channel name (**I**). This is particularly useful when the MultiView tab is displayed, as the status bar in the MultiView tab always displays the information for the currently selected measurement only.

Furthermore, a status bit is set in the STATus:QUEStionable:EXTended:INFO register for the application concerned (see "STATus:QUEStionable:EXTended:INFO Register" on page 665). Messages of a specific type can be queried using the SYST:ERR:EXT? command, see SYSTem:ERRor:EXTended? on page 1121.

The following keywords are used:

Error Information

DATA ERR	For the optional Digital Baseband Interface only:
	Error in digital I/Q input data
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.
FIFO OVLD	For Digital Baseband Interface (R&S FSW-B17) only:
	Input sample rate from connected instrument is too high
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.
IF OVLD	Overload of the IF signal path in the A/D converter or in the digital IF. Increase the reference level.
INPUT OVLD	The signal level at the RF input connector exceeds the maximum.
	The RF input is disconnected from the input mixer to protect the device. To re-enable measurement, decrease the level at the RF input connector and reconnect the RF input to the mixer input.
LOUNL	Error in the instrument's frequency processing hardware was detected.
NO REF	Instrument was set to an external reference but no signal was detected on the reference input.
OVEN	The optional OCXO reference frequency has not yet reached its operating temperature. The message usually disappears a few minutes after power has been switched on.
OVLD	Overload of the input signal path after the input mixer; (only when RF INPUT path is NOT used, e.g. for input from the optional Digital Baseband Interface or the optional Analog Baseband Interface). Reduce the input level.
PLL UNLOCK	For the optional Digital Baseband Interface only:
	Error in digital I/Q input data
	For details on the optional Digital Baseband Interface, see the R&S FSW I/Q Analyzer User Manual.
RF OVLD	Overload of the input mixer or of the analog IF path. Increase the RF attenuation (for RF input). Reduce the input level (for digital input)
UNCAL	One of the following conditions applies: Correction data has been switched off. No correction values are available, for example after a firmware update. Record the correction data by performing a self alignment (For details refer to Chapter 3.1.1.6, "Performing a Self-Alignment and a Selftest", on page 25).
WRONG_FW	The firmware version is out-of-date and does not support the currently installed hardware. Until the firmware version is updated, this error message is displayed and self-alignment fails. (For details refer to Chapter 9.3.4.4, "Firmware Updates", on page 606).
	,

13.2 Error Messages in Remote Control Mode

In remote control mode error messages are entered in the error/event queue of the status reporting system and can be queried with the command SYSTem: ERROr?. The answer format of R&S FSW to the command is as follows:

<error code>, "<error text with queue query>; <remote control
command concerned>"

The indication of the remote control command with prefixed semicolon is optional.

Example:

The command TEST: COMMAND generates the following answer to the query SYSTem: ERROR?

-113, "Undefined header; TEST: COMMAND"

There are two types of error messages:

- Error messages defined by SCPI are marked by negative error codes. These messages are defined and described in the SCPI standard and not listed here.
- Device-specific error messages use positive error codes. These messages are described below.

Table 13-2: Device-specific error messages

Error code	Error text in the case of queue poll Error explanation
1006	Failed to connect to server (code. 1006)
	LXI web browser access to the instrument has been deactivated.
1052	Frontend LO is Unlocked
	This message is displayed when the phase regulation of the local oscillator fails in the RF front-end.
1060	Trigger-Block Gate Delay Error- gate length < Gate Delay
	This message is displayed when the gate signal length is not sufficient for the pull-in delay with a predefined gate delay.
1064	Tracking LO is Unlocked
	This message is displayed when the phase regulation of the local oscillator fails on the external generator module.
2028	Hardcopy not possible during measurement sequence
	This message is displayed when a printout is started during scan sequences that cannot be interrupted. Such sequences are for example: Recording the system error correction data (alignment) Instrument self-test
	In such cases synchronization to the end of the scan sequence should be performed prior to starting the printout.

Troubleshooting Remote Operation

Error code	Error text in the case of queue poll Error explanation
2033	Printer Not Available
	This message is displayed when the selected printer is not included in the list of available output devices. A possible cause is that the required printer driver is missing or incorrectly installed.
2034	CPU Temperature is too high
	This message is displayed when the temperature of the processor exceeds 70 °C.

Table 13-3: Power Sensor errors

Status bar message	Description
Zeroing could not be per- formed	Zeroing could not be performed because the RF power applied is too high.
Power sensor zero failed	

13.3 Troubleshooting Remote Operation

If problems arise during measurement in remote operation, try the following methods to solve them.

Incompleted sequential commands - blocked remote channels

If a sequential command cannot be completed, for example because a triggered sweep never receives a trigger, the remote control program will never finish and the remote channel to the R&S FSW is blocked for further commands. In this case, you must interrupt processing on the remote channel in order to abort the measurement.

To regain control over a blocked remote channel

Usually, if you wait a minute for the VISA connection to detect the lost connection and clear the control channel by itself, you can then re-establish the connection again. If this fails, try the following:

- 1. Press "Local" on the front panel of the R&S FSW to return to manual operation (if not disabled). Then re-establish the connection.
- 2. Send a "Device Clear" command from the control instrument to the R&S FSW to clear all currently active remote channels. Depending on the used interface and protocol, send the following commands:

Visa: viClear()GPIB: ibclr()RSIB: RSDLLibclr()

The remote channel currently processing the incompleted command is then ready to receive further commands again.

Minimizing the Measurement Duration

- 3. On the remote channel performing the measurement, send the SCPI command ABORt to abort the current measurement and reset the trigger system.
- 4. If the R&S FSW still does not react to the remote commands, switch it off and back

Ignored commands

When a remote command attempts to define incompatible settings, the command is ignored and the instrument status remains unchanged, i.e. other settings are not automatically adapted. Therefore, control programs should always define an initial instrument status (e.g. using the *RST command) and then implement the required settings.

Detecting false commands

If a remote program does not provide the expected results and you are using a GPIB connection, you can log the commands and any errors that may occur. To activate the SCPI error log function, in the "Network + Remote" dialog box, in the "GPIB" tab, select"I/O Logging".

All remote control commands received by the R&S FSW are recorded in the following log file:

```
C:\R S\instr\ScpiLogging\ScpiLog.txt
```

Logging the commands may be extremely useful for debug purposes, e.g. in order to find misspelled keywords in control programs. However, remember to turn off the logging function after debugging to avoid unnecessary access to the hard drive and use of storage space.

13.4 Minimizing the Measurement Duration

If you want to minimize the measurement duration, try the following methods to optimize the measurement:

- Reduce the span of the measurement to the relevant parts of the signal only.
- Increase the RBW to minimize the measurement time; however, consider the requirements of the standard if you need to measure according to standard!
- Take advantage of the speed optimization mode in the "Sweep" settings if you do not require the larger dynamic range (see "Optimization" on page 424).
- Reduce the **sweep time** and thus the amount of data to be captured and calculated; however, consider the requirements regarding the standard deviation.
- To determine average (or peak) values, use an RMS detector (or peak detector) with a higher sweep time instead of trace averaging to obtain better average power results in less time. Furthermore, enforce the use of the sweep type "FFT" (as opposed to "Auto"; in Sweep mode, the averaging effect of the RMS detector may be less efficient).
- When performing multiple measurements, use multiple measurement channels
 to switch between measurements rather than changing the settings within one
 channel repeatedly.

Take advantage of the **Sequencer** function to switch between multiple measurements automatically or continuously (see also Chapter 4.4, "Running a Sequence of Measurements", on page 109).

13.5 Improving Averaging Results

Instead of **trace averaging**, use an RMS detector with a higher sweep time to obtain better average power results in less time. Furthermore, enforce the use of the **sweep type "FFT"** (as opposed to "Auto"; in Sweep mode, the averaging effect of the RMS detector may be less efficient).

In FFT mode, FFTs are calculated per bin and combined using the RMS detector. For trace averaging, on the other hand, the local oscillator must be switched repeatedly for each trace, which takes additional time.

Generally, a higher **sweep time** leads to more data to be averaged and thus stabilizes the results. In FFT mode, a higher sweep time means more FFTs are calculated and combined per bin.

Thus, in the same capture time, the FFT mode with an RMS detector can provide better results than an averaged trace.

13.6 Miscellaneous Troubleshooting Hints

Power levels for low frequency signals not correct	1188
Invalid trace display	1188
Data capturing takes too long	
Multiple user access to one instrument	1189
Web browser access to instrument fails	1189
The transducer factors/limit lines applied to my measurement are differ	ent to those dis-
played in the Transducer / Lines dialog box	1189

Power levels for low frequency signals not correct

By default, the R&S FSW uses AC coupling for RF input. For very low frequencies, the input signal may be distorted with this setting. In this case, use DC coupling instead. To change the setting, select INPUT/OUPUT > "Input Source Config > Radio Frequency > Input Coupling > DC".

Invalid trace display

If output to the IF 2 GHZ OUT connector is activated, the measured values are no longer sent to the display; thus, the trace data currently displayed on the R&S FSW becomes invalid. A message in the status bar indicates this situation.

Miscellaneous Troubleshooting Hints

Data capturing takes too long

Particularly for FFT sweeps, the time required to process the data may be considerably longer than the time required to capture the data. Thus, if you only consider the defined sweep time, you may assume an error has occurred if the measurement takes longer than expected.

However, while the sweep time only defines the time in which data is actually captured, the total sweep *duration* includes the time required for capturing *and processing* the data. Thus, for FFT sweeps in the Spectrum application, the sweep duration is now also indicated in the channel bar, behind the sweep time. In remote operation, the estimated sweep duration can be queried for all sweep modes (also zero span and frequency sweeps).

Tip: To determine the necessary timeout for data capturing in a remote control program, double the estimated time and add 1 second.

Remote command:

[SENSe:] SWEep:DURation? on page 891

Multiple user access to one instrument

Using the R&S FSW's LXI browser interface, several users can access *and operate* the same instrument simultaneously. This is useful for troubleshooting or training purposes.

Type the instrument's host name or IP address in the address field of the browser on your PC, for example "http://10.113.10.203". The instrument home page (welcome page) opens.

For details see "LXI Web Browser Interface" on page 639.

Note: This function can be deactivated for the instrument. After a firmware update, it is automatically activated again.

Web browser access to instrument fails

If an error message ("Failed to connect to server (code. 1006)") is displayed in the web browser instead of the instrument's user interface then the LXI web browser interface was probably deactivated (see Chapter 10.5.6, "How to Deactivate the Web Browser Interface", on page 699).

The transducer factors/limit lines applied to my measurement are different to those displayed in the Transducer / Lines dialog box

If a transducer file was in use when the save set was stored (with the save item "Current Settings" only) it is anticipated that these transducer values should remain valid after every recall of that save set. Thus, even if the transducer file is changed and the original save set file is recalled later, the *originally stored* transducer values are recalled and applied to the measurement. In the "Transducer" dialog box, however, the *changed* transducer file values are displayed as no updated transducer file was loaded.

The same applies to limit line settings.

If you want to apply the changed transducer values after recalling the save set you must force the application to reload the transducer file. To do so, simply open the "Edit Transducer" dialog box (see Chapter 9.3.2, "Transducer Settings", on page 597) and toggle the "X-Axis" option from "lin" to "log" and back. Due to that change, the transducer file is automatically reloaded, and the changed transducer values are applied to the current measurement. Now you can create a new save set with the updated transducer values.

Similarly, if you want to apply the changed limit values after recalling the save set you must force the application to reload the limit file. To do so, simply open the "Edit Limit Line" dialog box (see Chapter 7.5.3.2, "Limit Line Settings and Functions", on page 542) and toggle the "Y-Axis" unit. Due to that change, the limit line file is automatically reloaded, and the changed limit values are applied to the current measurement. Now a new save set with the updated limit values can be created.

13.7 Obtaining Technical Support

If problems occur, the instrument generates error messages which in most cases will be sufficient for you to detect the cause of an error and find a remedy.

Error messages are described in Chapter 13, "Optimizing and Troubleshooting", on page 1183.

In addition, our customer support centers are there to assist you in solving any problems that you may encounter with your R&S FSW. We will find solutions more quickly and efficiently if you provide us with the information listed below.

- System Configuration: The "System Configuration" dialog box (in the "Setup" menu) provides information on:
 - Hardware Info: hardware assemblies
 - Versions and Options: the status of all software and hardware options installed on your instrument
 - System Messages: messages on any errors that may have occurred

An .xml file with information on the system configuration ("device footprint") can be created automatically (using the DIAGnostic: SERVice: SINFo command or as described in "To collect the support information" on page 1191).

- Error Log: The RSError.log file (in the
 C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\log directory)
 contains a chronological record of errors.
- Support file: a *.zip file with important support information can be created automatically (in the
 - C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\user directory). The *.zip file contains the system configuration information ("device footprint"), the current eeprom data and a screenshot of the screen display.

See also Chapter 9.3.5, "Service Functions", on page 609.

Obtaining Technical Support

To collect the support information

- 1. Press the SETUP key.
- 2. Select "Service > R&S Support" and then "Create R&S Support Information".

The file is stored as

C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\user\
<inst_model>_<serial-no>_<date_and_time>.zip
for example

C:\Program Files (x86)\Rohde-Schwarz\FSW\<version>\user\ $FSW-26_1312.8000K26-100005-xx_20150420_113652.zip$

Attach the support file to an e-mail in which you describe the problem and send it to the customer support address for your region as listed in the Internet (http://www.rohde-schwarz.com/en/service-support/customer_support_107711.html).

Packing and transporting the instrument

If the instrument needs to be transported or shipped, e.g. due to damage during delivery, observe the notes described in Chapter 3.1.1.1, "Unpacking and Checking the Instrument", on page 21.

List of remote commands (base unit)

[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]</t></n>	969
[SENSe:][WINDow <n>:]DETector<t>[:FUNCtion]:AUTO</t></n>	970
[SENSe:]ADJust:ALL	914
[SENSe:]ADJust:CONFigure:DURation	914
[SENSe:]ADJust:CONFigure:DURation:MODE	915
[SENSe:]ADJust:CONFigure:HYSTeresis:LOWer	915
[SENSe:]ADJust:CONFigure:HYSTeresis:UPPer	915
[SENSe:]ADJust:CONFigure:TRIG	916
[SENSe:]ADJust:FREQuency	916
[SENSe:]ADJust:LEVel	916
[SENSe:]AVERage <n>:COUNt</n>	968
[SENSe:]AVERage <n>:TYPE</n>	969
[SENSe:]AVERage <n>[:STATe<t>]</t></n>	968
[SENSe:]BANDwidth:VIDeo	889
[SENSe:]BANDwidth:VIDeo:AUTO	889
[SENSe:]BANDwidth:VIDeo:RATio	890
[SENSe:]BANDwidth:VIDeo:TYPE	890
[SENSe:]BANDwidth[:RESolution]	887
[SENSe:]BANDwidth[:RESolution]:AUTO	888
[SENSe:]BANDwidth[:RESolution]:FFT	895
[SENSe:]BANDwidth[:RESolution]:RATio	888
[SENSe:]BANDwidth[:RESolution]:TYPE	888
[SENSe:]BWIDth:VIDeo	889
[SENSe:]BWIDth:VIDeo:AUTO	889
[SENSe:]BWIDth:VIDeo:RATio	890
[SENSe:]BWIDth:VIDeo:TYPE	890
[SENSe:]BWIDth[:RESolution]	887
[SENSe:]BWIDth[:RESolution]:AUTO	888
[SENSe:]BWIDth[:RESolution]:FFT	895
[SENSe:]BWIDth[:RESolution]:RATio	888
[SENSe:]BWIDth[:RESolution]:TYPE	888
[SENSe:]CORRection:COLLect[:ACQuire]	944
[SENSe:]CORRection:CVL:BAND	928
[SENSe:]CORRection:CVL:BIAS	929
[SENSe:]CORRection:CVL:CATAlog?	929
[SENSe:]CORRection:CVL:CLEAr	
[SENSe:]CORRection:CVL:COMMent	930
[SENSe:]CORRection:CVL:DATA	930
[SENSe:]CORRection:CVL:HARMonic	931
[SENSe:]CORRection:CVL:MIXer	931
[SENSe:]CORRection:CVL:PORTs	
[SENSe:]CORRection:CVL:SELect	
[SENSe:]CORRection:CVL:SNUMber	
[SENSe:]CORRection:METHod	
[SENSe:]CORRection:RECall	
[SENSe:]CORRection:TRANsducer:ADJust:RLEVel[:STATe]	
ISENSa:ICOPPaction:TPANeducar:CAT2	1105

[SENSe:]CORRection:TRANsducer:COMMent	
[SENSe:]CORRection:TRANsducer:DATA	1106
[SENSe:]CORRection:TRANsducer:DELete	1106
[SENSe:]CORRection:TRANsducer:GENerator	946
[SENSe:]CORRection:TRANsducer:SCALing	1107
[SENSe:]CORRection:TRANsducer:SELect	1107
[SENSe:]CORRection:TRANsducer:UNIT	1107
[SENSe:]CORRection:TRANsducer[:STATe]	1107
[SENSe:]CORRection[:STATe]	945
[SENSe:]DEMod:SQUelch:LEVel	1035
[SENSe:]DEMod:SQUelch[:STATe]	1036
[SENSe:]ESPectrum <sb>:BWID</sb>	792
[SENSe:]ESPectrum <sb>:FILTer[:RRC]:ALPHa</sb>	792
[SENSe:]ESPectrum <sb>:FILTer[:RRC][:STATe]</sb>	792
[SENSe:]ESPectrum <sb>:HighSPeed</sb>	778
[SENSe:]ESPectrum <sb>:MSR:APPLy</sb>	798
[SENSe:]ESPectrum <sb>:MSR:BAND</sb>	799
[SENSe:]ESPectrum <sb>:MSR:BCATegory</sb>	799
[SENSe:]ESPectrum <sb>:MSR:CLAS</sb>	800
[SENSe:]ESPectrum <sb>:MSR:GSM:CARR</sb>	801
[SENSe:]ESPectrum <sb>:MSR:GSM:CPResent</sb>	802
[SENSe:]ESPectrum <sb>:MSR:LTE:CPResent</sb>	802
[SENSe:]ESPectrum <sb>:MSR:MPOWer</sb>	803
[SENSe:]ESPectrum <sb>:MSR:RFBWidth</sb>	803
[SENSe:]ESPectrum <sb>:PRESet:RESTore</sb>	774
[SENSe:]ESPectrum <sb>:PRESet:STORe</sb>	775
[SENSe:]ESPectrum <sb>:PRESet[:STANdard]</sb>	774
[SENSe:]ESPectrum <sb>:RANGe<range>:BANDwidth:VIDeo</range></sb>	778
[SENSe:]ESPectrum <sb>:RANGe<range>:BANDwidth[:RESolution]</range></sb>	778
[SENSe:]ESPectrum <sb>:RANGe<range>:COUNt?</range></sb>	779
[SENSe:]ESPectrum <sb>:RANGe<range>:DELete</range></sb>	779
[SENSe:]ESPectrum <sb>:RANGe<range>:FILTer:TYPE</range></sb>	779
[SENSe:]ESPectrum <sb>:RANGe<range>:INPut:ATTenuation</range></sb>	781
[SENSe:]ESPectrum <sb>:RANGe<range>:INPut:ATTenuation:AUTO</range></sb>	782
[SENSe:]ESPectrum <sb>:RANGe<range>:INPut:GAIN</range></sb>	782
[SENSe:]ESPectrum <sb>:RANGe<range>:INPut:GAIN:STATe</range></sb>	783
[SENSe:]ESPectrum <sb>:RANGe<range>:INSert</range></sb>	783
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:ABSolute:STARt</pclass></range></sb>	783
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:ABSolute:STOP</pclass></range></sb>	784
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STARt</pclass></range></sb>	785
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STARt:ABS</pclass></range></sb>	785
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STARt:FUNCtion</pclass></range></sb>	786
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STOP</pclass></range></sb>	786
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STOP:ABSolute</pclass></range></sb>	787
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:RELative:STOP:FUNCtion</pclass></range></sb>	788
[SENSe:]ESPectrum <sb>:RANGe<range>:LIMit<pclass>:STATe</pclass></range></sb>	788
[SENSe:]ESPectrum <sb>:RANGe<range>:MLCalc</range></sb>	789
[SENSe:]ESPectrum <sb>:RANGe<range>:POINts:MIN[:VALue]</range></sb>	789
[SENSe:]ESPectrum <sb>:RANGe<range>:RLEVel</range></sb>	790
ISENSe:1ESPectrum <sb>:RANGe<range>:SWEep:TIME</range></sb>	790

[SENSe:]ESPectrum <sb>:RANGe<range>:SWEep:TIME:AUTO</range></sb>	
[SENSe:]ESPectrum <sb>:RANGe<range>:TRANsducer</range></sb>	791
[SENSe:]ESPectrum <sb>:RANGe<range>[:FREQuency]:STARt</range></sb>	780
[SENSe:]ESPectrum <sb>:RANGe<range>[:FREQuency]:STOP</range></sb>	781
[SENSe:]ESPectrum <sb>:RRANge?</sb>	793
[SENSe:]ESPectrum <sb>:RTYPe</sb>	793
[SENSe:]ESPectrum <sb>:SBCENTER</sb>	776
[SENSe:]ESPectrum <sb>:SBCOUNT</sb>	777
[SENSe:]ESPectrum <sb>:SCENter</sb>	776
[SENSe:]ESPectrum <sb>:SCOunt</sb>	777
[SENSe:]FREQuency:CENTer	882
[SENSe:]FREQuency:CENTer:STEP	882
[SENSe:]FREQuency:CENTer:STEP:AUTO	883
[SENSe:]FREQuency:CENTer:STEP:LINK	883
[SENSe:]FREQuency:CENTer:STEP:LINK:FACTor	883
[SENSe:]FREQuency:OFFSet	884
[SENSe:]FREQuency:SPAN	884
[SENSe:]FREQuency:SPAN:FULL	884
[SENSe:]FREQuency:STARt	885
[SENSe:]FREQuency:STOP	885
[SENSe:]LIST:POWer:RESult?	862
[SENSe:]LIST:POWer:SET	864
[SENSe:]LIST:POWer:STATe	865
[SENSe:]LIST:POWer[:SEQuence]	863
[SENSe:]LIST:RANGe <range>:BANDwidth:VIDeo</range>	811
[SENSe:]LIST:RANGe <range>:BANDwidth[:RESolution]</range>	810
[SENSe:]LIST:RANGe <range>:BREak</range>	811
[SENSe:]LIST:RANGe <range>:COUNt?</range>	811
[SENSe:]LIST:RANGe <range>:DELete</range>	812
[SENSe:]LIST:RANGe <range>:DETector</range>	812
[SENSe:]LIST:RANGe <range>:FILTer:TYPE</range>	812
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation</range>	814
[SENSe:]LIST:RANGe <range>:INPut:ATTenuation:AUTO</range>	814
[SENSe:]LIST:RANGe <range>:INPut:GAIN:STATe</range>	815
[SENSe:]LIST:RANGe <range>:INPut:GAIN[:VALue]</range>	815
[SENSe:]LIST:RANGe <range>:LIMit:STARt</range>	815
[SENSe:]LIST:RANGe <range>:LIMit:STATe</range>	816
[SENSe:]LIST:RANGe <range>:LIMit:STOP</range>	816
[SENSe:]LIST:RANGe <range>:POINts[:VALue]</range>	816
[SENSe:]LIST:RANGe <range>:RLEVel</range>	816
[SENSe:]LIST:RANGe <range>:SWEep:TIME</range>	817
[SENSe:]LIST:RANGe <range>:SWEep:TIME:AUTO</range>	817
[SENSe:]LIST:RANGe <range>:TRANsducer</range>	817
[SENSe:]LIST:RANGe <range>[:FREQuency]:STARt</range>	813
[SENSe:]LIST:RANGe <range>[:FREQuency]:STOP</range>	813
[SENSe:]MIXer:BIAS:HIGH	922
[SENSe:]MIXer:BIAS[:LOW]	922
[SENSe:]MIXer:FREQuency:HANDover	924
[SENSe:]MIXer:FREQuency:STARt?	924
[SENSe:]MIXer:EPEQuency:STOP2	024

[SENSe:]MIXer:HARMonic:BAND:PRESet	924
[SENSe:]MIXer:HARMonic:BAND[:VALue]	925
[SENSe:]MIXer:HARMonic:HIGH:STATe	
[SENSe:]MIXer:HARMonic:HIGH[:VALue]	926
[SENSe:]MIXer:HARMonic:TYPE	926
[SENSe:]MIXer:HARMonic[:LOW]	926
[SENSe:]MIXer:LOPower	922
[SENSe:]MIXer:LOSS:HIGH	927
[SENSe:]MIXer:LOSS:TABLe:HIGH	927
[SENSe:]MIXer:LOSS:TABLe[:LOW]	927
[SENSe:]MIXer:LOSS[:LOW]	927
[SENSe:]MIXer:PORTs	928
[SENSe:]MIXer:RFOVerrange[:STATe]	928
[SENSe:]MIXer:SIGNal	922
[SENSe:]MIXer:THReshold	923
[SENSe:]MIXer[:STATe]	921
[SENSe:]MPOWer:[:SEQuence]	868
[SENSe:]MPOWer:FTYPe	868
[SENSe:]MPOWer:RESult:MIN?	870
[SENSe:]MPOWer:RESult[:LIST]?	868
[SENSe:]PMETer:DCYCle:VALue	952
[SENSe:]PMETer:DCYCle[:STATe]	952
[SENSe:]PMETer:FREQuency	952
[SENSe:]PMETer:FREQuency:LINK	953
[SENSe:]PMETer:MTIMe	953
[SENSe:]PMETer:MTIMe:AVERage:COUNt	954
[SENSe:]PMETer:MTIMe:AVERage[:STATe]	954
[SENSe:]PMETer:ROFFset[:STATe]	954
[SENSe:]PMETer:TRIGger:DTIMe	956
[SENSe:]PMETer:TRIGger:HOLDoff	957
[SENSe:]PMETer:TRIGger:HYSTeresis	
[SENSe:]PMETer:TRIGger:LEVel	
[SENSe:]PMETer:TRIGger:SLOPe	
[SENSe:]PMETer:TRIGger[:STATe]	958
[SENSe:]PMETer:UPDate[:STATe]	955
[SENSe:]PMETer[:STATe]	
[SENSe:]POWer:ACHannel:ACPairs	736
[SENSe:]POWer:ACHannel:AGCHannels	761
[SENSe:]POWer:ACHannel:BANDwidth:ACHannel	737
[SENSe:]POWer:ACHannel:BANDwidth:ALTernate <ch></ch>	737
[SENSe:]POWer:ACHannel:BANDwidth[:CHANnel <ch>]</ch>	738
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:GAP <gap></gap>	761
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:UACHannel	756
[SENSe:]POWer:ACHannel:BANDwidth BWIDth:UALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:BWIDth:ACHannel	737
[SENSe:]POWer:ACHannel:BWIDth:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:BWIDth[:CHANnel <ch>]</ch>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ACHannel	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:ALTernate <ch></ch>	
[SENSe:]POWer:ACHannel:FILTer:ALPHa:CHANnel <ch></ch>	

[SENSe:]POWer:ACHannel:FILTer:ALPHa:GAP <gap></gap>	762
[SENSe:]POWer:ACHannel:FILTer:ALPHa:SBLock <sb>:CHANnel<ch></ch></sb>	751
[SENSe:]POWer:ACHannel:FILTer:ALPHa:UACHannel	757
[SENSe:]POWer:ACHannel:FILTer:ALPHa:UALTernate <ch></ch>	757
[SENSe:]POWer:ACHannel:FILTer:ALPHa[:ALL]	741
[SENSe:]POWer:ACHannel:FILTer:STATe:GAP <gap></gap>	762
[SENSe:]POWer:ACHannel:FILTer:STATe:SBLock <sb>:CHANnel<ch></ch></sb>	752
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ACHannel	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALL	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:ALTernate <ch></ch>	742
[SENSe:]POWer:ACHannel:FILTer[:STATe]:CHANnel <ch></ch>	743
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UACHannel	758
[SENSe:]POWer:ACHannel:FILTer[:STATe]:UALTernate <ch></ch>	758
[SENSe:]POWer:ACHannel:GAP <gap>:MSIZe</gap>	762
[SENSe:]POWer:ACHannel:MODE	766
[SENSe:]POWer:ACHannel:NAME:ACHannel	738
[SENSe:]POWer:ACHannel:NAME:ALTernate <ch></ch>	738
[SENSe:]POWer:ACHannel:NAME:CHANnel <ch></ch>	738
[SENSe:]POWer:ACHannel:NAME:UACHannel	763
[SENSe:]POWer:ACHannel:NAME:UALTernate <ch></ch>	763
[SENSe:]POWer:ACHannel:PRESet	733
[SENSe:]POWer:ACHannel:PRESet:RLEVel	733
[SENSe:]POWer:ACHannel:REFerence:AUTO ONCE	743
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:AUTO	743
[SENSe:]POWer:ACHannel:REFerence:TXCHannel:MANual	744
[SENSe:]POWer:ACHannel:SBCount	752
[SENSe:]POWer:ACHannel:SBLock <sb>:BANDwidth BWIDth[:CHANnel<ch>]</ch></sb>	752
[SENSe:]POWer:ACHannel:SBLock <sb>:CENTer[:CHANnel<ch>]</ch></sb>	753
[SENSe:]POWer:ACHannel:SBLock <sb>:FREQuency:CENTer</sb>	753
[SENSe:]POWer:ACHannel:SBLock <sb>:NAME[:CHANnel<ch>]</ch></sb>	
[SENSe:]POWer:ACHannel:SBLock <sb>:RFBWidth</sb>	754
[SENSe:]POWer:ACHannel:SBLock <sb>:TECHnology[:CHANnel<ch>]</ch></sb>	754
[SENSe:]POWer:ACHannel:SBLock <sb>:TXCHannel:COUNt</sb>	755
[SENSe:]POWer:ACHannel:SPACing:ALTernate <ch></ch>	739
[SENSe:]POWer:ACHannel:SPACing:CHANnel <ch></ch>	740
[SENSe:]POWer:ACHannel:SPACing:GAP <gap></gap>	763
[SENSe:]POWer:ACHannel:SPACing:UACHannel	755
[SENSe:]POWer:ACHannel:SPACing:UALTernate <ch></ch>	756
[SENSe:]POWer:ACHannel:SPACing[:ACHannel]	739
[SENSe:]POWer:ACHannel:SSETup	756
[SENSe:]POWer:ACHannel:TXCHannel:COUNt	740
[SENSe:]POWer:BANDwidth BWIDth	772
[SENSe:]POWer:HSPeed	750
[SENSe:]POWer:NCORrection	897
[SENSe:]POWer:TRACe	
[SENSe:]PROBe:ID:PARTnumber?	935
[SENSe:]PROBe:ID:SRNumber?	935
[SENSe:]PROBe:SETup:CMOFfset	935
[SENSe:]PROBe:SETup:MODE	936
ISENSe:IPROBe:SETup:NAME?	936

[SENSe:]PROBe:SETup:STATe?	937
[SENSe:]PROBe:SETup:TYPE?	937
[SENSe:]ROSCillator:LBWidth	1097
[SENSe:]ROSCillator:O100	1098
[SENSe:]ROSCillator:O640	1098
[SENSe:]ROSCillator:OSYNc	1098
[SENSe:]ROSCillator:SOURce	1099
[SENSe:]ROSCillator:SOURce:EAUTo?	1099
[SENSe:]ROSCillator:TRANge	1100
[SENSe:]SWEep:COUNt	
[SENSe:]SWEep:COUNt:CURRent?	729
[SENSe:]SWEep:DURation?	891
[SENSe:]SWEep:EGATe	909
[SENSe:]SWEep:EGATe:HOLDoff	910
[SENSe:]SWEep:EGATe:LENGth	910
[SENSe:]SWEep:EGATe:POLarity	910
[SENSe:]SWEep:EGATe:SOURce	910
[SENSe:]SWEep:EGATe:TRACe:PERiod	825
[SENSe:]SWEep:EGATe:TRACe <t>:COMMent</t>	825
[SENSe:]SWEep:EGATe:TRACe <t>:STARt<range></range></t>	826
[SENSe:]SWEep:EGATe:TRACe <t>:STOP<range></range></t>	826
[SENSe:]SWEep:EGATe:TRACe <t>[:STATe<range>]</range></t>	826
[SENSe:]SWEep:EGATe:TYPE	911
[SENSe:]SWEep:MODE	775
[SENSe:]SWEep:OPTimize	892
[SENSe:]SWEep:POINts	893
[SENSe:]SWEep:TIME	893
[SENSe:]SWEep:TIME:AUTO	894
[SENSe:]SWEep:TYPE	894
[SENSe:]SWEep:TYPE:USED	894
*CAL?	711
*CLS	711
*ESE	711
*ESR?	711
*IDN?	712
*IST?	712
*OPC	712
*OPT?	712
*PCB	713
*PRE	713
*PSC	713
*RST	714
*SRE	714
*STB?	714
*TRG	714
*TST?	714
*WAI	715
ABORt	727
CALCulate <n>:DELTamarker<m>:AOFF</m></n>	987
CAL Culates no DEL Tamarkers mo ELINCtion RPOWer MODE	1027

CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:RESult?</m></n>	1027
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer:SPAN</m></n>	1028
CALCulate <n>:DELTamarker<m>:FUNCtion:BPOWer[:STATe]</m></n>	1028
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:MAXimum[:PEAK]</m></n>	1016
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:X</m></n>	1016
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y</m></n>	1017
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed:RPOint:Y:OFFSet</m></n>	1017
CALCulate <n>:DELTamarker<m>:FUNCtion:FIXed[:STATe]</m></n>	1017
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:DETector</m></n>	853
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>:CONDition ?</k></m></n>	857
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:LIMit<k>:DELTa?</k></m></n>	858
CALCulate <n>:DELTamarker<m>:FUNCtion:FMEasurement:RESult?</m></n>	857
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:AUTO</m></n>	1023
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise:RESult?</m></n>	1023
CALCulate <n>:DELTamarker<m>:FUNCtion:PNOise[:STATe]</m></n>	1024
CALCulate <n>:DELTamarker<m>:LINK</m></n>	987
CALCulate <n>:DELTamarker<m>:LINK:TO:MARKer<m></m></m></n>	987
CALCulate <n>:DELTamarker<m>:MAXimum:LEFT</m></n>	1001
CALCulate <n>:DELTamarker<m>:MAXimum:NEXT</m></n>	1001
CALCulate <n>:DELTamarker<m>:MAXimum:RIGHt</m></n>	1002
CALCulate <n>:DELTamarker<m>:MAXimum[:PEAK]</m></n>	1001
CALCulate <n>:DELTamarker<m>:MINimum:LEFT</m></n>	1002
CALCulate <n>:DELTamarker<m>:MINimum:NEXT</m></n>	1002
CALCulate <n>:DELTamarker<m>:MINimum:RIGHt</m></n>	1003
CALCulate <n>:DELTamarker<m>:MINimum[:PEAK]</m></n>	1003
CALCulate <n>:DELTamarker<m>:MODE</m></n>	988
CALCulate <n>:DELTamarker<m>:MREF</m></n>	988
CALCulate <n>:DELTamarker<m>:SGRam:FRAMe</m></n>	1012
CALCulate <n>:DELTamarker<m>:SGRam:SARea</m></n>	1012
CALCulate <n>:DELTamarker<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:XY:MINimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:ABOVe</m></n>	1013
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:BELow</m></n>	1014
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum:NEXT</m></n>	1014
CALCulate <n>:DELTamarker<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	1014
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:ABOVe</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:BELow</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum:NEXT</m></n>	1015
CALCulate <n>:DELTamarker<m>:SGRam:Y:MINimum[:PEAK]</m></n>	1016
CALCulate <n>:DELTamarker<m>:SPECtrogram:FRAMe</m></n>	1012
CALCulate <n>:DELTamarker<m>:SPECtrogram:SARea</m></n>	1012
CALCulate <n>:DELTamarker<m>:SPECtrogram:XY:MAXimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:XY:MINimum[:PEAK]</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:ABOVe</m></n>	1013
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:BELow</m></n>	
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum:NEXT</m></n>	
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MAXimum[:PEAK]</m></n>	
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:ABOVe</m></n>	
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:BELow</m></n>	1015
CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum:NEXT</m></n>	1015

CALCulate <n>:DELTamarker<m>:SPECtrogram:Y:MINimum[:PEAK]</m></n>	1016
CALCulate <n>:DELTamarker<m>:TRACe</m></n>	989
CALCulate <n>:DELTamarker<m>:X</m></n>	989
CALCulate <n>:DELTamarker<m>:X:RELative?</m></n>	
CALCulate <n>:DELTamarker<m>:Y?</m></n>	1004
CALCulate <n>:DELTamarker<m>[:STATe]</m></n>	989
CALCulate <n>:DLINe<k></k></n>	1045
CALCulate <n>:DLINe<k>:STATe</k></n>	1045
CALCulate <n>:ESPectrum:PEAKsearch:AUTO</n>	804
CALCulate <n>:ESPectrum:PEAKsearch:DETails</n>	818
CALCulate <n>:ESPectrum:PEAKsearch:MARGin</n>	805
CALCulate <n>:ESPectrum:PEAKsearch:PSHow</n>	805
CALCulate <n>:ESPectrum:PEAKsearch[:IMMediate]</n>	805
CALCulate <n>:ESPectrum:PSEarch:AUTO</n>	804
CALCulate <n>:ESPectrum:PSEarch:MARGin</n>	805
CALCulate <n>:ESPectrum:PSEarch:PSHow</n>	805
CALCulate <n>:ESPectrum:PSEarch[:IMMediate]</n>	805
CALCulate <n>:FLINe<k></k></n>	1046
CALCulate <n>:FLINe<k>:STATe</k></n>	1046
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute</k></n>	744
CALCulate <n>:LIMit<k>:ACPower:ACHannel:ABSolute:STATe</k></n>	745
CALCulate <n>:LIMit<k>:ACPower:ACHannel:RESult?</k></n>	746
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]</k></n>	745
CALCulate <n>:LIMit<k>:ACPower:ACHannel[:RELative]:STATe</k></n>	746
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute</ch></k></n>	747
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:ABSolute:STATe</ch></k></n>	747
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>:RESult?</ch></k></n>	748
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]</ch></k></n>	748
CALCulate <n>:LIMit<k>:ACPower:ALTernate<ch>[:RELative]:STATe</ch></k></n>	749
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ABSolute</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ABSolute:STATe</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative:]STATe</gap></k></n>	760
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:ACLR[:RELative]</gap></k></n>	759
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>:RESult?</gap></k></n>	765
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative:]STATe</gap></k></n>	
CALCulate <n>:LIMit<k>:ACPower:GAP<gap>[:CACLr][:RELative]</gap></k></n>	760
CALCulate <n>:LIMit<k>:ACPower[:STATe]</k></n>	749
CALCulate <n>:LIMit<k>:ACTive?</k></n>	1057
CALCulate <n>:LIMit<k>:CLEar[:IMMediate]</k></n>	1059
CALCulate <n>:LIMit<k>:COMMent</k></n>	1048
CALCulate <n>:LIMit<k>:CONTrol:DOMain</k></n>	1048
CALCulate <n>:LIMit<k>:CONTrol:MODE</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:OFFSet</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:SHIFt</k></n>	1049
CALCulate <n>:LIMit<k>:CONTrol:SPACing</k></n>	1050
CALCulate <n>:LIMit<k>:CONTrol[:DATA]</k></n>	1048
CALCulate <n>:LIMit<k>:COPY</k></n>	
CALCulate <n>:LIMit<k>:DELete</k></n>	1058
CALCulate <n>:LIMit<k>:ESPectrum<sb>:LIMits</sb></k></n>	794
CAL Culatocna: LIMiteka: ESPactrumecha: MODE	705

CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass:COUNt</sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>:LIMit[:STATe]</pclass></sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>:MAXimum</pclass></sb></k></n>	797
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>:MINimum</pclass></sb></k></n>	
CALCulate <n>:LIMit<k>:ESPectrum<sb>:PCLass<pclass>[:EXCLusive]</pclass></sb></k></n>	796
CALCulate <n>:LIMit<k>:ESPectrum<sb>:RESTore</sb></k></n>	774
CALCulate <n>:LIMit<k>:ESPectrum<sb>:VALue</sb></k></n>	795
CALCulate <n>:LIMit<k>:FAIL?</k></n>	1059
CALCulate <n>:LIMit<k>:LOWer:MARGin</k></n>	1050
CALCulate <n>:LIMit<k>:LOWer:MODE</k></n>	1051
CALCulate <n>:LIMit<k>:LOWer:OFFSet</k></n>	1051
CALCulate <n>:LIMit<k>:LOWer:SHIFt</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:SPACing</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:STATe</k></n>	1052
CALCulate <n>:LIMit<k>:LOWer:THReshold</k></n>	1053
CALCulate <n>:LIMit<k>:LOWer[:DATA]</k></n>	1050
CALCulate <n>:LIMit<k>:NAME</k></n>	1053
CALCulate <n>:LIMit<k>:STATe</k></n>	
CALCulate <n>:LIMit<k>:TRACe</k></n>	1168
CALCulate <n>:LIMit<k>:TRACe<t>:CHECk</t></k></n>	1058
CALCulate <n>:LIMit<k>:UNIT</k></n>	1053
CALCulate <n>:LIMit<k>:UPPer:MARGin</k></n>	1054
CALCulate <n>:LIMit<k>:UPPer:MODE</k></n>	1054
CALCulate <n>:LIMit<k>:UPPer:OFFSet</k></n>	1055
CALCulate <n>:LIMit<k>:UPPer:SHIFt</k></n>	1055
CALCulate <n>:LIMit<k>:UPPer:SPACing</k></n>	1056
CALCulate <n>:LIMit<k>:UPPer:STATe</k></n>	1056
CALCulate <n>:LIMit<k>:UPPer:THReshold</k></n>	1056
CALCulate <n>:LIMit<k>:UPPer[:DATA]</k></n>	1054
CALCulate <n>:MARKer<m>:AOFF</m></n>	990
CALCulate <n>:MARKer<m>:COUNt</m></n>	1032
CALCulate <n>:MARKer<m>:COUNt:FREQuency?</m></n>	1033
CALCulate <n>:MARKer<m>:COUNt:RESolution</m></n>	1033
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:MODE</m></n>	1025
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:RESult?</m></n>	1026
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer:SPAN</m></n>	1026
CALCulate <n>:MARKer<m>:FUNCtion:BPOWer[:STATe]</m></n>	1026
CALCulate <n>:MARKer<m>:FUNCtion:CENTer</m></n>	881
CALCulate <n>:MARKer<m>:FUNCtion:CSTep</m></n>	881
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:CONTinuous</m></n>	1034
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:HOLDoff</m></n>	1034
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation:SELect</m></n>	1035
CALCulate <n>:MARKer<m>:FUNCtion:DEModulation[:STATe]</m></n>	1035
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:DETector</m></n>	853
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:DWELI</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:LIMit<k>:CONDition ?</k></m></n>	858
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:LIMit<k>:DELTa?</k></m></n>	859
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO</m></n>	854
CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:PEAKsearch:AUTO</m></n>	854
CAL Culates no: MADKers mo: ELINCtion: EMEasurement: DESult?	857

CALCulate <n>:MARKer<m>:FUNCtion:FMEasurement:STATe</m></n>	852
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:ANNotation:LABel[:STATe]</m></n>	1018
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:COUNt?</m></n>	1019
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:LIST:SIZE</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:SORT</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks:STATe</m></n>	1020
CALCulate <n>:MARKer<m>:FUNCtion:FPEaks[:IMMediate]</m></n>	1019
CALCulate <n>:MARKer<m>:FUNCtion:FPEeaks:X?</m></n>	1021
CALCulate <n>:MARKer<m>:FUNCtion:FPEeaks:Y?</m></n>	1021
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:BANDwidth:AUTO</m></n>	844
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:DISTortion?</m></n>	845
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:LIST?</m></n>	845
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:NHARmonics</m></n>	844
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics:PRESet</m></n>	844
CALCulate <n>:MARKer<m>:FUNCtion:HARMonics[:STATe]</m></n>	843
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:RESult?</m></n>	850
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth:SEARchsignal ONCE</m></n>	850
CALCulate <n>:MARKer<m>:FUNCtion:MDEPth[:STATe]</m></n>	849
CALCulate <n>:MARKer<m>:FUNCtion:MSUMmary</m></n>	867
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown</m></n>	1029
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:FREQuency?</m></n>	1029
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:QFACtor?</m></n>	1030
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:RESult?</m></n>	1030
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:STATe</m></n>	1031
CALCulate <n>:MARKer<m>:FUNCtion:NDBDown:TIME?</m></n>	1031
CALCulate <n>:MARKer<m>:FUNCtion:NOISe:RESult?</m></n>	1021
CALCulate <n>:MARKer<m>:FUNCtion:NOISe[:STATe]</m></n>	1022
CALCulate <n>:MARKer<m>:FUNCtion:PNOise:RESult?</m></n>	1024
CALCulate <n>:MARKer<m>:FUNCtion:PNOise[:STATe]</m></n>	1025
CALCulate <n>:MARKer<m>:FUNCtion:POWer:MODE</m></n>	730
CALCulate <n>:MARKer<m>:FUNCtion:POWer:PRESet</m></n>	735
CALCulate <n>:MARKer<m>:FUNCtion:POWer:RESult:PHZ</m></n>	765
CALCulate <n>:MARKer<m>:FUNCtion:POWer:SELect</m></n>	732
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:CATalog?</m></n>	735
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:DELete</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:POWer:STANdard:SAVE</m></n>	736
CALCulate <n>:MARKer<m>:FUNCtion:POWer[:STATe]</m></n>	733
CALCulate <n>:MARKer<m>:FUNCtion:POWer<sb>:RESult?</sb></m></n>	730
CALCulate <n>:MARKer<m>:FUNCtion:REFerence</m></n>	896
CALCulate <n>:MARKer<m>:FUNCtion:STRack:BANDwidth</m></n>	886
CALCulate <n>:MARKer<m>:FUNCtion:STRack:THReshold</m></n>	886
CALCulate <n>:MARKer<m>:FUNCtion:STRack:TRACe</m></n>	886
CALCulate <n>:MARKer<m>:FUNCtion:STRack[:STATe]</m></n>	885
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AOFF</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:AVERage</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:AVERage:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:PHOLd:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:MEAN[:STATe]</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PHOLd</m></n>	

CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:AVERage:RESult?</m></n>	838
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:PHOLd:RESult?</m></n>	838
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak:RESult?</m></n>	
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:PPEak[:STATe]</m></n>	836
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS:AVERage:RESult?</m></n>	839
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS:PHOLd:RESult?</m></n>	840
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS:RESult?</m></n>	840
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:RMS[:STATe]</m></n>	836
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:AVERage:RESult?</m></n>	840
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:PHOLd:RESult?</m></n>	841
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation:RESult?</m></n>	841
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary:SDEViation[:STATe]</m></n>	836
CALCulate <n>:MARKer<m>:FUNCtion:SUMMary[:STATe]</m></n>	835
CALCulate <n>:MARKer<m>:FUNCtion:TOI:RESult?</m></n>	848
CALCulate <n>:MARKer<m>:FUNCtion:TOI:SEARchsignal ONCE</m></n>	848
CALCulate <n>:MARKer<m>:FUNCtion:TOI[:STATe]</m></n>	847
CALCulate <n>:MARKer<m>:LINK:TO:MARKer<m></m></m></n>	990
CALCulate <n>:MARKer<m>:LOEXclude</m></n>	994
CALCulate <n>:MARKer<m>:MAXimum:AUTO</m></n>	997
CALCulate <n>:MARKer<m>:MAXimum:LEFT</m></n>	998
CALCulate <n>:MARKer<m>:MAXimum:NEXT</m></n>	998
CALCulate <n>:MARKer<m>:MAXimum:RIGHt</m></n>	999
CALCulate <n>:MARKer<m>:MAXimum[:PEAK]</m></n>	998
CALCulate <n>:MARKer<m>:MINimum:AUTO</m></n>	999
CALCulate <n>:MARKer<m>:MINimum:LEFT</m></n>	999
CALCulate <n>:MARKer<m>:MINimum:NEXT</m></n>	1000
CALCulate <n>:MARKer<m>:MINimum:RIGHt</m></n>	1000
CALCulate <n>:MARKer<m>:MINimum[:PEAK]</m></n>	1000
CALCulate <n>:MARKer<m>:PEXCursion</m></n>	994
CALCulate <n>:MARKer<m>:SGRam:FRAMe</m></n>	1007
CALCulate <n>:MARKer<m>:SGRam:SARea</m></n>	1007
CALCulate <n>:MARKer<m>:SGRam:XY:MAXimum[:PEAK]</m></n>	1008
CALCulate <n>:MARKer<m>:SGRam:XY:MINimum[:PEAK]</m></n>	1008
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:ABOVe</m></n>	1008
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:BELow</m></n>	1009
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum:NEXT</m></n>	1009
CALCulate <n>:MARKer<m>:SGRam:Y:MAXimum[:PEAK]</m></n>	1009
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:ABOVe</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:BELow</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum:NEXT</m></n>	1010
CALCulate <n>:MARKer<m>:SGRam:Y:MINimum[:PEAK]</m></n>	1011
CALCulate <n>:MARKer<m>:SPECtrogram:FRAMe</m></n>	1007
CALCulate <n>:MARKer<m>:SPECtrogram:SARea</m></n>	1007
CALCulate <n>:MARKer<m>:SPECtrogram:XY:MAXimum[:PEAK]</m></n>	1008
CALCulate <n>:MARKer<m>:SPECtrogram:XY:MINimum[:PEAK]</m></n>	1008
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:ABOVe</m></n>	1008
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:BELow</m></n>	1009
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum:NEXT</m></n>	
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MAXimum[:PEAK]</m></n>	1009
CAL Culate <n>·MARKer<m>·SPECtrogram·Y·MINimum·ABOVe</m></n>	1010

CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum:BELow</m></n>	1010
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum:NEXT</m></n>	1010
CALCulate <n>:MARKer<m>:SPECtrogram:Y:MINimum[:PEAK]</m></n>	1011
CALCulate <n>:MARKer<m>:TRACe</m></n>	991
CALCulate <n>:MARKer<m>:X</m></n>	991
CALCulate <n>:MARKer<m>:X:SLIMits:LEFT</m></n>	995
CALCulate <n>:MARKer<m>:X:SLIMits:RIGHT</m></n>	995
CALCulate <n>:MARKer<m>:X:SLIMits:ZOOM[:STATe]</m></n>	996
CALCulate <n>:MARKer<m>:X:SLIMits[:STATe]</m></n>	994
CALCulate <n>:MARKer<m>:X:SSIZe</m></n>	993
CALCulate <n>:MARKer<m>:Y:PERCent</m></n>	824
CALCulate <n>:MARKer<m>:Y?</m></n>	1005
CALCulate <n>:MARKer<m>[:STATe]</m></n>	991
CALCulate <n>:MATH:MODE</n>	978
CALCulate <n>:MATH:POSition</n>	978
CALCulate <n>:MATH:STATe</n>	979
CALCulate <n>:MATH[:EXPression][:DEFine]</n>	977
CALCulate <n>:PEAKsearch:AUTO</n>	818
CALCulate <n>:PEAKsearch:MARGin</n>	819
CALCulate <n>:PEAKsearch:PSHow</n>	819
CALCulate <n>:PEAKsearch:SUBRanges</n>	820
CALCulate <n>:PMETer:RELative:STATe</n>	951
CALCulate <n>:PMETer:RELative[:MAGNitude]</n>	950
CALCulate <n>:PMETer:RELative[:MAGNitude]:AUTO ONCE</n>	951
CALCulate <n>:PSEarch:AUTO</n>	818
CALCulate <n>:PSEarch:DETails</n>	818
CALCulate <n>:PSEarch:MARGin</n>	819
CALCulate <n>:PSEarch:PSHow</n>	819
CALCulate <n>:PSEarch:SUBRanges</n>	820
CALCulate <n>:SGRam:CLEar[:IMMediate]</n>	972
CALCulate <n>:SGRam:CONT</n>	972
CALCulate <n>:SGRam:FRAMe:COUNt</n>	972
CALCulate <n>:SGRam:FRAMe:SELect</n>	973
CALCulate <n>:SGRam:HDEPth</n>	973
CALCulate <n>:SGRam:TSTamp:DATA?</n>	974
CALCulate <n>:SGRam:TSTamp[:STATe]</n>	974
CALCulate <n>:SGRam[:STATe]</n>	
CALCulate <n>:SPECtrogram:CLEar[:IMMediate]</n>	972
CALCulate <n>:SPECtrogram:CONT</n>	972
CALCulate <n>:SPECtrogram:FRAMe:COUNt</n>	972
CALCulate <n>:SPECtrogram:FRAMe:SELect</n>	973
CALCulate <n>:SPECtrogram:HDEPth</n>	973
CALCulate <n>:SPECtrogram:TSTamp:DATA?</n>	974
CALCulate <n>:SPECtrogram:TSTamp[:STATe]</n>	974
CALCulate <n>:SPECtrogram[:STATe]</n>	975
CALCulate <n>:STATistics:APD[:STATe]</n>	823
CALCulate <n>:STATistics:CCDF:X<t>?</t></n>	830
CALCulate <n>:STATistics:CCDF[:STATe]</n>	824
CALCulate <n>:STATistics:NSAMples</n>	824
CAL Culated no STATistics DRESet	827

CALCulate <n>:STATistics:RESult<t>?</t></n>	831
CALCulate <n>:STATistics:SCALe:AUTO ONCE</n>	828
CALCulate <n>:STATistics:SCALe:X:RANGe</n>	828
CALCulate <n>:STATistics:SCALe:X:RLEVel</n>	828
CALCulate <n>:STATistics:SCALe:Y:LOWer</n>	829
CALCulate <n>:STATistics:SCALe:Y:UNIT</n>	829
CALCulate <n>:STATistics:SCALe:Y:UPPer</n>	829
CALCulate <n>:THReshold</n>	996
CALCulate <n>:THReshold:STATe</n>	997
CALCulate <n>:TLINe<k></k></n>	1046
CALCulate <n>:TLINe<k>:STATe</k></n>	1047
CALCulate <n>:UNIT:POWer</n>	896
CALibration:PMETer:ZERO:AUTO ONCE	950
CALibration:RESult?	1101
CALibration[:ALL]?	1101
DIAGnostic:INFO:CCOunter?	1118
DIAGnostic:SERVice:BIOSinfo?	1119
DIAGnostic:SERVice:HWINfo?	1119
DIAGnostic:SERVice:INPut:AIQ[:TYPE]	1103
DIAGnostic:SERVice:INPut:MC:CFRequency	1102
DIAGnostic:SERVice:INPut:MC:DISTance	1102
DIAGnostic:SERVice:INPut:PULSed:CFRequency	1102
DIAGnostic:SERVice:INPut:RF:SPECtrum	1102
DIAGnostic:SERVice:INPut[:SELect]	1103
DIAGnostic:SERVice:NSOurce	959
DIAGnostic:SERVice:SFUNction	1124
DIAGnostic:SERVice:SFUNction:LASTresult?	1125
DIAGnostic:SERVice:SFUNction:RESults:DELete	1125
DIAGnostic:SERVice:SFUNction:RESults:SAVE	1125
DIAGnostic:SERVice:SINFo?	1125
DIAGnostic:SERVice:STESt:RESult?	1104
DIAGnostic:SERVice:VERSinfo?	1120
DISPlay:ANNotation:CBAR	1108
DISPlay:ANNotation:FREQuency	1109
DISPlay:ATAB	
DISPlay:CMAP <item>:DEFault<colors></colors></item>	1111
DISPlay:CMAP <item>:HSL</item>	1112
DISPlay:CMAP <item>:PDEFined</item>	1112
DISPlay:FORMat	871
DISPlay:LOGO	1079
DISPlay:MINFo[:STAT]	992
DISPlay:MTABle	992
DISPlay:SBAR[:STATe]	1109
DISPlay:SKEYs[:STATe]	1109
DISPlay:TBAR[:STATe]	1109
DISPlay:THEMe:CATalog?	1113
DISPlay:THEMe:SELect	1113
DISPlay:TOUChscreen:STATe	1110
DISPlay[:WINDow]:TIME	1110
DISPlay[:\//INDow]:TIME:EOPMat	1110

DISPlay[:WINDow <n>]:SGRam:COLor:DEFault</n>	975
DISPlay[:WINDow <n>]:SGRam:COLor:LOWer</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor:SHAPe</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor:UPPer</n>	976
DISPlay[:WINDow <n>]:SGRam:COLor[:STYLe]</n>	977
DISPlay[:WINDow <n>]:SIZE</n>	871
DISPlay[:WINDow <n>]:SPECtrogram:COLor:DEFault</n>	975
DISPlay[:WINDow <n>]:SPECtrogram:COLor:LOWer</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor:SHAPe</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor:UPPer</n>	976
DISPlay[:WINDow <n>]:SPECtrogram:COLor[:STYLe]</n>	977
DISPlay[:WINDow <n>]:STATe</n>	1169
DISPlay[:WINDow <n>]:TRACe:X:SPACing</n>	881
DISPlay[:WINDow <n>]:TRACe<t>:MODE</t></n>	965
DISPlay[:WINDow <n>]:TRACe<t>:MODE:HCONtinuous</t></n>	966
DISPlay[:WINDow <n>]:TRACe<t>:SMOothing:APERture</t></n>	967
DISPlay[:WINDow <n>]:TRACe<t>:SMOothing[:STATe]</t></n>	968
DISPlay[:WINDow <n>]:TRACe<t>:Y:SPACing</t></n>	902
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]</t></n>	900
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:AUTO ONCE</t></n>	901
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:MODE</t></n>	901
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:PDIVision</t></n>	902
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel</t></n>	896
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RLEVel:OFFSet</t></n>	897
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RPOSition</t></n>	902
DISPlay[:WINDow <n>]:TRACe<t>:Y[:SCALe]:RVALue</t></n>	943
DISPlay[:WINDow <n>]:TRACe<t>[:STATe]</t></n>	967
DISPlay[:WINDow <n>]:TYPE</n>	1169
DISPlay[:WINDow <n>]:ZOOM:AREA</n>	962
DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:AREA</zoom></n>	963
DISPlay[:WINDow <n>]:ZOOM:MULTiple<zoom>:STATe</zoom></n>	964
DISPlay[:WINDow <n>]:ZOOM:STATe</n>	963
FETCh:PMETer?	951
FORMat:DEXPort:DSEParator	1064
FORMat:DEXPort:HEADer	1090
FORMat:DEXPort:TRACes	1091
FORMat[:DATA]	980
HCOPy:ABORt	1079
HCOPy:CMAP <item>:DEFault<colors></colors></item>	1080
HCOPy:CMAP <item>:HSL</item>	1081
HCOPy:CMAP <item>:PDEFined</item>	1081
HCOPy:CONTent	1079
HCOPy:DESTination <device></device>	1082
HCOPy:DEVice:COLor	1082
HCOPy:DEVice:LANGuage <device></device>	1083
HCOPy:ITEM:ALL	1169
HCOPy:ITEM:WINDow:TEXT	1084
HCOPy:PAGE:COUN:STATe	1084
HCOPy:PAGE:MARGin <device>:BOTTom</device>	1084
HCOPy:PAGE:MARGin <device>:LEFT</device>	1084

HCOPy:PAGE:MARGin <device>:RIGHt</device>	1085
HCOPy:PAGE:MARGin <device>:TOP</device>	
HCOPy:PAGE:MARGin <device>:UNIT</device>	
HCOPy:PAGE:ORIentation <device></device>	
HCOPy:PAGE:WINDow <device>:CHANnel:STATe</device>	1086
HCOPy:PAGE:WINDow <device>:COUN</device>	
HCOPy:PAGE:WINDow <device>:SCAL</device>	1087
HCOPy:PAGE:WINDow <device>:STATe</device>	
HCOPy:TDSTamp:STATe <device></device>	
HCOPy[:IMMediate <device>]</device>	
HCOPy[:IMMediate <device>]:NEXT</device>	
INITiate <n>:CONMeas</n>	727
INITiate <n>:CONTinuous</n>	
INITiate <n>:ESPectrum</n>	775
INITiate <n>:SEQuencer:ABORt</n>	
INITiate <n>:SEQuencer:IMMediate</n>	
INITiate <n>:SEQuencer:MODE</n>	
INITiate <n>:SPURious</n>	
INITiate <n>[:IMMediate]</n>	
INPut:ATTenuation	
INPut:ATTenuation:AUTO	
INPut:ATTenuation:PROTection:RESet	
INPut:CONNector	
INPut:COUPling	
INPut:DPATh	
INPut:EATT	
INPut:EATT:AUTO	
INPut:EATT:STATe	
INPut:FILTer:HPASs[:STATe]	
INPut:FILTer:YIG[:STATe]	
INPut:GAIN:STATe	
INPut:GAIN[:VALue]	
INPut:IMPedance	
INPut:LISN:FILTer:HPASs[:STATe]	
INPut:LISN:PHASe	
INPut:LISN:TYPE	
INPut:SELect.	
INPut:UPORt:STATe	
INPut:UPORt[:VALue]?	
INSTrument:CREate:DUPLicate	
INSTrument:CREate:REPLace	
INSTrument:CREate[:NEW]	
INSTrument: IST2	
INSTrument:LIST?INSTrument:MODE	
INSTrument:MODE	
INSTrument[:SELect]	
LAYout:CATalog[:WINDow]?	
LAYout: IDENtify(:WINDow)?	073 87 <i>م</i>

LAYout:REMove[:WINDow]	874
LAYout:REPLace[:WINDow]	874
LAYout:SPLitter	875
LAYout:WINDow <n>:ADD?</n>	876
LAYout:WINDow <n>:IDENtify?</n>	877
LAYout:WINDow <n>:REMove</n>	877
LAYout:WINDow <n>:REPLace</n>	877
MMEMory:CATalog:LONG?	1065
MMEMory:CATalog?	1064
MMEMory:CDIRectory	1066
MMEMory:CLEar:ALL	1073
MMEMory:CLEar:STATe	1073
MMEMory:COMMent	1066
MMEMory:COPY	1066
MMEMory:DATA	1066
MMEMory:DELete	1067
MMEMory:LOAD:AUTO	1074
MMEMory:LOAD:STATe	1074
MMEMory:LOAD:TYPE	1075
MMEMory:MDIRectory	1067
MMEMory:MOVE	1067
MMEMory:MSIS	1068
MMEMory:NAME	1068
MMEMory:NETWork:DISConnect	1068
MMEMory:NETWork:MAP	1068
MMEMory:NETWork:UNUSeddrives?	1069
MMEMory:NETWork:USEDdrives?	1069
MMEMory:RDIRectory	1069
MMEMory:SELect:CHANnel[:ITEM]:ALL	1070
MMEMory:SELect:CHANnel[:ITEM]:DEFault	1071
MMEMory:SELect:CHANnel[:ITEM]:HWSettings	1071
MMEMory:SELect:CHANnel[:ITEM]:LINes:ALL	1071
MMEMory:SELect:CHANnel[:ITEM]:NONE	1072
MMEMory:SELect:CHANnel[:ITEM]:SGRam	1072
MMEMory:SELect:CHANnel[:ITEM]:TRACe[:ACTive]	1072
MMEMory:SELect:CHANnel[:ITEM]:TRANsducer:ALL	1072
MMEMory:SELect[:ITEM]:ALL	1070
MMEMory:SELect[:ITEM]:DEFault	1071
MMEMory:SELect[:ITEM]:HWSettings	1071
MMEMory:SELect[:ITEM]:LINes:ALL	
MMEMory:SELect[:ITEM]:NONE	
MMEMory:SELect[:ITEM]:SGRam	
MMEMory:SELect[:ITEM]:TRACe[:ACTive]	
MMEMory:SELect[:ITEM]:TRANsducer:ALL	
MMEMory:STORe <n>:LIST</n>	
MMEMory:STORe <n>:PEAK</n>	
MMEMory:STORe <n>:SGRam</n>	
MMEMory:STORe <n>:SPECtrogram</n>	
MMEMory:STORe <n>:SPURious</n>	
MMEMony: STOPe <n>: STATe</n>	1076

MMEMory:STORe <n>:STATe:NEXT</n>	1076
MMEMory:STORe <n>:TRACe</n>	
MMEMory:STORe <n>:TYPE</n>	
OUTPut:IF:IFFRequency	960
OUTPut:IF:SBANd?	959
OUTPut:IF[:SOURce]	960
OUTPut:TRIGger <port>:DIRection</port>	912
OUTPut:TRIGger <port>:LEVel</port>	
OUTPut:TRIGger <port>:OTYPe</port>	
OUTPut:TRIGger <port>:PULSe:IMMediate</port>	913
OUTPut:TRIGger <port>:PULSe:LENGth</port>	913
OUTPut:UPORt:STATe	961
OUTPut:UPORt[:VALue]	961
READ:PMETer?	952
SOURce:EXTernal:FREQuency	938
SOURce:EXTernal:FREQuency:COUPling[:STATe]	
SOURce:EXTernal:FREQuency:OFFSet	
SOURce:EXTernal:FREQuency:SWEep[:STATe]	1169
SOURce:EXTernal:FREQuency[:FACTor]:DENominator	939
SOURce:EXTernal:FREQuency[:FACTor]:NUMerator	939
SOURce:EXTernal:POWer[:LEVel]	940
SOURce:EXTernal:ROSCillator:EXTernal:FREQuency	1098
SOURce:EXTernal:ROSCillator[:SOURce]	
SOURce:EXTernal[:STATe]	940
SOURce:POWer[:LEVel][:IMMediate]:OFFSet	940
SOURce:TEMPerature:FRONtend?	1104
STATus:OPERation:CONDition?	
STATus:OPERation:ENABle	1128
STATus:OPERation:NTRansition	1129
STATus:OPERation:PTRansition	
STATus:OPERation[:EVENt]?	
STATus:PRESet	1127
STATus:QUEStionable:ACPLimit:CONDition?	
STATus:QUEStionable:ACPLimit:ENABle	1128
STATus:QUEStionable:ACPLimit:NTRansition	
STATus:QUEStionable:ACPLimit:PTRansition	
STATus:QUEStionable:ACPLimit[:EVENt]?	
STATus:QUEStionable:CONDition?	1127
STATus:QUEStionable:ENABle	
STATus:QUEStionable:EXTended:CONDition?	
STATus:QUEStionable:EXTended:ENABle	
STATus:QUEStionable:EXTended:INFO:CONDition?	
STATus:QUEStionable:EXTended:INFO:ENABle	
STATus:QUEStionable:EXTended:INFO:NTRansition.	
STATus:QUEStionable:EXTended:INFO:PTRansition	
STATus:QUEStionable:EXTended:INFO[:EVENt]?	
STATus:QUEStionable:EXTended:NTRansition	
STATus:QUEStionable:EXTended:PTRansition	
STATus:QUEStionable:EXTended[:EVENt]?	
STATus: OI JEStionable: EREQuency: CONDition?	1127

STATus:QUEStionable:FREQuency:ENABle	1128
STATus:QUEStionable:FREQuency:NTRansition	
STATus:QUEStionable:FREQuency:PTRansition	
STATus:QUEStionable:FREQuency[:EVENt]?	
STATus:QUEStionable:LIMit <n>:CONDition?</n>	
STATus:QUEStionable:LIMit <n>:ENABle</n>	
STATus:QUEStionable:LIMit <n>:LNAble:</n>	
STATus:QUEStionable:LIMit <n>:NTVariation</n>	
STATus:QUEStionable:LIMit <n>[:EVENt]?</n>	
STATus:QUEStionable:LMARgin <n>:CONDition?</n>	
STATus:QUEStionable:LMARgin <n>:ENABle</n>	
STATus:QUEStionable:LMARgin <n>:NTRansition</n>	
STATus:QUEStionable:LMARgin <n>:PTRansition</n>	
STATus:QUEStionable:LMARgin <n>[:EVENt]?</n>	
STATus:QUEStionable:NTRansition	
STATus:QUEStionable:POWer:CONDition?	
STATus:QUEStionable:POWer:ENABle	
STATus:QUEStionable:POWer:NTRansition	
STATus:QUEStionable:POWer:PTRansition	
STATus:QUEStionable:POWer[:EVENt]?	
STATus:QUEStionable:PTRansition	
STATus:QUEStionable:TEMPerature:CONDition?	
STATus:QUEStionable:TEMPerature:ENABle	
STATus:QUEStionable:TEMPerature:NTRansition	
STATus:QUEStionable:TEMPerature:PTRansition	
STATus:QUEStionable:TEMPerature[:EVENt]?	
STATus:QUEStionable:TIME:CONDition?	
STATus:QUEStionable:TIME:ENABle	
STATus:QUEStionable:TIME:NTRansition	
STATus:QUEStionable:TIME:PTRansition	
STATus:QUEStionable:TIME[:EVENt]?	
STATus:QUEStionable[:EVENt]?	
STATus:QUEue[:NEXT]?	
SYSTem:CLOGging	
SYSTem:COMMunicate:GPIB:RDEVice:GENerator:ADDRess	
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	1115
SYSTem:COMMunicate:GPIB[:SELF]:RTERminator	
SYSTem:COMMunicate:PRINter:ENUMerate:FIRSt?	
SYSTem:COMMunicate:PRINter:ENUMerate[:NEXT]?	1089
SYSTem:COMMunicate:PRINter:SELect <device></device>	
SYSTem:COMMunicate:RDEVice:GENerator:INTerface	941
SYSTem:COMMunicate:RDEVice:GENerator:LINK	942
SYSTem:COMMunicate:RDEVice:GENerator:TYPE	942
SYSTem:COMMunicate:RDEVice:PMETer:COUNt?	948
SYSTem:COMMunicate:RDEVice:PMETer:CONFigure:AUTO[:STATe]	948
SYSTem:COMMunicate:RDEVice:PMETer:DEFine	949
SYSTem:COMMunicate:TCPip:RDEVice:GENerator:ADDRess	
SYSTem:COMPatible	1170
SYSTem:DISPlay:FPANel[:STATe]	1111
SVSTam:DISPlay:1IPData	1116

SYSTem:ERRor:CLEar:ALL	1120
SYSTem:ERRor:CLEar:REM	
SYSTem:ERRor:DISPlay	1116
SYSTem:ERRor:EXTended?	
SYSTem:ERRor:LIST?	1121
SYSTem:ERRor[:NEXT]?	
SYSTem:FIRMware:UPDate	1122
SYSTem:FORMat:IDENt	
SYSTem:HPCoupling	
SYSTem:IDENtify:FACTory	
SYSTem:IDENtify[:STRing]	
SYSTem:IFGain:MODE	1132
SYSTem:LANGuage	
SYSTem:LXI:INFo?	
SYSTem:LXI:LANReset	
SYSTem:LXI:MDEScription	
SYSTem:LXI:PASSword	
SYSTem:PREamplifier	
SYSTem:PRESet	
SYSTem:PRESet:CHANnel[:EXECute]	
SYSTem:PRESet:COMPatible	
SYSTem:PSA:WIDeband	
SYSTem:REBoot.	
SYSTem:REVision:FACTory.	
SYSTem:REVision[:STRing]	
SYSTem:RSW	
SYSTem:SECurity[:STATe]	
SYSTem:SEQuencer	
SYSTem:SHUTdown	
SYSTem:SPEaker:VOLume	
TRACe <n>:COPY</n>	
TRACe <n>[:DATA]</n>	
TRACe <n>[:DATA]:MEMory?</n>	
TRACe <n>[:DATA]:X?</n>	
TRIGger[:SEQuence]:BBPower:HOLDoff	
TRIGger[:SEQuence]:DTIMe	
TRIGger[:SEQuence]:HOLDoff[:TIME]	
TRIGger[:SEQuence]:IFPower:HOLDoff	
TRIGger[:SEQuence]:IFPower:HYSTeresis	
TRIGger[:SEQuence]:LEVel:IQPower	
TRIGger[:SEQuence]:LEVel:VIDeo	
TRIGger[:SEQuence]:LEVel[:EXTernal <port>]</port>	
TRIGger[:SEQuence]:RFPower:HOLDoff	
TRIGger[:SEQuence]:SLOPe	
TRIGger[:SEQuence]:SOURce	
TRIGger[:SEQuence]:TIME:RINTerval	
UNIT <n>:PMETer:POWer</n>	
INIT-n>:PMFTer-n>:POWer:PATio	956

R				

Index

Symbols		Alignment	
		Basics	
*IDN		Performing	
Format		Results	590, 601, 60
*OPC		Settings	
*OPC?	654	touchscreen	591, 601, 60
*RST	672	Alignment Signal Source	
*WAI	654	Connector	5
# of Samples		Alignment Signal Source (option B2000)	
Softkey (APD, CCDF)	265	Connector	5 [,]
% Power Bandwidth		All Functions Off	
Softkey	198	Alpha	
1xEV-DO BTS		RRC filter (SEM)	22
Application	103	Alphanumeric parameters	
1xEV-DO MS		AM modulation	
Application	103	Measurement example	130 13
3G FDD BTS		AM modulation depth	·
Application	104	About	
3G FDD UE	104	Configuring	
Application	104		
9.91E37	104	Determining	
	050	Markers	
Remote control		Markers (remote control)	
75 Ω (channel bar)		Measurement (remote control)	
802.11ad		Programming example	
Application	104	Results	
•		Results (remote control)	
A		Search signals	
A1		Search signals (remote control)	
Aborting		AM Modulation Depth	
Sweep		Amplifier Measurement	
AC (channel bar)	79	Application	10
AC/DC coupling	327	Amplitude	
Accoustic		Configuration	40
Monitoring	534	Distribution, white noise	27
ACLR		Optimizing display	
MSR signals	149	Probability, white noise	
Programming example	766	Scaling	
Results (remote)	730	Settings	
see CP/ACLR		Analog Baseband	
ACLR Mode	•	Input	32:
Softkey	158. 168	Analog Baseband connector	020
ACP		RF input	32
see CP/ACLR	116	Analog Baseband Interface	
Active		Connectors	E
Transducer lines	508		3
Active probe		Analog Demodulation	40
Microbutton	329	Application	
		Analysis bandwidth	
Adjacent channels	172	Statistics	264, 27
MSR		Analysis BW	
MSR ACLR		Softkey (APD, CCDF)	26
MSR, bandwidth		Analysis region	
MSR, configuring		Shifting	46
MSR, spacing		Zooming	46
MSR, weighting filters	174	AnBW (channel setting)	78
Adjust settings		Annotations	
Softkey (APD)		Hiding/restoring	61
Softkey (C/N)	194	AP (trace information)	
Softkey (CP/ACLR)		APD	
Softkey (OBW)		About	
Adjust X-Axis		Activating (remote control)	
Softkey	253	Application	
,		Configuring	
		Gate (remote control)	
		Oale (remote control)	02

Gate ranges	265	Auto adjustment	
Gated trigger	262, 265	Triggered measurement	916
Measurement	117	Auto all	
Measurement (remote control)		Auto frequency	
Measurement example		Auto ID	
Performing		External Mixer	371 38
Results	·	External Mixer (remote)	
		,	
Results (remote control)		Threshold (External Mixer, remote control)	
Scaling (remote control)		Threshold (External Mixer)	38
see also Statistics	258	Auto level	
Using gate ranges	269	Hysteresis	450
Application cards	17	Reference level	408, 450
Application notes	17	Softkey	408, 450
Applications		Auto Peak detector	
1xEV-DO BTS	103	Auto peak search	
1xEV-DO MS		Auto scaling	
3G FDD BTS		Auto settings	
3G FDD UE		š	451
		Meastime Auto	
802.11ad		Meastime Manual	450
Amplifier Measurement		Automatic coupling	
Analog Demodulation	104	Frequencies, external generator	348, 35
Available	102	Automatic login mechanism	
Avionics	105	Activating/Deactivating	697
cdma2000 BTS	105	AUX control	
cdma2000 MS		TTL synchronization, external generator	340
DOCSIS 3.1		AUX PORT	
		Connector	E-
Group Delay			
GSM		AV (trace information)	
I/Q Analyzer		Average count	
LTE		Power sensor	
Noise Figure	106	Average detector	464
Phase Noise	106	EMI	299
Pulse	106	Average mode	
Real-Time Spectrum	106	Traces	480
Setting		Averaging	
Signal and Spectrum Analyzer mode		Continuous sweep	469
Spectrum		Single sweep	
•			
TD-SCDMA BTS		Sweep count	
TD-SCDMA UE		Traces	
Transient Analysis		Traces (algorithm)	
Vector Signal Analysis (VSA)	107	Traces (remote control)	969
WLAN	107	Avionics	
APR (channel bar)	80	Application	10
APX			
External generator	345. 350	В	
Arranging			
Windows	03 457	Band	
Arrow keys	, -	Conversion loss table	38!
•		External Mixer	
ASCII trace export		External Mixer (remote)	
Att (channel setting)			924
Attenuation	409	Band power	
Auto	409	Marker	506
Electronic	409	Band power markers	
Impact	405	Programming example	104
Manual		Band power measurement	
Option		Activating/Deactivating	528
Protective		Deactivating	529
		Power mode	
Protective (remote)	917	Span	
Audio demodulation			
Volume (remote control)		Band power measurement (remote control)	102
Audio output	507	Bandwidth	
Configuring	534	Configuration (Softkey)	
Marker demodulation	529	Coupling	
Audio Output		CP/ACLR	16
Programming example	1043	Default settings	413
Audio signals		MSR sub blocks	
Output (remote)	302 060	MSR, adjacent channels	
Output (161110te)	∪⊍∠, ७∪∪	,,	

MSR, gap channels	177	Application	259
MSR, Tx channel	172	Configuring	263
Resolution3	310, 414, 421	Crest factor	26′
Video	414, 421	Gate (remote control)	825
Baseband Input		Gate ranges	265
Connectors	51	Gated trigger	
BB Power		Measurement	
Trigger (softkey)	440	Measurement (remote control)	823
Bias		Measurement example	
Conversion loss table	382. 385	Percent marker	
External Mixer		Percent marker (remote control)	
External Mixer (remote)	•	Performing	
Boolean parameters		Results	
Brochures		Results (remote control)	
Burst signals		Scaling (remote control)	
Measurement example	134	see also Statistics	
wedstrement example	104	Using gate ranges	
C		cdma2000 BTS	200
		Application	104
C/N, C/N0		cdma2000 MS	100
see Carrier-to-Noise	191		101
Calibration		Application	
Analog Baseband (B71, remote control)	1103	Center = Mkr Freq	
Analog Baseband (B71)		Center frequency	
External generator		Automatic configuration	
•		MSR sub blocks	
External generator, remote		MSR Tx channel	
Frequency		Setting to marker	
Frequency MW		Softkey	
Frequency RF		Step size	395, 400, 403
How to, external generator		Sub blocks (Multi-SEM)	222
Normalization, external generator		Ch Power ACLR	
Performing with external generator		see CP/ACLR	116
Reference trace, external generator		Channel bandwidth	
Reflection open measurement, external gen		C/N	194
Reflection short measurement, external gen		CP/ACLR	161
Remote		MSR Tx channel	172
Remote control		MSR, adjacent channels	174
Removing component effects, external gene	erator 360	MSR, gap channels	
Restoring settings, external generator	346, 357	OBW	
Results (remote control)		Softkey	199
RF	612	Channel bar	
Settings	612	Changing names	80
Signal	612	Hiding/restoring	
Signal, as RF input	60	Information	
Storing results, external generator	345	Information, external generator	350
Transmission measurement, external general	ator 356	Channel power	
Capture time		Comparing (CP/ACLR)	183
see also Measurement time	891, 893	Density (CP/ACLR)	
Carrier Noise Config		see CP/ACLR	
Softkey	193	SEM results	
Carrier-to-Noise		Settings (SEM)	
Activating		Channel settings	
Channel bandwidth		Display	77 79
Channel bandwidth (remote control)		Presetting	
Configuring		Channel-defined Sequencer	
Determining		Softkey	111
Measurement			1 12
Measurement (remote control)	•	Channels	100 100 170
/		CP/ACLR	
Measurement process Results		CP/ACLR measurements	
Results (remote control)		Duplicating	
		Names (CP/ACLR)	
Span	192	New	
Case-sensitivity	GAE.	Operating modes	
SCPI		Replacing	
CCDF		see also Measurement channels	
About		Sequential operation	
Activating (remote control)	823	Spacings (CP/ACLR)	16′

Switching	Spacings, configuring	180	Comment	
Trying out 64 Limit lines	Switching	77	Gate ranges (statistics)	266
Weighting filters 163 Screenshots CISPR Average 298 Control Common commands CISPR Average detector 298 Common commands EMI 300 Syntax CISPR bandwidth 297, 311 Compatibility Clear status 711 Compatibility Remote 711 Compatibility Closing Limit lines 5 Channels (remote) 717 Transducer lines 5 Windows (remote) 374, 877 Compatible mode (channel setting) Compatible mode (channel setting) CMT CNEW (race information) 82 CONDition After calibration, external generator CMT CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT CMT CMT After calibration, external generator Compatible mode (channel setting) CMT CMT C	Trying out	64	Limit lines	546
CISPR Average Detector 298 Detector 298 Common commands Common comm				
Detector	0 0			
CISPR Average detector Common commands EMI 300 Syntax CISPR bandwidth 297, 311 Compatibility Clear status 711 Compatibility Remote 711 Compatibility Closing Limit lines 5 Channels (remote) 717 Transducer lines Channels (remote) 89 Compatible mode (channel setting) Compatible	=	298	•	
EMI 300 Syntax CISPR bandwidth 297, 311 Compatibility Clear status 711 GPIB Remote 711 GPIB Closing Limit lines 5 Channels (remote) 717 Transducer lines Windows (remote) 874, 877 Companiation CLRW (trace information) 81 After calibration, external generator CMT Connarker functions) 82 CONDition Color 650 Connector Computer name Color curve 475, 495 Connector Connector Color curve 490 ALX PORT Baseband Input Color curve 490 External mixer DVI Color scheme 490 External mixer Spectograms Softkey 488 GPIB interface Spectograms 474, 488, 489, 493, 494 IF OUT 2 GHz IF		200		
Clars Pataux Compatibility Compatibility		300		644
Section Sect				044
Remote		297, 311		000
Closing Channels 89				
Channels 89 Mode Channels (Fremote) 717 Transducer lines Windows (mote) .874, 877 Compatible mode (channel setting) CLRW (trace information) .81 After calibration, external generator CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT Compatible mode (channel setting) Compatible mode (channel setting) CMT Compatible mode (channel setting) Compatible mode (channel setting) Computer name Compatible mode (channel setting) Computer name Computer name Computer name Connoctor Connoctor AC power supply AL ponce AL ponce AC power supply AL ponce AC power supply <td< td=""><td></td><td> 711</td><td></td><td></td></td<>		711		
Channels (remote) 7.17 Transducer lines Windows .93, 457 Compatible mode (channel setting) Windows (remote) .874, 877 Compatible mode (channel setting) CLRW (trace information) .81 After calibration, external generator CMT Converted Changing CMT (marker functions) .82 CONDition Color .650 Connector Color curve .475, 495 Baseband Input Spectrograms .475, 495 Baseband Input Color range .490 External Mixer Color range .490 External Mixer Color range .490 External Mixer Softkey .488 GPIB interface Spectrograms .474, 488, 489, 493, 494 IF OUT 2 GHz Step by step .493 IF VIDEO/DEMOD Value range .475 CO. Color scheme .490 CO. Spectrogram .474, 490 COCO Color Scheme .493 IF VIDEO/DEMOD Spectro	•		Limit lines	538, 544
Windows (cmote) 93, 457 Compatible mode (channel setting) CLRW (trace information) 81 Compensation CMT After calibration, external generator Display 280 Changing ONT (marker functions) 82 ConDition Color 650 Connector Color curve 475, 495 AC power supply Spectrograms 475, 495 Baseband Input Color curve 490 External mixer Color curve 490 External mixer Color scheme 490 External mixer Color scheme 490 External mixer Spectrograms 474, 488, 499, 493, 494 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 IF / OUT 2 GHz Step by step 493 <	Channels	89	Mode	682
Windows (remote) 874, 877 Compensation CLRW (trace information) 81 After calibration, external generator CNT (Display 280 Changing CNT (marker functions) 82 CONDition Color curve Ac power supply Connector Shape 475, 495 Baseband Input Spectrograms 475, 495 Baseband Input Color mapping Display Port Display Port Color range 490 External mixer Color scheme 490 External mixer Color scheme 490 External Mixer Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Slep by step 474 480 Value range 475 LAN Color scheme Spectrogram 474, 490 Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Problems Configuring 624, 632 PROBE Bigiliary 622 RE Input 500	Channels (remote)	717	Transducer lines	598
Windows (remote) 874, 877 Compensation CLRW (trace information) 81 After calibration, external generator CNT (Display 280 Changing CNT (marker functions) 82 CONDition Color curve Ac power supply Connector Shape 475, 495 Baseband Input Spectrograms 475, 495 Baseband Input Color mapping Display Port Display Port Color range 490 External mixer Color scheme 490 External mixer Color scheme 490 External Mixer Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Slep by step 474 480 Value range 475 LAN Color scheme Spectrogram 474, 490 Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Problems Configuring 624, 632 PROBE Bigiliary 622 RE Input 500	Windows	93, 457	Compatible mode (channel setting)	78
CLRW (trace information) 81 After calibration, external generator CMT Computer name Changing Display 280 CNomition Color curve 650 Connector Shape 475, 490 AUX PORT Spectrograms 475, 495 Baseband Input Color curve 490 DVI Color curve 490 External mixer Color scheme 490 External mixer Color scheme 490 External mixer Soffkey 488 Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/DEO/DEMOD IF OUT 2 GHz Value range 475 AN Noise source control Colors scheme Noise source control OCXO Spectrogram 474, 490 OCXO DA Colors 625 Power Sensor Colors 625 Power Sensor Coffiguring 624, 632 PROBE Display 622 REF INPUT	Windows (remote)	874. 877		
Computer name Computer name Changing CNT (marker functions) 82	` ,			361
Display	,	-		
CND (inarker functions)		280		
Colon 650 Connector Color curve AC power supply Shape 475, 490 AUX PORT Spectrograms 475, 495 Baseband Input Color curve 490 DVI Color range 490 External mixer Color scheme 490 External Mixer Softkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/IDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 CCXO Color scheme Noise source control Spectrogram 474, 490 CXO Color scheme 625 Power Sensor Spectrogram 474, 490 CXO Colors PHONES Assigning to object 625 Coffiguring 622 REF INPUT Pintin 622 REF INPUT SOO Printin 624 TRIGGER S				
Shape	,			
Shape 475, 495 AUX PORT Spectrograms 475, 495 Baseband Input Color mapping Usplay Port Display Port Color curve 490 DVI Color range 490 External Mixer Softkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IFVIDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors PHONES Assalgning to object 625 Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Printe 624 TRIGGER 3 Printin 624 TRIGGER S Printing 622 USB Printe 624 TRIGGER S VoluME SCreen		000		
Spectrograms				
Display Port	Shape	475, 490		
Color curve 490 DVÍ Color range 490 External mixer Color scheme 490 External Mixer Soffkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/VIDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER NIPUT / OUTPUT Printin 624 TRIGGER NIPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator Command sequence GPIB External gen	Spectrograms	475, 495	Baseband Input	51
Color range 490 External Mixer Color scheme 490 External Mixer Softkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/IDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF <t< td=""><td>Color mapping</td><td></td><td>Display Port</td><td> 55</td></t<>	Color mapping		Display Port	55
Color range 490 External Mixer Color scheme 490 External Mixer Softkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/IDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF <t< td=""><td>Color curve</td><td> 490</td><td>DVI</td><td>55</td></t<>	Color curve	490	DVI	55
Color scheme 490 External Mixer Softkey 488 GPIB interface Spectrograms 474, 488, 489, 493, 494 IF OUT 2 GHz Step by step 493 IF/VIDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors 626 POWER Sensor Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Print 624 TRIGGER INPUT / OUTPUT Print 624 TRIGGER INPUT / OUTPUT User-defined 625 EXT REF Comma 626 VOLUME Corea 623 Connectors Command sequence 625 EXT REF <td>Color range</td> <td>490</td> <td></td> <td></td>	Color range	490		
Softkey				
Spectrograms				
Step by step 493 IFNIDEO/DEMOD Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors PHONES Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER INPUT / OUTPUT Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB External generator control Recommendation 672 IF/NIDEO/DEMOD Remote 715 REF OUTPUT Command 650 Context menus <td>,</td> <td></td> <td></td> <td></td>	,			
Value range 475 LAN Color scheme Noise source control Spectrogram 474, 490 OCXO Colors 625 Power Sensor Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 REF INPUT Editing 622 REF INPUT Editing (remote) 1111 SYNC TRIGGER Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-specific 624 AUX control, external generator User-specific 625 EXT REF Command sequence G25 EXT REF Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus C				
Spectrogram				
Spectrogram	Š .	4/5		
Colors				
Assigning to object 625 Power Sensor Configuring 624, 632 PROBE Display 622 RF INPUT Editing 622 RF Input 50Ω Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER INPUT / OUTPUT Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Comma 650 External generator control Command sequence GPIB Frint Printing Recommendation 672 IF/NIDEO/DEMOD Restended Recommendation 672 IF/NIDEO/DEMOD Restended Colon 650 Context menus Context menus Colon 650 Context menus Context menus Context menus <td>. •</td> <td> 474, 490</td> <td></td> <td></td>	. •	474, 490		
Configuring 624, 632 PROBE Display 622 REF INPUT Editing 622 RF Input 50Ω Editing (remote) 1111 SYNC TRIGGER Print 624 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB Recommendation Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Context menus Command line structure 650 Softkey 1 Command line structure 650 Softkey 1 Instrument co	Colors		PHONES	46
Display 622 REF INPUT Editing 622 RF Input 50Ω Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB External generator control Remote 715 REF OUTPUT Commands Colon 672 IF/VIDEO/DEMOD REF OUTPUT Context menus Context menus Context menus Context menus Context menus Context menus Continuous Sequencer God Softkey 1 Command line structure 650 Continuous Sequencer 1 Softkey 1 Common 643 Continuous Sequencer 3 Softkey	Assigning to object	625	Power Sensor	47
Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comman 650 External generator control Command sequence GPIB EREO UTPUT Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Cooma 650 Context menus Command line structure 650 Softkey 1 Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey <	Configuring	624, 632	PROBE	47
Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB FREF OUTPUT Remote 715 REF OUTPUT Commands Colon 650 Context menus Continue single sweep Command line structure 650 Continue single sweep Continuous Sequencer Double dagger 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Softkey 1 Instrument control 643 <td>Display</td> <td> 622</td> <td>REF INPUT</td> <td>59</td>	Display	622	REF INPUT	59
Editing (remote) 1111 SYNC TRIGGER Predefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Commands sequence GPIB External generator control Recommendation 672 IF/IDEO/DEMOD REF OUTPUT Commands 643 SYNC TRIGGER SYNC TRIGGER Colon 650 Context menus Continuous seveep Command line structure 650 Continuous sequencer Double dagger 650 Softkey 1 Common 643 Continuous sequencer Double dagger 650 Softkey 1 Instrument control 643 Contrinuous sweep Overlapping 652 Softkey <td></td> <td></td> <td>RF Input 50Ω</td> <td>53</td>			RF Input 50Ω	53
Priedefined 625 TRIGGER 3 Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB GPIB Recommendation 672 IF/VIDEO/DEMOD REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Context menus Comma 650 Context menus Comma 650 Context menus Comma 650 Continuous Sequence Double dagger 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Conversion loss SCPI comm				
Print 624 TRIGGER INPUT / OUTPUT Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Command 650 External generator control Command sequence GPIB IF/VIDEO/IDEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650				
Printing 622 USB Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB September Recommendation 672 IF/VIDEO//DEMOD ReFOUTPUT Commands 643 SYNC TRIGGER Octonext menus Colon 650 Context menus Octonext menus Octonext menus Comma 650 Continue single sweep Octonext menus				
Restoring 626 VOLUME Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB GPIB Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continuous single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 Exter				
Screen 623 Connectors User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB Recommendation Recommendation 672 IF/I/IDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continuo single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements				,
User-defined 624 AUX control, external generator User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 SCPI commands Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680	<u> </u>			40
User-specific 625 EXT REF Comma 650 External generator control Command sequence GPIB Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep 119, 4 Question mark 650 Conventions SCPI commands Quotation mark 650 SCPI commands SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				
Comma 650 External generator control Command sequence GPIB Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				
Command sequence GPIB Recommendation 672 Remote 715 Commands 643 Colon 650 Comma 650 Comma 650 Command line structure 650 Command line structure 650 Command line structure 650 Common 643 Common 643 Double dagger 650 Instrument control 643 Overlapping 652 Overlapping 652 Question mark 650 Quotation mark 650 SCPI commands SCPI confirmed 643 Scpuential 652 Syntax elements 650 Tracking 680 Available (remote)	User-specific	625		
Recommendation 672 IF/VIDEO/DEMOD Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)	Comma	650	External generator control	340
Remote 715 REF OUTPUT Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey 1 Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)	Command sequence		GPIB	340
Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey	Recommendation	672	IF/VIDEO/DEMOD	393
Commands 643 SYNC TRIGGER Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey	Remote	715	REF OUTPUT	596
Colon 650 Context menus Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				
Comma 650 Continue single sweep Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				
Command line structure 650 Softkey 1 Common 643 Continuous Sequencer Double dagger 650 Softkey Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				
Common 643 Continuous Sequencer Double dagger 650 Softkey Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking Available (remote)				110 426
Double dagger 650 Softkey Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking Available (remote)			Solikey	119, 420
Instrument control 643 Continuous sweep Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				4.40
Overlapping 652 Softkey 119, 4 Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)				112
Question mark 650 Conventions Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)	Instrument control	643	•	
Quotation mark 650 SCPI commands SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)	Overlapping	652	Softkey	119, 426, 488
SCPI confirmed 643 Conversion loss Sequential 652 External Mixer (remote) Syntax elements 650 Conversion loss tables Tracking 680 Available (remote)	Question mark	650	Conventions	
Sequential652External Mixer (remote)Syntax elements650Conversion loss tablesTracking680Available (remote)	Quotation mark	650	SCPI commands	709
Sequential652External Mixer (remote)Syntax elements650Conversion loss tablesTracking680Available (remote)	SCPI confirmed	643	Conversion loss	
Syntax elements				927
Tracking				
· · · · · · · · · · · · · · · · · · ·	•			
voue souce page page page page page page page pag			, ,	
	vville space	000	` '	
Bias (remote)			Bias (remote)	929

Configuring	383	Number of channels (remote control)	736
Creating		Optimizing	189
Deleting (remote)	929	Performing	
External Mixer	,	Performing measurement	179, 181
External Mixer (remote)		Power mode	159, 168
Harmonic order (remote)		Power Unit	,
Importing (External Mixer)		Predefined Settings	
Managing	382	Predefined standards	190
Mixer type (remote)	931	RBW	147
Saving (External Mixer)	386	Reference channel	
Selecting (remote)		Reference channel (remote control)	743
Shifting values (External Mixer)	386	Reference level	149
Values (External Mixer)	386	Repeatability	144
Copying		Results	140, 764
Measurement channel (remote)	716	Setting up channels	179
Traces	482, 496	Setting up channels (remote control)	736
Coupling		Standards	155, 165
Automatic, external generator	348, 355	Standards (remote control)	734
Frequencies, external generator		Standards (Softkey)	155, 165
GPIB		Sweep time	
GPIB (remote control)	1132	Sweep Time	
Input (remote)		Trace averaging	149
Manual, external generator		Trace Selection	
Span/RBW		Troubleshooting	,
VBW/RBW		User-defined standards	
Coupling ratio		VBW	·
Span/RBW (remote)	888	W-CDMA signals	
Coupling ratios		Weighting filters	
Default	422	0 0	
RBW/VBW		Weighting filters (remote control) Crest factor	
		APD	260
Span/RBW			
CP/ACLR		CCDF	201
About		Cumulated Measurement Time (CMT)	200
Absolute/relative values	,	Harmonics	280
Adjust Settings		В	
Channel bandwidths		D	
Channel bandwidths (remote control)		Data farmat	
Channel names		Data format	000
Channel names (remote control)		ASCII	
Channel power density		Binary	
Channel setup	160, 169	Remote	
Channel setup (remote control)	736	Data sheet	
Channel spacing	180	Data shift	
Channel spacing (remote control)	736	Data zoom	461
Channel spacings	161	Date	
Clear/Write	159, 168	Format	
Comparing channel powers	183	Hiding/restoring	619
Configuring		Instrument setting	617
Configuring MSR signals		Setting	37
Detector		Date and Time	
Fast ACLR		Printing	577
Fixed reference for CP	,	DC (channel bar)	79
Frequency span		Debugging	
General Settings		Remote control programs	1187
General Settings for MSR		Decimal separator	
IBW method		Trace export	485
		DEF	
Limit check (remete control)		Default	
Limit check (remote control)		Restoring settings	552
Max Hold	· ·	Default coupling	
Measurement			423
Measurement (remote control)		Default values	744
Measurement examples		Remote	/ 14
Measurement methods		Deleting	F40
Mode	,	Limit line values	
Multicarrier		Settings files	
Noise cancellation		Standards	
Number of channels	157	Transducer factors	601

Delta markers	307, 510	Update (remote)	680
Defining	307, 510, 523	Update rate	
Fixed reference marker		Display colors	
Remote control		Changing - see User Manual	9:
Demodulation		Display lines	
Activating (marker)	530	Defining	
Continuous (marker)		Remote control	
Marker		Settings	54
Marker stop time		Display Port	_
Modulation type		Connector	5
Remote control	1034	Display theme	
Squelch	530	Selecting - see User Manual	9
Squelch level	531	Displayed items	
Demodulation markers		Touchscreen	618
Programming example	1043	DNS server	
Denominator		IP Address	69
Frequencies, external generator	348 355	LAN configuration	
Detectors		DOCSIS 3.1	
	440		40
CP/ACLR		Application	
EMI		Double dagger	
Overview		DOWN	64
Remote control		Drop-out time	
Spurious Emissions range	251	Trigger	431, 44
Trace	308, 479	Trigger (Power sensor)	330
Device	•	Duplicating	
Softkey	576 580 582	Measurement channel (remote)	716
Device-specific commands		Duty cycle	
DHCP		Power sensor	22
	34, 078, 009		
DHCP server	20	DVI	F
LAN configuration	30	Connector	
Diagnostics		Dwell time	,
Hardware	615	EMI detectors	298
Diagram area		Dynamic range	
Channel settings	78	Intermodulation-free	286
Status display	82	Measuring	278
Trace information	80	•	
Diagram footer		E	
Hiding/restoring		_	
Diagrams		Edge gate	
Evaluation method	452	Slope	44
	452	Electromagnetic compatibility	
Dialog boxes	00	see EMC	20.
Slider			
Transparency	86	Electromagnetic interference	
Dialogs		see EMI	
Printing	577	Electronic input attenuation	
Suppressing file selection	581	Electrostatic discharge	2
Digital Baseband Interface (B17)		EMC	29
Connector	57	EMI	29
Direct path		Detectors	29
Input configuration	327	Measurement	
		Refining results	,
Remote	910	EMI marker evaluation	
Dirty flag			
see Invalid data icon	77	EMI measurement	0.5
Display		Programming example	
Changing - see User Manual	95	ENABle	65
Colors	622, 632	Enable registers	
Config (Softkey)	451	Remote	71:
Deactivating - see User Manual		Entering data	8
Evaluation bar		EOI	
Evaluation methods	· ·	GPIB terminator	68
		Error log	
Information		_	1130
Settings		Error messages	00 440
Settings (remote control)		Status bar	
SmartGrid	90, 453	Error queue	66
Theme	622	Errors	
Theme (remote)	1111	External generator	
		IF OVLD	84, 407, 668, 1184

Increase sweep points (EMI)		. 317	Coupling frequencies		34
INPUT OVLD	84, 668,	1184	Errors		
LOUNL	84,	1184	Generators, supported		. 342
Messages, device-specific		1185	Interface		. 352
NO REF	84,	1184	Interface settings		
OVEN			Normalizing		
Queues, recommendations			Overloading		
Remote control programming			Recalling calibration settings		
. 0			Reference level		
RF OVLD					
UNCAL	•		Reference line		
UNLD			Reference line position		
WRONG_FW 8			Reference line value		
ESD		21	Reference position		. 35
ESE (event status enable register)		. 660	Reference trace		34
ESR (event status register)			Reference value		. 358
Evaluation			Reflection measurement		. 34
Lists (SEM)		231	Reflection open measurement		
Lists (Spurious)			Reflection short measurement		
Modes			Remote control		
Modes, adding			Settings		
_ Trying out		62	Transducer factor	,	
Evaluation bar			Transmission measurement	- ,	
Using	92	, 456	TTL synchronization		340
Evaluation list			External mixer		
Details (Spurious Emissions)		254	Connector		5
Peaks (Spurious Emissions)		255	External Mixer	367,	37
Spurious Emissions		. 246	2-port vs 3-port		368
Evaluation methods			Activating (remote)		
Remote		872	Band		
EVENt			Basic settings	,	
			<u> </u>		
Event status enable register (ESE)			Bias current		
Remote			Configuration		
Event status register (ESR)			Connector		
Remote		. 711	Conversion loss		
EX-IQ-BOX			Conversion loss tables	370,	383
Connector		57	Frequency range	367,	37
Example			General information		36
Calibration with an external generator .		. 361	Handover frequency		378
Remote control of an external generato			Harmonic Order		
Exclude LO			Harmonic Type		
Remote		•	Measurement example		
Export format		. 00-	Name		
SEM results		244	Programming example		
Spurious Emissions results			Range		
Traces		570	Restoring bands		
Exporting			RF overrange	378,	928
Data		. 568	RF Start/RF Stop		37
Functions		. 559	Serial number		38
I/Q data		. 568	Type	378, 386,	928
Measurement settings		485	External monitor	, ,	
Peak list			Connectors		5!
SEM result files		•	External reference		0
			External generator		34
Softkey					
Spurious Emissions result files			External generator control		
Trace data			Frequency		
Traces4			Input		
EXREF (status display)	84,	1184	Loop bandwidth		
EXT REF			Missing		. 59
Status message		83	Output		
Ext.Gen (channel bar)			Settings		
External generator			Settings (remote control)		
Activating/Deactivating			Status message		
•					
Basics			Tuning range		
Calibration functions			External trigger		
Calibration measurement settings			Configuring power sensor		
Channel bar information			Level (power sensor)		33
Connections		339			

Level (remote)	905	Date and Time	618
Power sensor	335	see also File format	570
ExtMix (channel bar)	79	Frame count	
		Softkey	427
F		Spectrograms	
•		Frames	77
Falling			E1(
•	226	Spectrogram marker	510
Slope (Power sensor)	330	Free Run	
Fast ACLR		Trigger	439
Activating/Deactivating	158	Frequencies	
Measurement method	143	Multi-SEM	213
Fast SEM	210	Frequency	
Consequences	211	Configuration (Softkey)	307
Example			
Multi-SEM		Coupling (power sensor)	
		External generator	
Prerequisites		External reference	
SEM	218	IF Out	393
FFT filters		Offset	401
Mode	424	Power sensor	334
FFT sweep	416, 425	Range	
File format		Range, defining	
Export Files	570		
SEM export files		Reference	
		Reference (remote control)	
SEM settings files		Span	
Spurious Emissions export files		Start	399
Trace export	570	Step size	395
File name		Stop	399
Data files	559	Sweep	
Settings	230 561 564	Frequency axis	
File type			244 206 200
	561	Scaling	311, 390, 398
Storage settings		Frequency counter	
Filter type (EMI)		see also Signal count	501
Filter types	309, 417, 422	Frequency coupling	
SEM range	218	Automatic, external generator	348
Spurious Emissions range	250	External generator	
Filters		Reverse sweep, external generator	
5-pole	418	TTL synchronization, external generator	
Channel			
Configuration		Frequency denominator	0.51
		External generator	358
FFT		Frequency lines	
Gaussian (3dB)		Remote control	1045
High-pass (remote)		Frequency numerator	
High-pass (RF input)	328	External generator	355
Overview	427	Frequency offset	
RBW	414	External generator	3/18/35
RRC			540, 550
VBW		Frequency range	0.40 0.54
		Calibration sweep, external generator	
Weighting (remote)		Extending	
YIG (remote)		External Mixer	367
Final test	304	Frequency span	
Firmware		CP/ACLR	146
Updating	606, 629	Frequency sweep	
Firmware Update		Measurement	115
Remote control	1122		
Fixed reference	1122	Programming example	117
	500	Frequency-converting measurements	
Configuring		External generator	348
Defining		Front Panel	
Delta markers	533	Displaying - see User Manual	95
Marker	502	Hiding/restoring	
Remote control	1016	Frontend	520
Focus		Temperature	E0.
Changing	25		
		Temperature (remote)	
Focus area	40	Temperature, status bit	668
Switching between windows	46	FRQ	
Format		External generator	350
Data	983	Frq (channel bar)	
Data (remote)	980, 1090, 1091	,	

Full span		GPIB bus control	
Softkey	400	Remote	713
Function keys		GPIB interface	
Details - see User Manual	47	Configuring - see User Manual	5
Overview		Connector	
FXD (marker functions)		Remote control	
TAD (marker functions)	02	see User Manual	
G		GPIB Language	
O .		<u> </u>	07
Con		Group delay	
Gap	477	Smoothing	48
MSR, spacing	177	Group Delay	
Gap channels		Application	10
MSR ACLR		GSM	
MSR, bandwidth	177	Application	10
MSR, configuring	176		
MSR, weighting filters	177	Н	
GAT (channel bar)		••	
Gate	•	Handover frequency	
Delay	115	External Mixer	368 37
Length		External Mixer (remote)	
•		` ,	92.
Measurements		Hard drive	_
Mode		Removable	5
Ranges (statistics)	262	Hardcopy	
Settings	444	see Screenshots	7
Gate ranges		Hardware	
Activating (statistics)	266	Check	600
Comment (statistics)		Diagnostics	
Period (statistics)		Information	
		Supported	
Start/Stop (statistics)			
Statistics	265	Harmonic Distortion	
Gated trigger		About	
Activating	444	Activating (remote control)	843
Configuring (statistics)	265, 269	Basics	278
Delay	445	Configuring	28 ⁻
Example	270	Measurement	118
Length		Measurement (remote control)	
Mode		Measuring	
Softkey		RBW	
•		Results	
Statistics	. 202, 203, 272		
Gating	400	Results (remote control)	
Source	438	Sweep time	28
Generator		Harmonics	
Frequencies, external generator	348, 355	Basics	27
Frequency coupling, external generator	355	Conversion loss table	38
Frequency offset, external generator	354	External Mixer (remote)	925, 92
Output power, external generator		High-sensitivity	
Generator type		LO	
External generator	352	Measurement example	
_	332	Measurement rules	
Generators	050		
Frequency range, external generator		Measurement time	
Power range, external generator	353	Number	
Setup files, external generator	. 344, 352, 353	Order (External Mixer)	37
Supported, external generator	342	Origin	27
GPIB	636	Power	28
Address	679. 695	Second harmonic intercept	27
Address, External generator	,	Type (External Mixer)	
Characteristics		Headphones	
		Connector	4
Coupling			
External generator		Help	
IF Gain (remote control)		Search for topic	
Language		Using	90
Language (remote control)	1132	Hiding	
Remote control interface	635	Screen elements - see User Manual	9
Settings		Hiding/restoring	
Terminator		Display items	619
TTI synchronization External generator		Diopia, Romo	

High-pass filter	
Remote	
RF input	328
Highpass filter LISN control (EMI)	240
HISLIP	
Protocol	
Resource string	
History	
Spectrograms	487
History Depth	
Softkey	. 487
Trace setting	480
Horizontal Line 1/2	. 400
Softkeys	. 542
HP emulation	
Hysteresis	
Lower (Auto level)	. 450
Trigger	
Trigger (Power sensor) Upper (Auto level)	
Opper (Auto lever)	. 450
I	
I/O Logging	.680
I/Q Analyzer Application	105
Trying out	
I/Q data	04
Exporting	.568
I/Q Power	
Trigger level (remote)	906
IBW method	
CP/ACLR measurements	
ID String User	.6/3
Remote	712
String, R&S FSW	
String, resetting (R&S FSW)	. 679
IEC/IEEE bus	
see GPIB	
IECWIN	
Accessing IF frequency	30
Output	392
Output (remote)	
IF Gain	
GPIB	
GPIB (remote control)	1132
IF OUT 2 GHz	- 4
Connector IF OUT 2 GHz	54
Connector	56
IF Out Frequency	
IF output	. 392
Remote	960
IF OVLD	
Error 84,	
External generator	
IF OVLD (status display)84,	1104
Trigger	440
Trigger level (remote)	
IF/VIDEO/DEMOD	
Connector 56,	
Output	. 393

Impedance		
Remote		
Setting		327
Importing		
Functions		
Softkey		
INF		648
Information		
Hardware		
Options		
Version		604
Inherent noise	407	
Cancelation	, 167,	410
Input		047
Connector (remote)		
Coupling		327
Coupling (remote)		
Overload		
Overload (remote)		
RF		
Settings Signal, parameters		
Source Configuration (softkey)		
Source, Radio frequency (RF)INPUT OVLD		320
Error	01 1	101
INPUT OVLD (status display)		
Inserting	. 04, 1	104
Limit line values		5/18
Transducer factors		
Installing		001
Options	605	620
Instrument messages		
Instrument name		0+0
Changing		692
Instrument settings		-
Secure user mode		556
Interface messages		
Interfaces		
GPIB		641
LAN		
USB		641
Intermodulation products		
Interrupt		
Invalid data		
Icon		77
Invalid results		
Remote control		652
IP address		
Assigning		689
Changing		. 34
Network		678
IP Address		
DNS server		691
IP configuration		
LXI		
IST		
IST flag		
Remote		712
Items		
Saving		
Settings		561

K		Deleting values	
14		Details	
Key	_,	Editing	
DOWN		Inserting values	
LEFT		Managing	
POWER		Margin	
REDO	51	Margins	
RIGHT	51	Name	54
UNDO	51	OBW	199, 515, 51
UP	51	Offsets	53
Keyboard		Peak search	199. 515. 51
On-screen	45	Recalling	
Keypad		Remote control	
Key layout		Saving	
Overview		Selecting	, ,
		SEM	
Keys	500		,
MKR		Shifting	
MKR ->	,	Spurious	
MKR FUNCT		Spurious Emissions	
Peak Search		Storing	54
PRESET	552	Threshold	
RUN CONT	119, 426, 488	Time Domain Power measurement	27
RUN SINGLE	119, 425, 426, 488	Traces	54
Keywords		View filter	54
see Mnemonics	644	Violation	53
		Visibility	54
L		X-axis	
		X-Offset	
LAN		Y-axis	
Configuration		Y-Offset	
Configuring			
Connector		Limits	00
Interface		Absolute (SEM range)	
IP address		Absolute (Spurious Emissions range)	
		Relative (SEM range)	220
Remote control interface		Line impedance stabilization network	
Reset		see LISN	30
VISA		Linear scaling	
VXI protocol	638	X-axis	311, 396, 39
Last span		Lines	
Softkey	400	Configuration	54
Legacy format		Configuration (Softkey)	54
*IDN	680	Display	
LFEOI		Horizontal	
GPIB terminator	680	Limit, see Limit lines	
Limit check		Vertical	
Activating/Deactivating	549	Linking	
CP/ACLR		Markers	207 51
MSR channels			
		LISN	
MSR, activating		Configuration (EMI)	
Remote control		EMI	
Results		Highpass filter (EMI)	
SEM range		Phase (EMI)	31:
Spurious Emissions		List evaluation	86
Spurious Emissions range	253	Evaluations	231, 25
Limit lines	313, 537, 542	Saving (SEM)	23
Activating/Deactivating	544	Saving (Spurious Emissions)	25
Band power marker	506	SEM	
Calculation (Multi-SEM)		Softkey	
Comment	· · · · · · · · · · · · · · · · · · ·	Spurious Emissions	
Compatibility		State (SEM)	
Compatible		State (Spurious Emissions)	
Copying		` . '	23
Creating	· ·	LO	
•		Harmonics	
Data points		Level (External Mixer, remote control)	
Deactivating		Level (External Mixer)	
Defining		LO feedthrough	32
Deleting	h/lh hh()		

Loading			Marker table		
Functions		559	Evaluation method		. 45
Instrument settings		564	Information		8
Settings	555,	556	Marker to Trace	308,	, 51
Settings files		230	Markers		. 498
Trying out		74	AM Modulation Depth measurement		. 294
Logarithmic scaling			Analyzing in detail		. 53
Sweep points		396	Assigned trace		
X-axis			Band power		50
Login	, ,		Band power (remote control)		102
Network		695	Basic settings		
Operating system			Configuration		
Secure user mode			Configuration (remote control)		
Logo		20	Deactivating		
Printing		576			
•		.570	Delta markers		
Loop bandwidth		F00	Demodulation		
External reference		596	Demodulation (remote control)		
LOUNL			Fixed reference		
Error			Fixed reference (remote control)		
LOUNL (status display)	84, ´	1184	Function configuration		. 52
Lower Level Hysteresis		450	Linking	307,	, 510
LTE			Minimum		. 52
Application		106	Minimum (remote control)	993,	, 99
LVL			n dB down	504,	, 52
External generator		350	n dB down (remote control)		1028
LVL (channel bar)		80	Next minimum		520
LXI			Next minimum (remote control)		
Browser interface		692	Next peak		
Configuration			Next peak (remote control)		
LAN configuration			Noise		
Manufacturer Description			Noise measurement	,	,
Password			Noise measurement (remote control)		
			,		
Ping			Peak		
Remote control	,		Peak (remote control)		
Reset (LCI)			Peak list (remote control)		
see user Manual			Phase noise measurement		
Settings		. 684	Phase noise measurement (remote contro		
LXI web browser access			Position	306,	, 51
Error	<i>"</i>	1185	Positioning		
			Positioning (remote control)		. 98
M			Programming example		
			Querying position (remote)	<i>'</i>	100
Maintenance			Remote control		. 98
Manual peak search		. 303	Search (remote control)		. 99
Margins			Setting center frequency		
Limit lines	538,	547	Setting reference level		. 52
Peaks (SEM)		. 232	Signal count		
Peaks (Spurious Emissions)		254	Signal count (remote control)		
Violation			Softkeys (AM Modulation Depth)		
Marker			Softkeys (TOI)		
Information		81	Spectrograms		
Search area (softkey)			Spectrograms (remote control)	,	,
Search type (softkey)					
Marker demodulation			State		
Marker functions		010	Step size		
Deactivating		532	Step size (remote control)		
•			Table		
Measurement example		555	Table (evaluation method)		
Marker peak list		F04	Table (remote control)		
see Peak list		23.1	Tips		
Marker Peak List			TOI measurement		
Programming example	······································	1039	Trying out		68
Marker search			Type		
Spectrograms, programming example	<i>"</i>	1038	X-value		
Marker search area			Mask monitoring	,	
Remote control		993	SEM		. 202
			MAX		
			MAXH (trace information)		
			, ,		-

Maximize		Messages	
Window	94	Commands	643
Maximizing		Instrument	643
Display	46	Instrument responses	
Windows (remote)		Interface	643
Meas Time (channel setting)	78	MI (trace information)	80
Measurement accuracy		Microbutton	
External generator	345	Probes	329
Measurement channel		MIL Std bandwidth	297, 31′
Creating (remote)716	6, 717, 719, 720	MIN	648
Deleting (remote)	717	MINH (trace information)	8
Duplicating (remote)	716	Mini Front Panel	
Querying (remote)	718	Displaying - see User Manual	95
Renaming (remote)	719	Hiding/restoring	622
Replacing (remote)	717	Key combination	622
Selecting (remote)	719, 720	Using	
Measurement channels		Minimum	
Activating	88	Marker positioning	
Closing		Next	
Measurement examples		Mixer Type	
AF of AM-modulated signal	131	External Mixer	378
AM modulation		MKR	
CP/ACLR		Kev	508
External Mixer	,	MKR ->	
Harmonics		Key	513 519
Intermodulation		MKR FUNCT	
Level and frequency		Key	521
Marker functions		Mnemonics	
OBW		Optional	
Power of burst signals		MOD (marker functions)	
Separating signals		Mode (channel setting)	
Signal frequency using signal counter		Modes (charmer setting)	
Signal-to-noise ratio		see Operating mode	100
Statistics		Modulation	
Time Domain Power		Depth	115
TOI		Marker Demodulation	530
Measurement results	290	Monitor	
SEM	221	External	626
Spurious Emissions		Settings	
Measurement time		MSR ACLR	020
Auto settings		Adjacent channel bandwidths	17/
Power sensor		Adjacent channel definition	
Remote		Adjacent channel setup	
Measurements	031, 033	Adjacent channel spacing	
All Functions off	110	Adjacent channel weighting filters	- 17
APD			
	•	Adjacent channels	
Carrier-to-Noise		O/ (OE) (151
CCDF		Channel definition	
Correlating		Channel display	
CP/ACLR		Configuration	
EMI		Gap channel bandwidths	
Evaluation methods		Gap channel definition	
Frequency sweep		Gap channel setup	
Harmonic Distortion		Gap channel spacing	
OBW		Gap channel weighting filters	177
Selecting		Gap channels	
SEM	·	Limit check	·
Spurious Emissions		Limit checks, activating	
Statistics		Measurement	
Time Domain Power	,	Number of adj. channels	
<u>T</u> OI		Programming example	
Zero span	116	Results	
Measurementsition time	_	Results (remote)	
Statistics	265	Signal structure	
Menus		Sub block definition	
Context-sensitive	44	Tx channel bandwidth	
		Weighting filters	172

MSR SEM		Next Minimum	520
Basics	212	Marker positioning	520
Configuration	226	Next Mode X	
Configuration (softkey)	226	Softkey	517
Settings (Multi-SEM)		Next Mode Y	
Multi-Carrier Group Delay		Softkey	517
Application	105	Next Peak	
Multi-SEM	100	Marker positioning	
	242		
Basics		NINF	048
Center frequencies		NO REF	
Fast SEM	-	Error	
Frequency definition	213	NOI (marker functions)	82
Limit line calculation	213, 221	Noise	
MSR settings	223	Cancelation (CP/ACLR)	157, 167, 410
Number of sub blocks		Cancelation (softkey)	
Results	204	Cancellation (remote control)	
Settings		Correction, see Cancelation	
<u> </u>			
Standard files		Density	
Standard settings files	223	Floor (RF attenuation)	
Multi-standard radio		Marker	
see MSR	212	Saving settings	559
Multicarrier ACLR measurement	142	Source	323, 393
Multiple signals		Noise Figure	
Measurement example	126	Application	106
Multiple zoom		Noise markers	
MultiView		Programming example	1040
Status display	92		1040
. ,		Noise measurement	F0.
Tab		Activating/Deactivating	
Trying out	66	Deactivating	
		Marker	522
N		Remote control	1021
		Noise source control	
n dB down		Connector	47
Delta value	526	NOR	
Marker	504. 526	External generator	345 350
Remote control	·	NOR (channel bar)	
n dB down markers		,	
Programming example	1042	Normalization	0.44
•	1042	Approximate, external generator	
Name	400	External generator	
CP/ACLR channels		NTRansition	657
Limit lines		Number of Readings	
Transducer lines	600	Power sensor	335
NAN	648	Numerator	
NAN (not a number)		Frequencies, external generator	348 355
Remote control	652	Numeric parameters	
Navigation		Numeric values	
Controls	50		040
in tables		Special	040
		^	
Navigation keys		0	
NCor (enhancement label)	80		
Negative peak detector		OBW	
EMI	298	% Power	198
Negative Peak detector	464	% Power (remote control)	772
Network		Adjust Settings	199
Automatic login	697	Channel bandwidth	
Changing user passwords		Channel bandwidth (remote control)	
Configuration (dialog box)		Configuring	
• • • • • • • • • • • • • • • • • • • •			
Configuring	-	Deactivating limits	
Connecting the instrument		Determining	
Creating users	696	Limits	
DNS server	691	Measurement	117, 195
Login	695	Measurement (remote control)	771
Operating the instrument	695	Measurement example	200
Setting up		Multicarrier signal	
Settings		Prerequisities	
Settings (remote)		Results	
Sharing directories	097	Search limits	190, 198, 200

Occupied Bandwidth	40-	Overview (configuration)	319
see OBW	195	OVLD	
OCXO		External generator	
Connector	58	OVLD (status display)	84, 118
Offset		_	
Frequency		Р	
Limit lines		5 (1)	_
Reference level	408	Pa (channel bar)	79
X-axis (statistics)	268	Paint	
Offset (channel setting)	78	Accessing	30
On-screen keyboard	45, 86	Parallel poll register enable	
Online help	-	Remote	71
Working with		Parameters	
Open-circuit reflection measurement		Block data	65
Calibration, external generator	357	Boolean	64
Operating mode		Entering	
Changing		Input signal	
0 0		Output	
Presetting		Passing between applications	
Operating system		Passing between slave applications	
Login		SCPI	
service packs	27		
Operation complete		Special numeric values	
Remote	712	String	
Optimizing		Text	
Calibration signal display	61	Units	
Options		partial spans	416, 41
Electronic attenuation	409	Password	
EMI measurement (K54)		Secure user mode	609
External generator control (B10)		Passwords	
External mixer		Changing	69
High-pass filter		Secure user mode	
Identification (remote)		Service functions	
,		Peak excursion	
Information		Peak list	
Installing		Configuring	
Preamplifier		Displaying	
Secure user mode (K33)	38, 553		
Orientation		Evaluation method	
Screenshot	583	Exporting	
Oscilloscope		Marker numbers	
Alignment	58	Maximum number of peaks	
Output		Peak excursion	
Audio	960	Remote control	
Buffer	656	Sort mode	
Configuration	391	State	53 ⁻
Configuration (remote)		Trying out	69
External reference		Peak search	303, 499
IF frequencies		Area (spectrograms)	518
IF frequency (remote)		Automatic	310. 501. 515. 519
IF Out Frequency		Deactivating limits	
		Excursion	
IF source (remote)		Key	
Noise source	•	Limits	
Parameters			
Settings		List	
Trigger		Mode	,
Video	,	Mode (spectrograms)	
Video signal	324	Reference marker	
OVEN		Threshold	,
Error	84, 1184	Type (spectrograms)	
OVEN (status display)	84, 1184	Zoom limits	516, 519
Overlapping commands		Peaks	
Preventing		Displaying (SEM)	23
Overload		Displaying (Spurious Emissions)	
External generator	345	Margin (SEM)	
RF input		Margin (Spurious Emissions)	25
·		Marker positioning	
RF input (remote)		Next	
Overloading	054	per range (Spurious Emissions)	
External generator	351	per range (opunious Emissions)	20

SEM results	204	Configuring as trigger	
Softkey	520	Connecting	33 [.]
Spurious Emissions	247	Connector	4
Percent marker		Continuous Value Update	
	201		
CCDF		Duty cycle	
Softkey (CCDF)	264	External power trigger	33
Performing		External trigger level	33
EMI measurement	313	Frequency	336
		Fraguency Counting	22
Period		Frequency Coupling	
Gate ranges (statistics)	266	Measurement time	
Persistence spectrum		Number of readings	33
Spectrogram	475	R&S NRP	
Phase		R&S Power Viewer	
EMI		Reference level	33
LISN control (EMI)	312	Reference level offset	33
Phase noise markers		Results	330
Programming example	1040	Selecting	
	1040		
Phase noise measurement		Setting up	33
Activating/Deactivating	525	Settings	
Application	106	Trigger mode	44
Deactivating		Unit/Scale	
ŭ .			
Marker		Using	
Reference point	525	Using - see User Manual	4
Remote control	1022	Zeroing	
PHN (marker functions)		Power supply	
,	02	11 7	
PHONES		Connector	5
Connector	46	Power Unit	
Ping	694	Softkey	158 168
PK (trace information)		Power-save mode	
,			0.1
Ports		Activating - see User Manual	
External Mixer (remote)	928	PPE register	656, 660
User	961	Preamplifier	
Position		SEM range	210
	F 4 7		
Limit line values		Setting	410
Transducer factors	601	Softkey	410
Positive peak detector		Spurious Emissions range	25
EMI	208	Predefined standards	
			455 405 400
Positive Peak detector	404	CP/ACLR	155, 165, 196
Power		Preset	
Channel, see Channel Power	140	Bands (External Mixer, remote)	924
Harmonics		Channel settings	
Mean (time domain)		External Mixer	
Peak (time domain)	273	Key	552
Percent (OBW)	198	Recalling settings	560
RMS (time domain)		Presetting	
			00
Standard deviation (time domain)		Channels	
Time domain	272	Pretrigger	442
POWER		Preview	
Key	46	Trigger/Gate settings	//21
•	40		
Power classes		Print colors	
Adding/Removing (SEM)	226	Changing - see User Manual	9
Ranges (SEM)		Print Screen	
SEM		Softkey	570
	*		
SEM results		Printer	
Softkey	224	Selecting	58
Used (SEM)	225	Printers	
Power mode		Installing	EQ.
	F00	3	
Band power measurement		Printing	
CP/ACLR	159, 168	Colors	622, 624, 632
Softkey	159 168	Colors (remote)	111
Power sensors		Medium	
	222		
Activating/Deactivating		Screenshots	,
Applications	330	Trying out	7
Average count		Probability range	
		Statistics	000
Configuration (softkey)			
Configuring	331	PROBE	
Configuring - see User Manual	47	Connector	4
0 0			

Probes		R&S FSQ	
Connectors	51	Emulating	
Microbutton	329	Emulating (remote)	113
Settings	328	R&S FSU	
Product IDs		Emulating	68
		Emulating (remote)	
Programming examples	700	,	113
ACLR		R&S FSV	
AM Modulatation Depth	851	Emulating	68
Band power markers	1041	Emulating (remote)	113
Carrier-to-Noise ratio	771	R&S NRP	
Demodulation markers		Power sensors	33
EMI measurement		R&S Power Viewer Plus	
External Mixer		R&S_SMA	
Frequency sweep		External generator	34:
Marker Peak List	1039	R&S SMW	
Marker search (spectrograms)	1038	External generator	34:
Markers		R&S Support	61
MSR ACLR		Rackmounting	
n dB down markers		Range	
Noise markers		Scaling	
Phase noise markers	1040	X-axis (statistics)	268
Reference Marker	1039	Ranges	
SEM	806	Definition (SEM)	20
Sequencer		Deleting (SEM)	
•			
Service request		Deleting (Spurious Emissions)	
Signal count markers	1044	Inserting (SEM)	
Spectrogram	983	Inserting (Spurious Emissions)	
Spurious Emissions measurement	820	Reference (SEM)	206, 22
Statistics 831, 1039, 106		Remote control (Spurious Emissions)	
TOI	'	Rules (SEM)	
Protection		Rules (Spurious Emissions)	
	004		
RF input		SEM	
RF input (remote)	917	Symmetrical (SEM)	20
Protocol		RBW	
VXI	638	see Resolution Bandwidth	414
PSA emulation	1163	RBW (channel setting)	7
PSA89600		Ready for trigger	
Wideband	602	Status register	66
			00
PTRansition	657	Real-Time spectrum	
Pulse		Application	106
Application	106	Rear panel	
Pulsed signals		Overview	5
EMI detector	208 200 300	Rebooting	
			110
PXA emulation	1107	Remote control	113
		Recalling	
Q		Calibration settings, external generator	35
		Settings 555	5, 556, 559, 56
QP (trace information)	81	Settings for preset	
Quasipeak detector		Softkey	
EMI	200	•	
		Recommendations	
Queries	,	Remote control programming	672
Status	670	REDO	
Question mark	650, 651	Key	5
Quick Config		REF INPUT	
Traces	481	Connector	E
Quick recall			
	550	Ref Level (channel setting)	
Settings	556	Ref Lvl = Mkr Lvl	52
Quick save		Reference	
Settings	556	External	59
Quotation mark	650	Fixed	
R		Fixed (channel power)	
13		Fixed (Delta marker)	
DIC FCD		Frequency	
R&S FSP		Frequency (remote control)	109
Emulating	682	Internal	
Emulating (remote)	1132	Marker	
- · · · · · · · · · · · · · · · · · · ·			
		Phase noise measurement	52

Power (SEM)	224	Remote operation	
Range (SEM)	206, 223	Configuring	635
Softkey	594	Deactivating the instrument	
Reference channel		GPIB address	
CP/ACLR	157, 167	GPIB settings	678
Reference frequency	,	see also Remote control	
Default	596	Setting up	
External generator		Settings	
Input		Starting	
Output		Stopping	
Reference level		Removable hard drive	
Adjusting to transducer factors		Repeatability	
Auto level		CP/ACLR measurements	14/
	,	Repetition interval	
CP/ACLR			
External generator		Softkey	44
External Mixer		Reset values	74
Offset		Remote	712
Offset (Power sensor)		Resetting	
Position		RF input protection	321, 917
Power sensor	335	Resolution bandwidth	
SEM range		Auto (Softkey)	
Setting to marker	521	CP/ACLR	147
Spurious Emissions range	251	Harmonics	282
Statistics	268	Impact	414
Unit	407, 408	Manual (Softkey)	310, 421
Value	407	SEM range	218
Reference line		Spurious Emissions range	
External generator	346	Statistics	271
Position, external generator		Resolution bandwidth (EMI)	
Shifting, external generator		Restoring	
Value, external generator		Channel settings	320
Reference marker		Standard files	
Reference Marker		Restricted operation	20
Programming example	1030	Secure user mode	30 55/
Reference range	1033	Restrictions	
Softkey	າາາ	Storage space	20 55/
•	223		
Reference trace	245 246	Result displays	450
External generator		Diagram	
Storing as transducer factor, external go		Marker table	
D-flti	357	Peak list	
Reflection measurement	0.4.4	Programming example	
External generator		Result Summary	
How to, external generator		Spectrogram	453
Registers		Result frequency	
Relay Cycle Counter		External generator	356
Release notes	17	Result range	
Remote commands		Shifting	
Deprecated	1168	Zooming	461
Remote control	99	Result Summary	
Blocked	1186	Configuration (SEM)	231
Configuration - see user Manual	97	Evaluation method	453
Errors	1186	Result display	453
Ignored commands	672	Saving (SEM)	232
Interfaces	635	Results	
Introduction - see user Manual	97	Analyzing	313
LXI settings	684	CP/ACLR measurements	
Protocols		Data format (remote)	
Sequential commands		Displaying	
Remote Desktop		Exporting	
Client		Managing	
Ending session		OBW	
see User Manual		SEM	
Setting up controller		SEM (remote)	
Setting up instrument		Storing (remote)	1090
Setting up instrument		Reverse sweep	240 255
Remote display	680	External generator	
Update	ทุสม		

Instrument settlings
Resetting 684 SEM result files 231,555 Auto 409 Softkey 555 Auto 405 Spurious Emissions result files 255 Manual 409 Transducer lines 60 Mode (SEM range) 219 Tring out 73,7° Mode (SEM range) 219 Scalar reflection measurement 34 Noise floor 405 Semptious Emissions range 325 Self range 219 Scaling Scaling Spurious Emissions range 252 Amplitude range, automatically 41 Analog Baseband connector 321 Configuration 41 Analog Baseband connector 321 Configuration 41 Analog Baseband connector 321 Statistics 26 Covertoad protection 321 Statistics 26 Overtoad protection (remote) 917 Statistics 26 Overtoad protection 321 Axis (remote control) 90 RF OvUD Statistics 28 28
Resetting 684 SEM result files 231,555 Auto 409 Softkey 555 Auto 405 Spurious Emissions result files 255 Manual 409 Transducer lines 60 Mode (SEM range) 219 Tring out 73,7° Mode (SEM range) 219 Scalar reflection measurement 34 Noise floor 405 Semptious Emissions range 325 Self range 219 Scaling Scaling Spurious Emissions range 252 Amplitude range, automatically 41 Analog Baseband connector 321 Configuration 41 Analog Baseband connector 321 Configuration 41 Analog Baseband connector 321 Statistics 26 Covertoad protection 321 Statistics 26 Overtoad protection (remote) 917 Statistics 26 Overtoad protection 321 Axis (remote control) 90 RF OvUD Statistics 28 28
RF attenuation
Auto
Impact
Manual 409 Transducer lines 50 Mode (SEM range) 219 Trying out 73,7' Mode (Spurious Emissions range) 252 Scalar reflection measurement 34' Noise floor 405 SEM range 252 Scaling 326 Spurious Emissions range 252 Amplitude range, automatically 41' Comedor (remote) 917 Statistics 26' Connector (remote) 917 Statistics 26' Overload protection (remote) 917 Y-axis (remote control) 86 Overload protection (remote) 917 Y-axis (remote control) 90' Remote 917 920 Y-axis (remote control) 90' RF input SCP SCP Y-axis (remote control) 90' RF rowerrange 53 R5 Parameters 64' Ker overange 8, 78', 828 y-range revel (remote) 90' RF OVLD SCP Condifired commands 64' SET power Printing 579, 58 Trigge
Mode (SEM range) 219 Trying out 73,7' Mode (Spurious Emissions range) 252 Scalar reflection measurement Noise floor 405 SEM range 219 Spurious Emissions range 252 Amplitude range, automatically 411 Analog Baseband connector 321 Default (statistics) 266 Connector (remote) 917 Statistics 26 Connector (remote) 917 Statistics 26 Overload protection (remote) 917 Y-axis (remote control) 86 Overload protection (remote) 917, 920 Y-axis (remote control) 90 RF Input SCPI SCPI Connector 53 Parameters 64 RF ovuch 84, 1184 SCPI External Mixer 368, 378, 928 SCPI confirmed commands 64 RF OVLD (status display) 85, 1184 Scream SCPI confirmed commands 64 Scream of trigger 440 Scream of trigger 440 Scream of trigger 579, 58 Tri
Mode (Spurious Emissions range)
Noise floor 405 External generator 34' SEM range 219 Scaling 34' Specific Seminaria 252 Amplitude range, automatically 41' Analog Baseband connector 321 Default (statistics) 26' Connector (remote) 917 Statistics 26' Overload protection (remote) 917 Y-axis (remote control) 86 Overload protection (remote) 917 Y-axis (remote control) 90' Remote 917,920 Y-axis (remote control) 90' RF power 53 Parameters 64' External Mixer 368,378,928 Parameters 64' SCPI Screan 64' Storean 54' Syntax 64' Effor 41184 Screen 62' External generator 350 See Touchscreen 62' SCPI confirmed commands 64' Screen FE your 440 Saving 57's 56' Foreige level (remote) 96
SEM range 219 Scaling Spurious Emissions range 252 Amplitude range, automatically 411 Analog Baseband connector 321 Default (statistics) 26 Connector (remote) 917 Statistics 26 Overload protection (remote) 917 Y-axis (remote control) 86 Remote 917, 920 Y-axis (remote control) 90 RF Input SCPI SCPI Connector 53 Parameters 64 FF overrange Sanation SCPI External Mixer 368, 378, 928 SCPI confirmed commands 64 FF OVLD SCPI confirmed commands 64 External generator 360 See Touchscreen 62 Screen Screenshots Screenshots Trigger level (remote) 906 Screenshots 757, 58 Trigger level (remote) 906 Trying out 77 Rising Search limits Search limits SCP Search limits 99, 515, 516
Spurious Emissions range
RF input
Analog Baseband connector 321 Default (statistics) 266 Connector (remote) 917 Connector (remote) 917 Remote 917, 920 RF Input 5CPI Connector 53 Parameters 644 External Mixer 368, 378, 928 External Mixer 368, 378, 928 External generator 350 External gen
Connector (remote) 917 Statistics 26: Overload protection 321 X-axis (remote control) 88: Overload protection (remote) 917 Y-axis (remote control) 90: RF Input SCPI SCPI Connector 53 Parameters 64: FF overrange Syntax 64 External Mixer 368, 378, 928 version 64: FF OVLD SCPI confirmed commands 64: External generator 350 See Touchscreen 62: FO VLD (Status display) 85, 1184 Screen Screen EXTERNAL (Status display) 85, 1184 Screen stots Screen stots FP OWED (Status display) 85, 1184 Screen stots Screen stots RF Power 906 Screen stots Frinting 579, 58 Trigger (emote) 906 Trying out 779, 58 RBM (Trigger (emote) 906 Activating 199, 515, 518 RMM (Status (Siplay) 466 Search (Imits Search (Imits
Overload protection 321 X-axis (remote control) 88 Overload protection (remote) 917 Y-axis 4.06, 41.1 Remote 917, 920 Y-axis (remote control) 902 RF Input SCPI Y-axis (remote control) 902 RF overrange Sprameters 644 External Mixer 368, 378, 928 Version 644 Error 84, 1184 Screen 627 External generator 350 SCPI confirmed commands 644 Error 84, 1184 Screen 627 External generator 350 See Touchscreen 627 FOVLD (status display) 85, 1184 Screenshots 627 Fover Power Printing 579, 58 Fingger level (remote) 906 Trying out 77 Rising Scarch limits Search limits Search limits RM (trace information) 81 Deactivating 199, 515, 51 RM (trace information) 81 Deactivating 199, 516, 51
Overload protection (remote) 917 Y-axis (remote control) 406, 412 Remote 917, 920 Y-axis (remote control) 907 RF Input SCPI SCPI Connector 53 Parameters 64 RF overrange Syntax 64 External Mixer 368, 378, 928 version 64 RF OVLD Screan SCPI confirmed commands 64 External generator 350 See Touchscreen 62 RF OVLD (status display) 85, 1184 Screenshots See Touchscreen 62 RF Power Printing 579, 58 Trigger end 40 Saving 579, 58 Trigger level (remote) 906 Trying out 77 Search limits Search limits 96 Trying out 77 Search limits 96 Search limits 96 Search limits 99, 515, 518 Medivating 199, 515, 518 Medivating 199, 516, 518 Medivating 199, 516, 518 Medivating 99, 515, 518 Medivating 99, 516, 518
Remote 917, 920 Y-axis (remote control) 90: FR Input SCPI 64: RF overrange Syntax 64: External Mixer 368, 378, 928 Yersion 64: Error 84, 1184 Screen 64: External generator 350 See Touchscreen 62: Screen 62: Screen 62: RF OVLD (status display) 85: 1184 Screen 62: Frinting 579, 58- Trying out 77: 58- Trigger level (remote) 90 60: Trying out 77: 58- RM (trace information) 81 Deactivating 199, 515, 518 58- <tr< td=""></tr<>
RF Input
Connector
RF overange
External Mixer 368, 378, 928 Version 644 RF OVLD SCPI confirmed commands 645 Error 84, 1184 Screen External generator 350 See Touchscreen 625 RF OVLD (status display) 85, 1184 RF Power Printing 579, 584 Trigger 440 Saving 579, 584 Trigger level (remote) 906 Trying out 77 Rising Slope (Power sensor) 336 Activating 199, 516, 518 RM (trace information) 81 Deactivating 199, 516, 518 RMS VBW 466 Search Mode RMS Average Spectrogram markers 511 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals ROSTRUCK Search Signals Search settings ROSTRUCK Search Signals Search Signals Search settings ROSTRUCK Search Signals Search Search Signals Search Signals Search Signals Search Searc
External Mixer 368, 378, 928 Version 644 RF OVLD SCPI confirmed commands 645 Error
RF OVLD SCPI confirmed commands 64/3 Error 84, 1184 Screen 62/3 External generator 350 See Touchscreen 62/3 RF OVLD (status display) 85, 1184 Screenshots 8 RF Power Printing 579, 58-79, 58
Error 84, 1184 Screen 62: External generator 350 See Touchscreen 62: RF OVLD (status display) 85, 1184 Screenshots RF Power 440 Trigger 579, 58- Trigger level (remote) 906 Trying out 77 Rising Search limits Search limits Slope (Power sensor) 336 Activating 199, 515, 51 RMS Deactivating 199, 515, 51 RMS OBW 196, 19 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average Search settings EMI 301 Search settings RMS detector Zoom area 456 EMI 299 Search Signals VBW 415 Softkey 289, 29- Notary knob 50 Searching 50 RRC filter Configuration (softkey) 514 <td< td=""></td<>
External generator 350 See Touchscreen 623 RF OVLD (status display) 85, 1184 RF Power Printing 579, 584 Trigger 440 Saving 579, 584 Trigger 440
RF OVLD (status display) 85, 1184 Screenshots RF Power Printing 579, 584 Trigger 440 Saving 579, 584 Trigger level (remote) 906 Trying out 75 Rising Search limits Search limits 199, 515, 518 Slope (Power sensor) 336 Activating 199, 515, 518 RM (trace information) 81 Deactivating 199, 516, 519 RMS OBW 199, 516, 519 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search ange RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search signals VBW 415 Softkey 289, 29 Stotary Inguit 51 51 RC filter Configuration 51 SEM 224 Configuration (softk
RF Power 440 Saving 579, 58-
Trigger level (remote) 906 Trying out 77. 584 Rising Slope (Power sensor) 336 Activating 199, 515, 518 RM (trace information) 81 Deactivating 199, 516, 518 RMS OBW 196, 196 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 455 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search settings VBW 415 Softkey 289, 294 Rotary knob 50 Searching 51 RRC filter Configuration 51 SEM 224 Configuration (softkey) 516 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 60 Activating/deactivating
Trigger level (remote) 906 Trying out 75 Rising Search limits Search limits Slope (Power sensor) 336 Activating 199, 515, 518 RM (trace information) 81 Deactivating 199, 516, 518 RMS OBW 196, 199 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search settings VBW 415 Softkey 289, 294 VBW 415 Softkey 289, 294 Rotary knob 50 Searching 50 RRC filter Configuration (softkey) 514 SEM 224 Configuration (softkey) 514 RUN SINGLE Secure user mode 464 Activating/deactivating 39, 55 <t< td=""></t<>
Rising Search limits Slope (Power sensor) 336
Slope (Power sensor) 336 Activating 199, 515, 518 RM (trace information) 81 Deactivating 199, 516, 518 RMS OBW 196, 196 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 29 Rotary knob 50 Searching RC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 SRUSINGLE Secure user mode Activating/deactivating 39, 55 S Background information 37, 55 Instrument settings 56
RM (trace information) 81 Deactivating OBW 199, 516, 516 RMS OBW 196, 198 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching Searching RRC filter Configuration 514 Search settings 516 SEM 224 Configuration (softkey) 516 516 RUN CONT In help 9
RMS OBW 196, 196 VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 68 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching TR RRC filter Configuration 514 SEM 224 Configuration (softkey) 514 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Secure user mode 39, 55 S Background information 37, 55 Instrument settings 556 S/N ratio Login 22 Measurement example 123, 137 Passwords 39, 55 Sample detector
VBW 466 Search Mode RMS Average Spectrogram markers 516 Detector 298 Search range RMS Average detector Zoom area 458 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 514 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 60 Activating/deactivating 39, 55 S Background information 37, 55 Instrument settings 55 S/N ratio Login 21 Measurement example 123, 137 Passwords 39, 55
RMS Average Detector 298 Search range 516 RMS Average detector Zoom area 458 EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode 276 Key 119, 425, 426, 488 Activating/deactivating 39, 55 S Background information 37, 55 Instrument settings 556 S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 55-5 SA (trace information) 80 Redirecting storage 38, 55 Sample detector 464
Detector 298 Search range RMS Average detector Zoom area 450 EMI 301 Search settings RMS detector 464 Trying out 60 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching 286, 294 RC filter Configuration 514 SEM 224 Configuration (softkey) 514 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode 276 Key 119, 425, 426, 488 Activating/deactivating 39, 55 S/N ratio Activating/deactivating 39, 55 S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 55 SA (trace information) 80 Redirecting storage 38, 55 Sample detector 464 Remote 112 EMI<
RMS Average detector Zoom area 456 EMI 301 Search settings RMS detector 464 Trying out 68 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 51 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Activating/deactivating 39, 556 S Background information 37, 557 Instrument settings 556 S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 556 Sample detector 464 Remote 1127 EMI 299 Restricted operation 33, 555 Samples Self-alignment 602, 604, 607, 676
EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 600 Activating/deactivating 39, 55 S Background information 37, 55 Instrument settings 56 Login 26 Login 26 Login 26 Login 27 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 55 Samples Self-alignment 602, 604, 607, 67
EMI 301 Search settings RMS detector 464 Trying out 66 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating/deactivating 39, 55 S Background information 37, 55 Instrument settings 55 Login 26 Login 26 Login 27 SA (trace information) 80 Redirecting storage 39, 55 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 55 Samples Self-alignment 602, 604, 607, 67
RMS detector 464 Trying out 68 EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 600 Activating/deactivating 39, 554 Background information 37, 555 Instrument settings 56 Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 55 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Self-alignment 602, 604, 607, 676
EMI 299 Search Signals VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Secure user mode Key 119, 425, 426, 488 Activating 600 Activating/deactivating 39, 554 S Background information 37, 555 Instrument settings 566 Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 555 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
VBW 415 Softkey 289, 294 Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 606 S Background information 37, 556 Instrument settings 556 Login 26 Measurement example 123, 137 Passwords 39, 556 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
Rotary knob 50 Searching RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode 56 Key 119, 425, 426, 488 Activating/deactivating 39, 554 S Background information 37, 555 Instrument settings 556 Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
RRC filter Configuration 514 SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode 600 Key 119, 425, 426, 488 Activating 600 S Background information 37, 556 S/N ratio Login 20 Measurement example 123, 137 Passwords 39, 556 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
SEM 224 Configuration (softkey) 516 RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode 560 Key 119, 425, 426, 488 Activating/deactivating 39, 556 S Background information 37, 553 S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 556 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
RUN CONT In help 96 Key 119, 426, 488 Second harmonic intercept 276 RUN SINGLE Secure user mode Activating 602 Key 119, 425, 426, 488 Activating 39, 554 S Background information 37, 555 Instrument settings 556 S/N ratio Login 26 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 555 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
Key 119, 426, 488 Second harmonic intercept 278 RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 608 Activating/deactivating 39, 554 Background information 37, 553 Instrument settings 560 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
RUN SINGLE Secure user mode Key 119, 425, 426, 488 Activating 608 Activating/deactivating 39, 554 S Background information 37, 553 Instrument settings 556 Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
Key 119, 425, 426, 488 Activating 608 S Activating/deactivating 39, 554 Background information 37, 553 Instrument settings 556 Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
S Activating/deactivating 39, 554 Background information 37, 553 Instrument settings 556 S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
S Background information 37, 55 S/N ratio Instrument settings 55 Measurement example 123, 137 Passwords 39, 55 SA (trace information) 80 Redirecting storage 38, 55 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 55 Samples Self-alignment 602, 604, 607, 676
S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
S/N ratio Login 26 Measurement example 123, 137 Passwords 39, 554 SA (trace information) 80 Redirecting storage 38, 553 Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
Measurement example 123, 137 Passwords 39, 55-5 SA (trace information) 80 Redirecting storage 38, 55-5 Sample detector 464 Remote 112-112-112-112-112-112-112-112-112-112
SA (trace information) 80 Redirecting storage 38, 55 Sample detector 464 Remote 112 EMI 299 Restricted operation 39, 55 Samples Self-alignment 602, 604, 607, 676
Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
Sample detector 464 Remote 1123 EMI 299 Restricted operation 39, 554 Samples Self-alignment 602, 604, 607, 676
EMI
Samples Self-alignment
i
38 55/
Statistics 265, 272 Self-alignment data 38, 554 Save/Recall Mode Storage location 230, 559, 560, 561, 564
Otto ago 100 attor
Ot-
0.00
O I
Saving Softkey
00 550
Classified data

Self-alignment		601	Sweep list			216
Aborting			Sweep list (remote control)			
Secure user mode 38, 554, 602, 60			Sweep points			
Starting			Sweep time			
Self-test		002	Sweep time mode			
	611	607				
Performing			Transducer			
Remote			Tx Bandwidth			
Results	,		Used power classes			
Settings			VBW			. 218
Temperature		627	Sensitivity			
Selftest			RBW			414
Remote	<i>'</i>	1124	Sequencer			78
SEM		201	Aborted		602.	61
About			Aborting (remote)		,	
Adding power classes			Activating (remote)			
Alpha value (RRC filter)			Channels			
Applications			Example			
Channel power settings			Mode		,	
Configuring			Mode (remote)			
Deleting ranges		. 221	Programming example			.724
Displaying peaks		. 232	Remote			728
Exporting results		. 236	Remote control			71
Fast mode	210.	218	RUN SINGLE			. 11 ⁻
Filter type	,	218	Setting up			11:
Format description of export files			Single Sweep			
Format description of settings files			Softkey			
•			State			
Inserting ranges						
Limit absolute			Trying out			
Limit check			Sequential commands			
Limit lines			Errors			
Limit relative		. 220	Service functions	609,	613,	614
List evaluation		. 231	Numeric mode			614
List evaluation (remote control)		804	Passwords			615
List evaluation state		. 232	Results			. 61
Measurement			Service packs			
Measurement (remote control)			Service request (SRQ)			
Measurement result list			Service request enable register (SRE)			
MSR (remote control)			Remote			/ 14
Multiple sub blocks (Multi-SEM)			Set CP Reference			
Peak margins			Softkey			
Performing		. 232	Setting commands			643
Power class ranges		225	Settings			
Power classes	207,	, 224	File name	230,	561,	564
Power classes (remote control)		793	Format description (SEM)			. 238
Preamplifier			Instrument setup			
Programming example			Loading			
Provided settings files			Managing			
Range start/stop			Provided files (SEM)			
•						
Ranges			Recalling			
RBW			Recalling; restrictions			
Reference level		. 219	Restoring files			23
Reference power		224	Saving		559,	564
Reference range		. 223	Storage location	230,	560,	563
Reference range (remote control)		.792	Storing		555.	556
Restoring standard files			Settings files		,	
Result files			Deleting			23
Results			Deleting (SEM)			
Results (Multi-SEM)			Loading			
Results (remote control)			Loading (SEM)			
Results (remote)		205	Managing (SEM)			
RF attenuation		219	Restoring (SEM)			23
RF attenuation mode		219	Saving			
RRC filter			Saving (SEM)			
Saving result summary			Setup files			
Settings files			External generator	2//	352	351
Standard files			Sgl (channel bar)			/ 8
Standards (remote control)		114				

Shift X		Calibrate Transmission (remote contr	
Limit lines	548	Normalize (remote control)	945
Transducer lines	601	Softkey bar	
Shift y		Hiding/restoring	619
Limit lines	548	Softkeys	
Transducer lines		# of Samples (APD, CCDF)	265
Shifting		% Power Bandwidth	
3	500		
Limit lines		ACLR Mode	·
Results	461	Adjust Settings159,	
Short-circuit reflection measurement		Adjust Settings (APD)	265, 269
Calibration, external generator	357	Adjust X-Axis	253
Shutdown		All Functions Off	532
Remote control	1131	Amplitude Config	
		Analysis BW (APD, CCDF)	
Signal capturing Duration (remote)	004	, , ,	
, ,	091	Auto All	
Signal count		Auto Freq	
Marker	501, 522	Auto Level	408, 450
Remote control	1032	Bandwidth Config	419
Resolution	522	BB Power	440
Signal count markers		C/N	193
Programming example	1044	C/No	
Signal counter		Carrier Noise Config	
•	100	· · · · · · · · · · · · · · · · · · ·	
Measurement example	122	Center	
Signal ID		Center = Mkr Freq	
External Mixer	381	Channel Bandwidth	194, 199
External Mixer (remote)	922	Channel-defined Sequencer	112
Signal source		Clear All Messages (remote control)	1122
Remote	920	Clear Spectrogram	
Signal tracking		Color Mapping	
Bandwidth			
		Comment	
Configuring		Continue Single Sweep	
Softkey	401	Continuous Sequencer	
State	401	Continuous Sweep	119, 426, 488
Threshold	402	Copy Trace	496
Trace	402	CP/ACLR Settings	154
Single Sequencer		CP/ACLR Standard	
Softkey	112	Device	·
	112		· · ·
Single sweep	110 105 100	Display Config	
Softkey		Export	
Single zoom	458, 460	Export config	568
Sinusoidal signals		External	439
Measurement example	120	Frame count	427
Slope		Free Run	439
Edge gate	442	Frequency Config	
Power sensor trigger		Full Span	
Trigger		Gated Trigger	
Trigger (Power sensor)	336	Harmonic RBW Auto	
SmartGrid		Harmonic Sweep Time	
Activating	92, 456	History Depth	487
Arranging windows	93, 457	Horizontal Line 1/2	
Display		I/Q Export	568
Evaluation bar		IF Power	
Features	·	Import	
Mode	·	Input Source Config	
Programming example		Install Printer	
Trying out	62	Last Span	400
Smoothing		Line Config	541, 542
Traces	470	List evaluation	·
Traces (group delay)		Lower Level Hysteresis	
Soft Front Panels		Marker 1/2/3	
	000		
Using	533	Marker 1/2/3/4	
softkey		Marker Config	
Filter Type (remote control)	895	Marker Search Area	518
Trace Mode (remote control)	834, 835	Marker Search Type	518
Softkey		Marker to Trace	
Calibrate Reflection Open (remote conti	rol) 944	Meastime Auto	
Calibrate Reflection Short (remote conti		Meastime Manual	
Campiate Nellection Short (remote Conti	101) 344	Measume Manual	430

Min	!	520	Trigger Offset	442
MSR Configuration	2	226	Trigger/Gate Config	
Next Min		520	Upper Level Hysteresis	450
Next Mode X		517	Vertical Line 1/2	541
Next Mode Y	!	517	Video	439
Next Peak	!	520	Video BW Auto	421
No. of Harmonics		281	Video BW Manual	421
Noise cancellation			Zero Span	
Norm/Delta			Sort mode	
Outputs Config			Peak list	533
Peak			Source offset	
Percent Marker			External generator	35/
			_	
Power classes			Source power	0.5
Power Mode			External generator	354
Power Sensor			Spacing	
Power Sensor Config			MSR, adjacent channels	
Power Unit			MSR, gap channels	177
Preamp	4	410	Spacings	
Print Screen	(579	CP/ACLR	161
R&S Support	(610	Span	399
Recall	!	559	Band power measurement	528
Recall File	558, 5	562	Carrier-to-Noise	
Ref Level		407	CP/ACLR	146
Ref Level (APD; CCDF)			Manual	
Ref Level Offset			Span/RBW coupling	
Ref Lvl = Mkr Lvl			Speaker	
			Remote control	064
Reference				90
Reference range			Special characters	0.4
Repetition interval			SCPI	647
Res BW Auto			Spectrograms	
Res BW Auto (remote)			Activating/Deactivating	
Res BW Manual			Clearing	427, 489
RF Atten Auto	4	409	Color curve	
RF Atten Manual	4	409	Color mapping 474,	488, 489, 49 3
RF Power	4	440	Color mapping (remote control)	
Save		559	Color scheme	474, 490
Save File	!	561	Configuring	
Scale Config			Configuring (remote control)	
Search Config			Continue frame	
Search Signals			Display	
Select Frame			Displaying	
Select Marker			Evaluation method	
Sequencer			Frame count	
•				
Set CP Reference			Frames (remote control)	
Signal Track			History depth	
Single Sequencer			Markers	,
Single Sweep			Markers (remote control)	
Span Manual		399	Programming example	
Spectrogram	4	487	Removing	
Standard files		229	Scaling	473
Start		399	Selecting frames	426, 487
Startup Recall	!	562	Settings	486
Startup Recall (On/Off)	!	563	Softkey	487
Status		.44	Sweep count	
Stop			Time frames	
Sweep Config			Timestamps	
Sweep count			Trying out	
Sweep list			Value range	
•			<u> </u>	770, 484
Sweep Time			Spectrum	400
Sweeptime Auto			Application	103
Sweeptime Manual			Spectrum Emission Mask	-
System Messages (remote control)			see SEM	201
Time			Split	
Timestamp	4	488	Window	
Trace 1/2/3/4	4	482	Split display	46
Trace Config	478, 4	482	Splitters	
Transducer		597	Window size	94

Spurious Emissions	245	Startup recall		
About	245	Remote	1	1074
Configuring	249	Startup Recall		
Deleting ranges		Softkey		563
Detector		Statistics		
Displaying peaks		Default scaling		265
Evaluation list		Gate (remote control)		
Exporting results		Gated trigger		
Filter type		Measurements		
Format description of export files		Measurements (remote control)		
Inserting ranges	253	Optimizing		. 272
Limit absolute	253	Programming example831, 1039, 1060, 1	061, 1	1096
Limit check	253	Scaling		. 267
Limit lines	248	Scaling (remote control)		
List details		see also APD, CCDF		
List evaluation		Status		
List evaluation state		Queries		670
				. 070
Measurement		Status bar		
Measurement (remote control)		Color coding		
Measurement result list	253	Error messages	83, 1	1183
Peak margins	254	Error messages, external generator		. 350
Peaks	247	Hiding/restoring		.619
Peaks per range	255	Secure user mode	39.	. 554
Performing		Status byte	,	
Preamplifier		Remote	711	71/
			,	,
Programming example		Status byte (STB)		
Range start/stop		Status byte register (STB)		
Ranges		Status display		
RBW	251	Status registers		. 656
Reference level	251	CONDition		.657
Result files	256	ENABle		. 657
Results	246	EVENt		. 657
RF attenuation		model		
RF attenuation mode		NTRansition		
Saving list evaluation		parts		
•		•		
Sweep behavior		PTRansition		
Sweep list		STAT:QUES:POW		
Sweep points		STATus:OPERation		
Sweep time		STATus:QUEStionable		
Sweep time mode	251	STATus:QUEStionable:ACPLimit		. 664
Transducer	252	STATus:QUEStionable:DIQ		.659
VBW	251	STATus:QUEStionable:EXTended		. 664
Squelch		STATus:QUEStionable:EXTended:INFO		665
Level	531	STATus:QUEStionable:FREQuency		665
Marker Demodulation		STATus:QUEStionable:LIMit		
Remote control		STATus:QUEStionable:LMARgin		
		•		
SRE (service request enable register)		STATus:QUEStionable:POWerSTATus:QUEStionable:SYNC		
SRQ (service request)				
Standard		STATus:QUEStionable:TEMPerature		
MSR Tx channel	171	STATUs:QUEStionable:TEMPerature	591, 1	1104
Standard deviation		STATus:QUEStionable:TIMe		. 668
Power (time domain)	273	Status reporting system		655
Standard files		Application		. 669
Multi-SEM	229	Common commands		
Softkey	229	Step size		
Standards		Markers		512
CP/ACLR measurements	155 165	Markers (remote control)		
Format description (SEM)				332
. , ,		Stop frequency		200
Provided files (SEM)		Softkey		. აყა
Restoring files (SEM)		Storage location		_
Settings files (Multi-SEM)		Data files		
Settings files (SEM)	229	Secure user mode 230, 559, 560), 561,	, 564
Star (yellow)		Settings230), 560,	, 563
see Invalid data icon	77	Storage settings	,	
Start frequency		File type		. 561
Softkey	399	Storing		- 0
		Settings	555	550
		ociiiiga	555,	, 550

Sub blocks		Sweep status	
Configuring	170	Status register	66
MSR, Center frequency	171	Sweep time	
MSR, number of Tx channels	171	Auto (Softkey)	42
MSR, RF bandwidth	171	CP/ACLR	146, 16
MSR, Tx channel definition	171	Harmonics	28
Number (Multi-SEM)	222	Manual (Softkey)	42
Standard files		SEM range	
Subnet Mask		Softkey	
Suffixes		Spurious Emissions range	
Common		Statistics	
Support		Values	
Information		Sweep time mode	
			24
Information (remote)	1124	SEM range	
Suppressing	504	Spurious Emissions range	25
File name dialog	581	Sweeps	0.4
Sweep		Reverse, external generator	34
Aborting		Switching	
Behavior (Spurious Emissions)		Focus area	
Configuration (Softkey)	419	Keyboard display	40
Continuous	119	Maximized/split display	46
Count	418, 423	SWT (channel setting)	7
Count (Spectrograms)	473	Symmetric setup	
Default settings	413	SEM	22
Mode		SEM ranges	20
Performing	119	SYNC TRIGGER	
Points		Connector	5
Points (SEM range)		Syntax elements	
Points (Spurious Emissions range)		SCPI	650
Settings (Spectrogram)		System	
Single		Configuration	601
S .		Configuration (remote)	
Time (remote)			
Type		Messages	
Type (remote)	094	Preset operating mode	600
Sweep list	224 272	SYSTEM	
Deleting ranges	·	Keys	4
Detector		-	
Fast SEM		Т	
Filter type	218, 250	T. I	
Inserting ranges		Tabs	0.
Limit absolute	220, 253	All	
Limit check	220, 253	Channels	
Limit relative	220	MultiView	, -
Preamplifier	219, 252	Switching	7
Range start/stop (SEM)	217	Task bar	
Range start/stop (Spurious Emissions)		Accessing	30
RBW		TCP/IP	
Reference level		Address, External generator	35
RF attenuation		External generator	352
RF attenuation mode	· ·	TD-SCDMA BTS	
SEM		Application	100
		TD-SCDMA UE	
Softkey		Application	10
Spurious Emissions		Tdf (channel bar)	
Sweep behavior		Technology	
Sweep points		MSR Tx channel	17
Sweep points (SEM)			11
Sweep time		Temperature	50
Sweep time mode		Check	
Symmetrical		Check (remote)	
Transducer	219, 252	Frontend	
VBW	218, 251	Frontend (remote)	
Sweep points		Frontend, status bit	
EMI	301	Self-alignment	59 ⁻
Logarithmic x-axis scaling		Self-alignment (remote)	
Sweep Repeat		Status register	668
GPIB	683	-	
GPIB (remote control)			
15 (10111010 00111101)	110-		

Ineme		Displayed items	618
Display	622, 623	Overview	41
Display (remote)		Settings	
Third order intercept point		Theme	
see TOI	202	Trace information	
	203		
Threshold		Detector type	
Limit lines	539, 546	Trace number	80
Peak search	516, 519	Window title bar	80
Signal tracking	402	Trace math	469
Time		Functions	
Format	619		
		Settings	
Hiding/restoring		Trace smoothing	
Instrument setting	617	Traces	482
Setting	37	Average mode	480
Time Domain Power	272	Averaging	469
About		Averaging (algorithm)	
Configuring		Averaging (remote control)	
Limit lines		Combining results	
Measurement	118	Configuration	478
Measurement (remote control)	833	Configuration (Softkey)	482
Measurement example	276	Configuring	
Measuring		Configuring (remote control)	
· ·			
Restricting range		Copying	
Results	273, 274	Copying (remote control)	
Time frames		Detector	308, 464, 479
Configuring	426	Detector (remote control)	969
Continuing		Export format	
Navigating		Exporting484	
0 0			
per sweep		Hold	
Selecting	426, 487	Mode	
Spectrograms	472	Mode (CP/ACLR)	149
Time lines		Mode (remote)	965
Remote control	1045	Saving	
Time trigger		Settings	
	441		
Repetition interval		Settings (remote control)	
Softkey	441	Settings, predefined	481
Timestamps		Traces to be Checked	
Softkey (Spectrogram)	488	Limit lines	544
Spectrograms		Tracking	
TOI	·	see External generator	35/
About the measurement		Tracking bandwidth	402
Basics	283	Tracking generator	
Calculation method	285	see External generator	339
Configuring	288	Tracking threshold	402
Determining		Transducer factor	
Markers		Transducers	
			F00
Measurement		Activating/Deactivating	
Programming example	848	Adjusting reference level	599
Results	287	Calibration with external generator.	346, 357
Search signals	289. 290	Checking	630
TOI (marker functions)		Comment	
	02		
Toolbar	242	Compatibility	
Hiding/restoring	619	Compatible	
Overview	43	Configuration	
Total Harmonic Distortion		Configuration (remote control)	1104
Measurement	280	Configuring	
Touch screen		Copying	
	1111		
Colors (remote)		Creating	· · · · · · · · · · · · · · · · · · ·
Settings (remote control)	1108	Data points	
Touch-sensitivity		Deleting	599, 631
TOUCH-Sensitivity		Deleting	
De-/activating - see User Manual	95	Deleting values	
De-/activating - see User Manual	95	Deleting values	601
De-/activating - see User Manualtouchscreen		Deleting values Editing	601 599, 630
De-/activating - see User Manual touchscreen Alignment		Deleting values Editing Factors	599, 630 599.
De-/activating - see User Manual touchscreen Alignment Touchscreen	591, 601, 603	Deleting values Editing Factors Inserting values	
De-/activating - see User Manual touchscreen Alignment	591, 601, 603	Deleting values Editing Factors	
De-/activating - see User Manual touchscreen Alignment Touchscreen	591, 601, 603	Deleting values Editing Factors Inserting values	

Saving	556, 559, 601	Low frequencies	1188
Secure user mode		Overload, external generator	
SEM range		Remote control programs	
Settings		Timeout for data capture	
Shifting		Trace display	
Softkey		Trying out	
Spurious Emissions range		Prerequisites	50
		·	
Storing		TTL handshake	252
Unit		see TTL synchronization	352
Validity		TTL synchronization	
View filter		AUX control, external generator	
X-axis		External generator	340, 349, 352
Y-axis unit	592	Tuning range	
Transient Analysis		External reference	595
Application	107	Tx bandwidth	
Transmission measurement		SEM	224
Calibration, external generator	356	Tx channel	
External generator	341	MSR, Center frequency	171
How to, external generator		MSR, technology	
TRG (channel bar)		Tx channels	
Trigger		in MSR sub blocks	171
Configuration preview	438	MSR, configuring	
Drop-out time		MSR, weighting filters	
Drop-Out Time		Mort, weighting litters	
		U	
Drop-out time (Power sensor)		O	
Event (remote)		UNCAL	
External (remote)		Error	Q/ 11Q/
External power			·
External, errors		UNCAL (status display)	05, 1104
Holdoff	· · · · · · · · · · · · · · · · · · ·	UNDO	F.4
Holdoff (Power sensor)		Key	
Hysteresis	431, 442	Units	
Hysteresis (Power sensor)	336	Power sensor	
Level (Power sensor)	336	Reference level	407, 408
Measurements	430	Transducer factors	600
Offset	430. 442	Y-axis (statistics)	268
Output	393. 443	UP	648
Power sensor		Update Path	
Slope	-	Remote control	1122
Slope (Power sensor)		Update rate	
Status register		Display	617
TRIGGER	001	Updating	
Connector	57	Firmware	606 629
	57	Upper Level Hysteresis	·
TRIGGER INPUT / OUTPUT	50	USB	
Connectors		Address	6/1
Trigger level			
External trigger (remote)		Connector	
I/Q Power (remote)		Connectors	
IF Power (remote)	905	Interfaces	641
RF Power (remote)	906	User ports	
Trigger source	430, 438	Remote control	961
BB Power	440	User standards	
External	439	CP/ACLR	155, 165
Free Run	439	Loading (CP/ACLR)	182
IF Power	440	Managing	155, 165
Power Sensor		Storing (CP/ACLR)	182
RF Power		Users	
Time		Network	696
Video		Password	
	439		
Trigger/Gate	400	V	
Configuration (Softkey)		•	
TRK (marker functions)	82	V network	312
Troubleshooting		V-network	
CP/ACLR		EMI	303
File name error		□IVII	
Hardware	615		
Input overload	917		

VBW		Windows	
CP/ACLR	148	Adding	92, 456
RMS detector	466	Adding (remote)	872
see Video bandwidth	414	Arranging	
SEM range		Closing	
Spurious Emissions range		Closing (remote)	•
VBW (channel setting)		Dialog boxes	
VBW/RBW coupling		Layout (remote)	
Vendor ID	713	Maximizing (remote)	
Rohde & Schwarz	641		
		Querying (remote)	
Version information	604	Replacing (remote)	
Vertical Line 1/2	E44	Size	
Softkeys	541	Splitting (remote)	
Video		Types (remote)	872
Output	324	Windows	
Trigger source	439	Access	30
Video bandwidth	421	Windows 7	26
Auto (Softkey)	421	WLAN	
Impact	414	Application	107
Manual (Softkey)		Wordpad	
RMS detector		Accessing	30
Video output		WRONG FW	
View filter		Error	84 590 606 1184
Limit lines	544		.04, 000, 000, 1104
Transducer lines		X	
Virus protection		X	
•		X-axis	
VISA	,	Adjusting (Spurious Emissions)	253
Libraries		Limit lines	
Resource string	637, 642		
Visible		Scaling	, ,
Limit lines	544	Transducer lines	601
Volatile memory		X-Offset	
Secure user mode	38, 553	Limit lines	544
Volume		X-value	
Headphones	46	Marker	306, 510
Remote control	961		
VSA (Vector Signal Analysis)		Υ	
Application	107		
VXI protocol		Y-axis	
		Limit lines	547
W		Max/Min (statistics)	268
		Optimizing display	412
W-CDMA signals		Scaling	406, 412
CP/ACLR	186	Settings	411
Wait		Y-Offset	
Remote	715	Limit lines	545
Waiting for trigger	7 10	Yellow star	
	661	see Invalid data icon	77
Status register	001	YIG Bypass (channel bar)	
Web browser	000	YIG-preselector	
Configuration interface	692	•	220
Weighting filters		Activating/Deactivating (compts)	
CP/ACLR		Activating/Deactivating (remote)	919
MSR ACLR		7	
MSR, adjacent channels	174	Z	
MSR, gap channels	177	7	
Remote	741	Zero span	440
White noise		Measurement	
Measurement example (statistics)	271	Measurement examples	
White papers		Softkey	400
White space		Zeroing	
Wideband		Power sensor	334
PSA89600	683	Zoom limits	
	000	Search range	459
WiGig see 802.11ad	104	Using for searches	
		Zooming	
Window title bar	80	Activating (remote)	
		Area (Multiple mode, remote)	
		, and (manuple mode, remote)	

Area (remote)	962
Deactivating	461
Multiple mode	
Multiple mode (remote)	963, 964
Remote	962
Restoring original display	460
see User Manual	
Single mode	458, 460
Single mode (remote)	962
Trying out	